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Local isometry of the generalized helicoidal surfaces family in 4-space
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Abstract. In this paper, we consider the helicoidal surfaces family in four dimensional Euclidean space E4. We calculate
normal pair and the curvatures of the surface family. Moreover, we find the local isometry from helicoidal surface family to
the rotational surface family by using Bour’s theorem in E4.
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1. Introduction

The deformation of parametric surfaces family is determined by

Xβ (u, v) =

 cosβ sinu sinh v + sinβ cosu cosh v

− cosβ cosu sinh v + sinβ sinu cosh v

u cosβ + v sinβ

 .

Here, u, β ∈ (−π, π], v ∈ (−∞,∞) , β is the parameter of deformation. Xβ is minimal, i.e., has zero mean
curvature. X0 is the helicoid, Xπ/2 is the catenoid. Therefore, the surfaces are locally isometric, have the same
Gauss map.

In addition, helices of X0 match to parallel circles of Xπ/2. Finally, we meet the classical theorem of the
French mathematician Edmond Bour.

Bour’s Theorem [1]. A helicoidal surface is locally isometric to a rotational surface so that helices of the
helicoidal surface match to parallel circles of the rotational surface.

Some other Euclidean and also Lorentz-Minkowski versions of it were studied by [2]-[14].
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2 yayli@science.ankara.edu.tr (Yusuf YAYLI) ORCID: https://orcid.org/0000-0003-4398-3855

https://www.malayajournal.org/index.php/mjm/index ©2023 by the authors.



Local isometry of the generalized helicoidal surfaces family in 4-space

Next, we present some fundamental geometric and differential facts of four dimensional Euclidean space. Let

−→x · −→y = x1y1 + x2y2 + x3y3 + x4y4

be a Euclidean inner product, and let X:D ⊂ E2 → E4 be a parametric representation of surface M in Euclidean
4-space E4. The tangent space of M at a point p =X(u, v) is spanned by Xu and Xv , where Xu = ∂X

∂u , Xv = ∂X
∂v .

The first fundamental form matrix of M is obtained by

I =

(
E F
F G

)
where

E = Xu · Xu, F = Xu · Xv, G = Xv · Xv.

We assume the surface M is regular. That is, W 2 = det I = EG − F2 > 0. Let {η1, η2, ζ1, ζ2} be a
orthonormal frame of M where η1, η2 are tangent to M , ζ1, ζ2 are normal to M . The second fundamental form
matrix of M w.r.t. the unit normal vector ζi, i = 1, 2, is described by

IIi =

(
Li Mi

Mi Ni

)
where

Li = Xuu · ζi, Mi = Xuv · ζi, Ni = Xvv · ζi,

and Xuu = ∂2X
∂u2 , Xuv = ∂2X

∂u∂v , Xvv = ∂2X
∂v2 .

We determine by

(a) Hi =
(E)(Ni)+(G)(Li)−2(F)(Mi)

2W 2 , the mean curvature of M w.r.t. ni, i = 1, 2,

(b)
−→
H = H1n1 +H2n2, the mean curvature vector of M,

(c)
−→
H = 0, the surface M is minimal,

(d) K =
(L1)(N1)−(M1)

2
+(L2)(N2)−(M2)

2

W 2 = det(II1)+det(II2)
W 2 , the Gaussian curvature of M , respectively.

An orthonormal tangent frame field {η1, η2} of M is choosen by

η1 =
1√
E
Xu, η2 =

1

W
√
E
(EXv − FXu) ,

with its Gauss map

G =
1

W
(Xu ∧ Xv) .

In this paper, we generalized the work of The Hieu and Ngoc Thang [14].

2. Generalized helicoidal surfaces family in E4

A vector (a,b,c,d) of E4 will be identified with its transpose in the rest of this work.
Let γ : I ⊂ R −→ Π be a curve in a plane Π in E4, ℓ be a line in Π. A generalized rotational surface family

in E4 is described by rotating a profile curve γ about a line (i.e., axis) ℓ.
When γ rotates about ℓ, it simultaneously matches parallel lines perpendicular to the ℓ, so the displacement

speed is proportional to the rotation speed. Therefore, the final surface is named the generalized helicoidal
surface family with axis ℓ and pitch a ∈ R\{0}.
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Parametrization of the profile curve is given by

γ(u) = (f (u) , 0, g (u) , h (u)) ,

where f, g, h : I ⊂ R −→ R are the differentiable functions for all u ∈ I . So, in E4, a generalized helicoidal
surface family with pitch a ∈ R\{0} is defined by

H(u, v) =


f (u) cos v

f (u) sin v

g (u) + av

h (u)

 , (2.1)

where f, g, h are the differentiable functions, u, a ∈ R \ {0}, and 0 ≤ v < 2π. When a = 0, it is just a rotational
surface in E4.

By taking the first derivatives w.r.t. u and v, respectively, of the generalized helicoidal surfaces family defined
by Eq. (2.1), we find the following first quantities of the family

E = f ′2 + g′2 + h′2, F = ag′, G = f2 + a2,

where f ′2 =
(

df
du

)2
, g′2 =

(
dg
du

)2
, h′2 =

(
dh
du

)2
.

We compute two normals of the generalized helicoidal surface family described by Eq. (2.1) as follows

ζ1 =
1

T


h′ cos v

h′ sin v

0

−f ′

 , (2.2)

ζ2 =
1

WT


−ff ′g′ cos v + a

(
f ′2 + h′2) sin v

−a
(
f ′2 + h′2) cos v − ff ′g′ sin v

f
(
f ′2 + h′2)
−fg′h′

 , (2.3)

respectively. Here, T =
√
f ′2 + h′2, W =

√
a2 (f ′2 + h′2) + f2 (f ′2 + g′2 + h′2).

Using the second derivatives of the helicoidal surface defined by Eq. (2.1) w.r.t. u and v, respectively,

Huu = (f ′′ cos v, f ′′ sin v, g′′, h′′) ,

Huv = (−f ′ sin v, f ′ cos v, 0, 0) ,

Hvv = (−f cos v,−f sin v, 0, 0) ,

where f ′′ = ∂2f
∂u2 , g

′′ = ∂2g
∂u2 , h

′′ = ∂2h
∂u2 , and the normals determined by Eq. (2.2) and Eq. (2.3) , we have the

following second quantities of the generalized helicoidal surfaces family described by Eq. (2.1):

L1 =
f ′′h′ − f ′h′′

T
, M1 = 0, N1 = −fh′

T
,

L2 =
f
(
−
(
f ′2 + h′2) g′′ + g′ (f ′f ′′ + h′h′′)

)
WT

, M2 =
af ′ (f ′2 + h′2)

WT
, N2 = −f2f ′g′

WT
.

Hence, the mean curvatures Hi (i = 1, 2) and the Gaussian curvature K of the generalized helicoidal surfaces
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family defined by Eq. (2.1) are given by as follows

H1 =

(
f2 + a2

)
h′f ′′ − f

(
f ′2 + g′2

)
h′ − fh′3 −

(
a2 + f2

)
f ′h′′

2W 2
√
f ′2 + h′2

,

H2 =

{
f
(
a2 + f2

) {
f ′g′f ′′ −

(
f ′2 + h′2) g′′ + g′h′h′′}

−
{
2a2

(
f ′2 + h′2)+ f2

(
f ′2 + g′2 + h′2)} f ′g′

}
2W 3

√
f ′2 + h′2

,

K =

{
−
(
f3f ′2g′2W 2 + fh′2) f ′′ +

(
f3f ′g′

(
f ′2 + h′2)W 2

)
g′′

−
(
f3f ′g′2h′W 2 − ff ′h′)h′′ − a2f ′2 (f ′2 + h′2)2 W 2

}
W 4 (f ′2 + h′2)

.

3. Bour’s theorem on generalized helicoidal-rotational surfaces family in E4

Next, we generalize the Bour’s theorem for the generalized helicoidal-rotational surfaces family in four
dimensional Euclidean space.

Theorem 1. Let H be the generalized helicoidal surfaces family described by Eq. (2.1), and let p(u), q(u),
u > 0 are the differentiable functions supplying the equation

p2 + q2 =
a2 + f2f ′2 +

(
f2 + a2

)
h′2

f2
. (3.1)

Therefore, the generalized helicoidal surface family H defined by Eq. (2.1) is locally isometric to the following
generalized rotational surfaces family

R(u, v) =



√
f2 + a2 cos

(
v +

∫
ag′

f2+a2 du
)

√
f2 + a2 sin

(
v +

∫
ag′

f2+a2 du
)

∫ f p(u)√
f2+a2

du∫ f q(u)√
f2+a2

du

 (3.2)

so that helices on the generalized helicoidal surface correspond to parallel circles on the generalized rotational
surfaces.

Proof. The arc lenght element of the generalized helicoidal surface given by Eq. (2.1) is described by as
follows

ds2 =
(
f ′2 + g′2 + h′2) du2 + 2ag′dudv +

(
a2 + f2

)
dv2.

Setting u = u, v = v +
∫

ag′

f2+a2 du, the generalized helicoidal surface determined by Eq. (2.1) transforms to
H(u, v). Considering the new parameters of the surface, its arc lenght element reduces to

ds2 =

((
f ′2 + h′2)+ f2g′2

a2 + f2

)
du2 +

(
a2 + f2

)
dv2.

On the other side, in E4, the following generalized rotational surfaces family

R(s, t) =


f (s) cos t

f (s) sin t

g (s)

h (s)
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has the following arc lenght element

ds2 =
(
f′2 + g′2 + h′2

)
ds2 + f2dt2. (3.3)

Again setting f =
√
a2 + f2, p(u) = g′, q(u) = h′, we get the following functions

g =

∫
f p(u)√
a2 + f2

du, h =

∫
f q(u)√
a2 + f2

du.

Hence, differential Eq. (3.1) determines that the generalized helicoidal surfaces family given by Eq. (2.1) is
locally isometric to the generalized rotational surfaces family determined by Eq. (3.2).

The helices of H are defined by u = u0; where u0 is a constant, those are match to the curves of R determined
by f =

√
u2
0 + a2; that is, those are the circles of the plane {x3 = g (s) , x4 = h (s)} .

We now taking the isometric surfaces in Theorem 1, consider the following.

Theorem 2. Let H and R be the generalized surfaces family related by Theorem 1. When the family have
the same Gauss map, those are hyperplanar, minimal.

Proof. Let {k1, k2, k3, k4} be the canonical basis in E4 and denote kij = ki ∧ kj , i, j = 1, 2, 3, 4, i < j. So,
the Gauss map of the generalized helicoidal surface (2.1) is

GH =
1

W



ff ′k12
+(af ′ cos v + fg′ sin v) k13

+fh′ sin vk14
+(af ′ sin v − fg′ cos v) k23

−fh′ cos vk24
−ah′k34


, (3.4)

and also the Gauss map of the generalized rotational surface (3.2) is as follows

GR =
1

W



ff ′k12

+fp sin
(
v +

∫
ag′

f2+a2 du
)
k13

+fq sin
(
v +

∫
ag′

f2+a2 du
)
k14

−fp cos
(
v +

∫
ag′

f2+a2 du
)
k23

−fq cos
(
v +

∫
ag′

f2+a2 du
)
k24


, (3.5)

where
W =

√
a2 (f ′2 + h′2) + f2 (f ′2 + g′2 + h′2).

When GH is equal to GR, identically, Eq. (3.4) and Eq. (3.5) give rise to the following

af ′ cos v + fg′ sin v = fp sin (vR) , (3.6)

af ′ sin v − fg′ cos v = −fp cos (vR) , (3.7)

fh′ sin v = fq sin (vR) , (3.8)

−fh′ cos v = −fq cos (vR) , (3.9)

−ah′ = 0, (3.10)

where vR = v +
∫

ag′

f2+a2 du. Using Eqs. (3.8)− (3.10) , we have

h′ = 0 and q = 0.
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That is, generalized surfaces determined by Eq. (2.1) and Eq. (3.2) are hyperplanar.
Now, we prove surfaces given by Eq. (2.1) and Eq. (3.2) are minimal. For this, since q = 0, then p ̸= 0 by

using ((3.6) . cos v + (3.7) . sin v), it gives

af ′ = fp sin

(∫
ag′

f2 + a2
du

)
.

Also, ((3.6) . sin v − (3.7) . cos v) reduces to

fg′ = fp cos

(∫
ag′

f2 + a2
du

)
.

Hence, we have

arc cot

(
fg′

af ′

)
=

∫
ag′

f2 + a2
du.

Derivativing the last equation w.r.t. u, we obtain the following(
f2 + a2

) (
f ′2g′ + ff ′g′′ − ff ′′g′

)
+
(
a2f ′2 + f2g′2

)
g′ = 0. (3.11)

The mean curvatures of the generalized helicoidal surfaces family given by Eq. (2.1) w.r.t. the following
normals

ζ1 =


0

0

0

1

 , ζ2 =
1√

(a2 + f2) f ′2 + f2g′2


−fg′ cos v + af ′ sin v

−fg′ sin v − af ′ cos v

ff ′

0


are described by, respectively,

H1 = 0,

H2 =

(
f2 + a2

) (
fg′f ′′ − ff ′g′′ − f ′2g′

)
− g′

(
a2f ′2 + f2g′2

)
2 ((a2 + f2) f ′2 + f2g′2)

3/2
,

And also, the mean curvatures of the generalized rotational surfaces family defined by Eq. (3.2) w.r.t. the
following normals

ζ1 =


0

0

0

1

 , ζ2 =
1√

(a2 + f2) f ′2 + f2g′2


−
√
f2g′2 + a2f ′2 cos

(
v +

∫
ag′

f2+a2 du
)

−
√

f2g′2 + a2f ′2 sin
(
v +

∫
ag′

f2+a2 du
)

ff ′

0


are determined by, respectively,

H1 = 0,

H2 =
f2g′

[(
f2 + a2

) (
fg′f ′′ − ff ′g′′ − f ′2g′

)
− g′

(
a2f ′2 + f2g′2

)]
2
√
f2 + a2

√
f2g′2 + a2f ′2 ((a2 + f2) f ′2 + f2g′2)

3/2
.

From Eq. (3.11), the helicoidal-rotational surfaces family have the mean curvatures H2 = 0. Finally, the
generalized helicoidal surface family determined by Eq. (2.1) and the generalized rotational surfaces family
described by Eq. (3.2) are minimal. That is,

−→
H = 0.
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Theorem 3. Let the generalized helicoidal surfaces family defined by Eq. (2.1), and the generalized
rotational surfaces family given by Eq. (3.2) having the same Gauss map be the locally isometric surfaces
family related by Theorem 1. Therefore, the parametrizations of the family are described by

H(u, v) =


f (u) cos v

f (u) sin v

g (u) + av

c

 ,

R(u, v) =



√
f2 + a2 cos

(
v +

∫
ag′

f2+a2 du
)

√
f2 + a2 sin

(
v +

∫
ag′

f2+a2 du
)

b arg cosh

(√
f2+a2

b

)
d

 ,

respectively. Here,

g(u) =
√
b2 − a2 ln

√√
f2 + a2 +

√
f2 + a2 − b2√

f2 + a2 −
√
f2 + a2 − b2

− a arctan

(√
(b2 − a2) (f2 + a2)

a2 (f2 + a2 − b2)

)
,

and a, b, c, d ∈ R, b ≥ a, f >
√
b2 − a2.

Proof. Generalized surfaces H and R are the hyperplanar from Theorem 2. Assume H covered by the
hyperplane f (s) = c, and also R covered by the hyperplane f (s) = d. Since R is minimal, it is just a catenoid.
Thus, g (s) = b arg cosh

(
s
b

)
, where b ̸= 0. Therefore,

b arg cosh

(√
f2 + a2

b

)
=

∫ √
f2g′2 + a2f ′2

f2 + a2
du.

Then, we get

g′ =

√
b2 − a2

√
f2 + a2

f
√
f2 + a2 − b2

. (3.12)

Finally, after some computations, we obtain

g′ =
√
b2 − a2 ln

√
w + 1

w − 1
− a arctan

(√
b2 − a2

a
w

)
,

where w =
√

f2+a2

f2+a2−b2 > 0.

4. Conclusion

Considering the findings in the previous section, we obtain the following results.

Corollary 1. When g′ = 0, generalized helicoidal surfaces family H describe the helicoid. The mean
curvature of the generalized rotational surfaces family R is zero. That is, the generalized rotational surfaces
family is transform to the catenoid. By using Eq. (3.12), the pitch a is equals to b.
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Example 1. Taking f(u) = u, c = d = 0, b = 2, a = 1 in Theorem 3, the other function is described by

g(u) =
√
3 ln

√√
u2 + 1 +

√
u2 − 3√

u2 + 1−
√
u2 − 3

− arctan

(√
3 (u2 + 1)

u2 − 3

)
.

Then, we have the projection of the isometric helicoidal-rotational surfaces from dimension four to three. See
Figure 1 for the graphics of the helicoidal surface, and also see Figure 2 for the rotational surface.

Figure 1: Helicoidal surface

Figure 2: Rotational surface
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