A quasistatic elastic-viscoplastic contact problem with wear and frictionless

Ahmed Hamidat* ${ }^{1}$ and Adel Aissaoul ${ }^{2}$
${ }^{1}$ Laboratory of Operator Theory and PDE: Foundations and Applications, Faculty of Exact Sciences, University of El Oued 39000, El Oued, Algeria.
${ }^{2}$ Department of Mathematics, University of El Oued 39000 El Oued, Algeria.

Received 17 August 2022; Accepted 20 August 2023

Abstract

We consider here a frictionless contact problem for elastic-viscoplastic materials, in a quasi-static process. The contact with a rigid base is modeled without friction with condition of wear and damage. The damage the elastic deformations of the material is modeled by an internal variable of the body called the damage field. The problem formula is given as a system that includes a variational equation with respect to the displacement field, and a variational inequality of the parabolic type with respect to the damage field. We prove a weak solution existence and uniqueness theorem relating to the problem. The methods utilised are grounded in the concept of monotonic operators, followed by fixed-point arguments.

AMS Subject Classifications: 74C10, 49J40, 74M15, 74R20
Keywords: frictionless, quasistatic, damage, wear, fixed point.

Contents

1 Introduction 403

2 Preliminaries and notion 405

3 Proof of the main result 408
4 Application

1. Introduction

Contact-related problems, whether involving friction or not, between deformable bodies or between a rigid body and a deformable one, are frequently encountered in both industrial settings and everyday experiences. Considering the importance and the multitude of these phenomena, vast studies have been undertaken, also the literature concerning contact mechanics is vast and addresses as many different subjects as are modeling, mathematical analysis or approximation numerical contact problems, see the works $[1,2,10,11]$.

This paper explores an investigation concerning boundary conditions that mirror real-world phenomena like contact, material wear and damage. In our study, we adopt an elastic-viscoplastic constitutive law to describe the behavior of the material.

To illustrate the procedure of deformation of an elastic-viscoplastic body with wear when it contacts with a rigid body foundation, been touched on many quasi-static elastic-viscoplastic frictional Contact problems involving wear have been introduced and investigated under various conditions. For further details, we direct the reader to $[5,6]$ and the cited references therein.

[^0]
A. Hamidat and A. Aissaoui

Chen et al.[4] were among the first to provide error estimates for fully discrete schemes designed to solve quasi-static viscoplastic frictional contact problems with wear. Gasinski et al. [7] introduced a mathematical model to describe quasi-static frictional contact with wear between a thermo-viscoelastic body and a moving foundation. In a recent development, Jureczka and Ochal [9] conducted numerical analysis and simulations for the quasi-static elastic frictional contact problem that accounts for wear.

There are other real phenomena which are very important. Such as material damage and body adhesion. The consideration of damage holds fundamental significance in the field of design engineering since it has a direct impact on the useful lifespan of the designed structure or component. There exists a substantial body of engineering literature devoted to this subject. Mathematical models that incorporate the influence of internal material damage on the contact process have been thoroughly examined. In [8], novel comprehensive damage models have been derived based on the principle of virtual power. Further mathematical analyses of onedimensional problems related to this topic can be found in [3]. the material damage is described by capacity damage. The damage function α varies between 0 and 1 . When $\alpha=1$ there is no damage in the material, when $\alpha=0$ the material is completely damaged, when $0 \prec \alpha \prec 1$ the damage is partial. This work is a continuation in this line of research to the mathematical study of a frictionlessly contact problem for Viscoplastic materials, in a quasi-static process. The contact with a rigid base is modeled without friction with condition of wear and damage. Our focus is to establish the existence of a unique weak solution for the abstract problem with regularized boundary conditions. The structure of the remainder of this paper is as follows: In Section 2, we provide an inventory of notations and outline the assumptions concerning the problem data. Additionally, we state our primary result regarding the existence and uniqueness of solutions. In Section 3, we delve into the proof of the theorem, where we consider the existence and uniqueness of the solution, utilizing arguments derived from the theory of monotonic operators and the Banach fixed-point theorem. In Section 4, we present an illustrative example that demonstrates the practical application of the abstract result.

Problem \mathcal{P}

Find the displacement field $\mathbf{u}:[0, T] \rightarrow V$, the stress field $\sigma:[0, T] \rightarrow \mathcal{H}$, the damage field $\alpha:[0, T] \rightarrow \mathbb{R}$.

$$
\begin{gather*}
(A \dot{\mathbf{u}}(t), \mathbf{v})_{V}+(B \mathbf{u}(t), \mathbf{v})_{V}+\left(\int_{0}^{t} F(\boldsymbol{\sigma}(s)-A \dot{\mathbf{u}}(t), \mathbf{u}(s), \alpha(s)) d s, \mathbf{v}\right)_{\mathcal{H}} \tag{1.1}\\
=(\boldsymbol{f}(t), \mathbf{v})_{V} \quad \text { a.e. } t \in(0, T), \\
(\dot{\alpha}(t), \xi-\alpha(t))_{L^{2}(\Omega)}+a(\alpha(t), \xi-\alpha(t)) \tag{1.2}\\
\geq(S(\boldsymbol{\sigma}(s)-A \dot{\mathbf{u}}(t), \mathbf{u}(t), \alpha(t)), \xi-\alpha(t))_{L^{2}(\Omega)}, \xi \in K, \text { a.e } t \in(0, T), \\
\mathbf{u}(0)=\mathbf{u}_{0}, \quad \alpha(0)=\alpha_{0} . \tag{1.3}
\end{gather*}
$$

We have three spaces denoted as V, \mathcal{H}, and K. These spaces correspond to admissible displacements, stress, and damage, and they are all Hilbert spaces. Notably, K is a nonempty, closed, and convex set within the space V. It is defined as follows:

$$
K=\{\zeta \in V \mid \quad 0 \leq \zeta(x) \leq 1 \text { a.e. } x \in \Omega\}
$$

The operators A, B, and F are associated with the constitutive law governing an elastic-viscoplastic material with damage. The functional S is determined by the source function of the damage and the friction occurring on part Γ_{3}. The data \boldsymbol{f} relates to both traction forces and body forces. The functions \mathbf{u}_{0} and α_{0} represent the initial data for displacement and damage, respectively. We denote the displacement field as \mathbf{u} and the stress tensor field as σ. The constitutive law applied here pertains to an elastic-viscoplastic material with damage. The interval $[0, T]$ signifies the time span of observation. A dot above \mathbf{u} and α indicates the derivative of displacement \mathbf{u} and the derivative of damage α with respect to the variable t.

A frictionless contact problem

2. Preliminaries and notion

In this section, we introduce important tools for our main results. Specifically, we denote:
\mathbb{S}^{d} as the space comprising second-order symmetric tensors defined on $\Omega \subset \mathbb{R}^{d}$ (where $d=2,3$), and with a smooth boundary $\partial \Omega=\Gamma$. We designate Γ_{3} as the boundary contact .

We define $\boldsymbol{\nu}=\left(\nu_{i}\right)$ as the unit outward normal vector, and $x \in \bar{\Omega}=\Omega \cup \partial \Omega$ represents the position vector. It's worth noting that unless specified otherwise, the indices i, j range from 1 to d, and we apply the summation convention to repeated indices. For the sake of simplicity, we do not explicitly indicate the variables' dependence on x.

The inner products and norms for \mathbb{R}^{d} and \mathbb{S}^{d} are denoted as follows:

$$
\begin{array}{ll}
\mathbf{u} \cdot \mathbf{w}=u_{i} w_{i} & \|\mathbf{w}\|_{\mathbb{R}^{d}}=(\mathbf{w}, \mathbf{w})^{1 / 2} \text { for all } \mathbf{u}=\left(u_{i}\right), \mathbf{w}=\left(w_{i}\right) \in \mathbb{R}^{d} \\
\boldsymbol{\sigma} \cdot \boldsymbol{\vartheta}=\sigma_{i j} \vartheta_{i j} & \|\boldsymbol{\vartheta}\|_{\mathbb{S}^{d}}=(\boldsymbol{\vartheta}, \boldsymbol{\vartheta})^{1 / 2} \text { for all } \boldsymbol{\sigma}=\left(\sigma_{i j}\right), \boldsymbol{\vartheta}=\left(\vartheta_{i j}\right) \in \mathbb{S}^{d}
\end{array}
$$

We denote the following quantities:
$\mathbf{u}=\left(u_{i}\right)$ represents the displacement vector.
$\boldsymbol{\sigma}=\left(\sigma_{i j}\right)$ denotes the stress tensor.
$\varepsilon(\mathbf{u})=\left(\varepsilon\left(\mathbf{u}_{i j}\right)\right)$ represents the linear strain tensor.
Furthermore, we use the following notation for components of displacement \mathbf{u} on Γ :
Normal component: $u_{\nu}=u . \nu$
Tangential component: $\mathbf{u}_{\tau}=\mathbf{u}-u_{\nu} \boldsymbol{\nu}$
Similar notation is applied to $\dot{u_{\nu}}$ and $\dot{\mathbf{u}}_{\tau}$, which represent the normal and tangential velocities on the boundary, respectively.

Regarding the stress field σ on the boundary, we define its components as:
Normal component: $\sigma_{\nu}=(\boldsymbol{\sigma} \boldsymbol{\nu}) . \boldsymbol{\nu}$
Tangential component: $\boldsymbol{\sigma}_{\boldsymbol{\tau}}=\boldsymbol{\sigma} \boldsymbol{\nu}-\sigma_{\nu} \boldsymbol{\nu}$
We use the following notations

$$
\begin{aligned}
& H=L^{2}(\Omega)^{d}=\left\{\mathbf{u}=\left(u_{i}\right) \mid u_{i} \in L^{2}(\Omega)\right\}, \quad H_{1}=\left\{\mathbf{u}=\left(u_{i}\right) \mid \varepsilon(\mathbf{u}) \in \mathcal{H}\right\}, \\
& \mathcal{H}=\left\{\boldsymbol{\sigma}=\left(\sigma_{i j}\right) \mid \sigma_{i j}=\sigma_{j i} \in L^{2}(\Omega)\right\}, \quad \mathcal{H}_{1}=\{\boldsymbol{\sigma} \in \mathcal{H} \mid \operatorname{Div} \boldsymbol{\sigma} \in H\} .
\end{aligned}
$$

The deformation operator ε and the divergence operator Div are defined as follows:

$$
\varepsilon(\mathbf{u})=\left(\varepsilon_{i j}(\mathbf{u})\right), \quad \varepsilon_{i j}(\mathbf{u})=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right), \quad \operatorname{Div} \boldsymbol{\sigma}=\left(\sigma_{i j, j}\right)
$$

The spaces H, H_{1}, \mathcal{H}, and \mathcal{H}_{1} are real Hilbert spaces equipped with the canonical inner products defined as follows:

$$
\begin{aligned}
& (\mathbf{u}, \mathbf{w})_{H}=\int u_{i} w_{i} d x, \quad \forall \mathbf{u}, \mathbf{w} \in H, \\
& (\mathbf{u}, \mathbf{w})_{H_{1}}=(\mathbf{u}, \mathbf{w})_{H}+(\varepsilon(\mathbf{u}), \varepsilon(\mathbf{w}))_{\mathcal{H}}, \forall \mathbf{u}, \mathbf{w} \in H_{1}, \\
& (\boldsymbol{\sigma}, \boldsymbol{\vartheta})_{\mathcal{H}}=\int \sigma_{i j} \vartheta_{i j} d x, \quad \forall \boldsymbol{\sigma}, \boldsymbol{\vartheta} \in \mathcal{H}, \\
& (\boldsymbol{\sigma}, \boldsymbol{\vartheta})_{\mathcal{H}_{1}}=(\boldsymbol{\sigma}, \boldsymbol{\vartheta})_{\mathcal{H}}+(\operatorname{Div} \boldsymbol{\sigma}, \operatorname{Div} \boldsymbol{\vartheta})_{H}, \forall \boldsymbol{\sigma}, \boldsymbol{\vartheta} \in \mathcal{H}_{1} .
\end{aligned}
$$

The associated norm in the space H, H_{1}, \mathcal{H} and \mathcal{H}_{1}, is denoted by $\|.\|_{H},\|.\|_{H_{1}},\|\cdot\|_{\mathcal{H}}$ and $\|\cdot\|_{\mathcal{H}_{1}}$, respectively.
When σ is a regular function. The following Green-type formula holds

$$
\begin{equation*}
(\boldsymbol{\sigma}, \varepsilon(\mathbf{w}))_{\mathcal{H}}+(\operatorname{Div} \boldsymbol{\sigma}, \mathbf{w})_{H}=\int_{\Gamma} \boldsymbol{\sigma} \boldsymbol{\nu} \cdot \mathbf{w} d a \quad \forall \mathbf{w} \in H_{1} . \tag{2.1}
\end{equation*}
$$

For the displacement field, we necessitate the closed subspace of H_{1} defined as

A. Hamidat and A. Aissaoui

$$
V=\left\{\mathbf{w} \in H_{1} \mid \mathbf{w}=\mathbf{0}, \text { on } \Gamma_{1}\right\} .
$$

Given that meas $\left(\Gamma_{1}\right)>0$, Korn's inequality is satisfied, and there exists a positive constant C_{k}, which solely depends on Ω and Γ_{1}, such that

$$
\|\varepsilon(\mathbf{w})\|_{\mathcal{H}} \geq C_{k}\|\mathbf{w}\|_{H^{1}(\Omega)^{d}}, \quad \forall \mathbf{w} \in V
$$

We define inner product on V by

$$
\begin{equation*}
(\mathbf{u}, \mathbf{w})_{V}=(\varepsilon(\mathbf{u}), \varepsilon(\mathbf{w}))_{\mathcal{H}}, \quad\|\mathbf{w}\|_{V}=\|\varepsilon(\mathbf{w})\|_{\mathcal{H}}, \quad \forall \mathbf{u}, \mathbf{w} \in V \tag{2.2}
\end{equation*}
$$

and let $\|\cdot\|_{V}$ be the associated norm. Consequently, the norms $\|\cdot\|_{H^{1}(\Omega)^{d}}$ and $\|\cdot\|_{V}$ are equivalent on V, and as a result, $\left(V,(,)_{V}\right)_{\tilde{\sim}}$ forms a real Hilbert space. Furthermore, in accordance with the Sobolev trace theorem, there exists a constant \tilde{C}_{0}, which relies solely on Ω, Γ_{1}, and Γ_{3}, such that

$$
\begin{equation*}
\|\mathbf{v}\|_{L^{2}\left(\Gamma_{3}\right)^{d}} \leq \tilde{C}_{0}\|\mathbf{v}\|_{V}, \quad \forall \mathbf{v} \in V \tag{2.3}
\end{equation*}
$$

We recall some spaces $W^{k, p}(0, T ; V), H^{k}(0, T ; V), C(0 ; T ; V)$ and $C^{1}(0 ; T ; V)$ for a Banach space V equipped with the norm $\|\cdot\|_{V}$ for $1<p<+\infty$ and $k \geq 1$. Let $W^{k, p}(0, T ; V)$ be the space of all functions from $[0, T]$ to V with the norm

$$
\|\omega\|_{W^{k, p}(0, T ; V)}=\left\{\begin{array}{l}
\left(\int_{0}^{T} \sum_{1 \leq l \leq k}\left\|\partial_{t}^{l} \omega\right\|_{V}^{p} d t\right)^{1 / p}, \quad \text { if } 1 \leq p<+\infty \\
\max _{0 \leq l \leq k_{0} \leq t \leq T} \sup _{t}\left\|\partial_{t}^{l} \omega\right\|_{V}, \quad \text { if } p=+\infty
\end{array}\right.
$$

When $p=2$ or $k=0, W^{k, 2}([0, T] ; V)$ is written as $H^{k}([0, T] ; V)$ or $L^{p}([0, T] ; V)$, respectively. We denote by $C([0, T] ; V)$ the space of continuous functions from $[0, T]$ to V, and by $C^{1}(0, T ; V)$ the space of continuously differentiable functions from $(0, T)$ to V. These spaces are equipped with the following norms:

$$
\begin{gathered}
\|\omega\|_{C([0, T] ; V)}=\max _{t \in[0, T]}\|\omega(t)\|_{V} \\
\|\omega\|_{C^{1}([0, T] ; V)}=\max _{t \in[0, T]}\|\omega(t)\|_{V}+\max _{t \in[0, T]}\|\dot{\omega}(t)\|_{V}
\end{gathered}
$$

Clearly, $C([0, T] ; V), W^{k, p}([0, T] ; V)$ and $H^{k}([0, T] ; V)$ are all Banach spaces when V is a Banach space.
In order to solve Problem \mathcal{P}, we impose the following assumptions.
We consider operators $A, B: V \rightarrow V, F: \mathcal{H} \times \mathcal{H} \times H^{1}(\Omega) \rightarrow V$, the damage source function $S:$ $\mathcal{H} \times \mathcal{H} \times H^{1}(\Omega) \rightarrow \mathbb{R}$, and two initial values $u_{0} \in V$ and $\alpha_{0} \in K$. These operators and values satisfy the following properties

There exists a constant $M_{A} \succ 0$ such that

$$
\begin{equation*}
\left(A \mathbf{v}_{1}-A \mathbf{v}_{2}, \mathbf{v}_{1}-\mathbf{v}_{2}\right) \geq M_{A}\left\|\mathbf{v}_{1}-\mathbf{v}_{2}\right\|^{2}, \forall \mathbf{v}_{1}, \mathbf{v}_{2} \in V \tag{2.4}
\end{equation*}
$$

There exists a constant $L_{A} \succ 0$ such that

$$
\begin{equation*}
\left\|A \mathbf{v}_{1}-A \mathbf{v}_{2}\right\|_{V^{\prime}} \leq L_{A}\left\|\mathbf{v}_{1}-\mathbf{v}_{2}\right\|_{V}, \quad \forall \mathbf{v}_{1}, \mathbf{v}_{2} \in V \tag{2.5}
\end{equation*}
$$

There exists a constant $L_{B} \succ 0$ such that

$$
\begin{equation*}
\left\|B \mathbf{v}_{1}-B \mathbf{v}_{2}\right\|_{V} \leq L_{B}\left\|\mathbf{v}_{1}-\mathbf{v}_{2}\right\|, \quad \forall \mathbf{v}_{1}, \mathbf{v}_{2} \in V \tag{2.6}
\end{equation*}
$$

The f function satisfies:

$$
\begin{equation*}
\boldsymbol{f} \in L^{2}(0, T ; V) \tag{2.7}
\end{equation*}
$$

A frictionless contact problem

There exists a constant $L_{F} \succ 0$ such that

$$
\begin{equation*}
\left\|F\left(\boldsymbol{\sigma}_{1}, \mathbf{u}_{1}, \zeta_{1}\right)-F\left(\boldsymbol{\sigma}_{2}, \mathbf{u}_{2}, \zeta_{2}\right)\right\| \leq L_{F}\left(\left\|\boldsymbol{\sigma}_{1}-\boldsymbol{\sigma}_{2}\right\|+\left\|\mathbf{u}_{1}-\mathbf{u}_{2}\right\|+\left\|\zeta_{1}-\zeta_{2}\right\|\right) \tag{2.8}
\end{equation*}
$$

for all $\boldsymbol{\sigma}_{i} \in \mathcal{H}, \mathbf{u}_{i} \in V, \zeta_{i} \in H^{1}(\Omega), i=1,2$.
There exists $M_{S} \succ 0$ such that

$$
\begin{equation*}
\left\|S\left(\boldsymbol{\sigma}_{1}, \mathbf{u}_{1}, \zeta_{1}\right)-S\left(\boldsymbol{\sigma}_{2}, \mathbf{u}_{2}, \zeta_{2}\right)\right\| \leq M_{S}\left(\left\|\boldsymbol{\sigma}_{1}-\boldsymbol{\sigma}_{2}\right\|+\left\|\mathbf{u}_{1}-\mathbf{u}_{2}\right\|+\left\|\zeta_{1}-\zeta_{2}\right\|\right) \tag{2.9}
\end{equation*}
$$

for all $\boldsymbol{\sigma}_{i} \in \mathcal{H}, \mathbf{u}_{i} \in V, \forall \zeta_{i} \in H^{1}(\Omega), i=1,2$.
Now let problem \mathcal{P}_{1} as it follows

Problem \mathcal{P}_{1}
Find $\mathbf{u} \in C^{1}(0, T ; V)$ such that

$$
\left\{\begin{array}{l}
A \mathbf{u}(t)=\mathbf{f} \tag{2.10}\\
\mathbf{u}(0)=\mathbf{u}_{0}
\end{array}\right.
$$

Theorem 2.1. If conditions (2.4),(2.5) and (2.7) are satisfied Then there exists $\mathbf{u} \in C^{1}(0, T ; V)$ solution to the problem \mathcal{P}_{1} satisfying

$$
\begin{equation*}
\mathbf{u} \in H^{1}(0, T ; V) \cap C^{1}(0, T ; H) \tag{2.11}
\end{equation*}
$$

The previous result is a special case of the Minty-Browder Theorem.

Problem \mathcal{P}_{2}

Find $\alpha(t) \in K$ such that

$$
\begin{align*}
& (\dot{\alpha}(t), \rho-\alpha(t))_{V^{\prime} \times V}+a(\dot{\alpha}(t), \rho-\alpha(t)) \geq(S(t), \rho-\alpha(t))_{L^{2}(\Omega)}, \forall \rho \in K, \tag{2.12}\\
& \alpha(0)=\alpha_{0} . \tag{2.13}
\end{align*}
$$

We consider two real Hilbert spaces, denoted as V and H. It is important to note that V is densely embedded in H, and this injection map is continuous. Furthermore, we identify the space H with both its own dual and as a subspace of the dual space V^{\prime} of V. In other words, we express this relationship as $V \subset H \subset V^{\prime}$, and this set of inclusions is what defines a Gelfand triple.

The following is a well-established result for parabolic variational inequalities, and you can find it in standard references such as [12].

Theorem 2.2. Consider a Gelfand triple $V \subset H \subset V^{\prime}$, where K is a nonempty, closed, and convex set in V. Assume the existence of a continuous and symmetric bilinear form $a(.,):. V \times V \rightarrow \mathbb{R}$ satisfying the following inequality for constants λ and γ :

$$
a(\alpha, \alpha)+\gamma\|\alpha\|_{H}^{2} \geq \lambda\|\alpha\|_{V}^{2}, \quad \forall \alpha \in V .
$$

Under these conditions, for any initial value $\alpha_{0} \in K$ and source function $S \in L^{2}(0, T ; H)$, there exists a unique function $\alpha \in H^{1}(0, T ; H) \cap L^{2}(0, T ; V)$ such that $\alpha(0)=\alpha_{0}$ and $\alpha(t) \in K$ for all $t \in[0, T]$. This α is the unique solution to Problem \mathcal{P}_{2}.

The next section is dedicated to investigating the existence of a unique solution to Problem \mathcal{P}.

A. Hamidat and A. Aissaoui

3. Proof of the main result

Theorem 3.1. Under the assumptions (2.4)-(2.9), there exists a unique solution of the problem \mathcal{P}, Moreover the solution satisfies:

$$
\begin{align*}
& \mathbf{u} \in H^{1}(0, T ; V) \cap C^{1}(0, T ; H) \tag{3.1}\\
& \boldsymbol{\sigma} \in L^{2}(0, T ; \mathcal{H}), \quad \operatorname{Div} \boldsymbol{\sigma} \in L^{2}(0, T ; H) \tag{3.2}\\
& \alpha \in W^{1,2}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right) . \tag{3.3}
\end{align*}
$$

The proof of Theorem 3.1 is conducted through several sequential steps and relies on the subsequent abstract result concerning evolutionary variational inequalities.

Suppose we have $\eta \in L^{2}(0, T ; V)$, and let's consider the following problem

Problem \mathcal{P}_{η}

Find a displacement field $\mathbf{u}_{\eta}:[0, T] \rightarrow V$, such that

$$
\left\{\begin{array}{c}
\left(A \dot{\mathbf{u}}_{\eta}(t), \mathbf{v}\right)_{V}+(\boldsymbol{\eta}(t), \mathbf{v})_{V}=(\boldsymbol{f}, \mathbf{v})_{V} \tag{3.4}\\
\text { a.e. } t \in(0, T), \quad \forall \mathbf{v} \in V \\
\mathbf{u}_{\eta}(0)=\mathbf{u}_{0}
\end{array}\right.
$$

Here is the given result concerning \mathcal{P}_{η}.
Lemma 3.2. A unique solution $\mathbf{u}_{\eta} \in C^{1}(0, T ; V)$ to the problem \mathcal{P}_{η} exists, and it satisfies the condition (3.1).
Proof. We apply Theorem 2.1, The Riesz representation theorem allows us to define $\boldsymbol{f}_{\eta}:[0, T] \rightarrow V$, by $\left(\boldsymbol{f}_{\eta}(t), \mathbf{v}\right)_{V}=(f(t)-\boldsymbol{\eta}(t), \mathbf{v})_{V}$. Using hypotheses (2.4)-(2.7), and $\mathbf{u}_{\eta}(t)=\mathbf{u}_{0}+\int_{0}^{t} \dot{\mathbf{u}}_{\eta}(s) d s, \quad \forall t \in$ $(0, T)$, we directly find the result.

Subsequently, introduce $\theta \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$, and let's examine the following problem

Problem \mathcal{P}_{θ}

Find the damage field $\alpha_{\theta}:[0, T] \rightarrow \mathbb{R}$,

$$
\begin{gather*}
\alpha_{\theta}(t) \in K,\left(\dot{\alpha}_{\theta}(t), \rho-\alpha_{\theta}(t)\right)_{L^{2}(\Omega)}+a\left(\alpha_{\theta}(t), \rho-\alpha_{\theta}(t)\right) \tag{3.5}\\
\geq\left(\theta(t), \rho-\alpha_{\theta}(t)\right)_{L^{2}(\Omega)}, \forall \rho \in K, \text { a.e.t } \in(0, T), \\
\alpha_{\theta}(0)=\alpha_{0} . \tag{3.6}
\end{gather*}
$$

Lemma 3.3. problem \mathcal{P}_{θ} has a unique solution α_{θ} such that

$$
\begin{equation*}
\alpha_{\theta} \in W^{1,2}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right) \tag{3.7}
\end{equation*}
$$

For the proof, we apply Theorem 2.2.
Finally, in the concluding step, formulate the subsequent Cauchy problem for the stress field

A frictionless contact problem

Problem $\mathcal{P}_{\eta, \theta}$

Find the stress field $\sigma_{\eta, \theta}:(0, T) \rightarrow \mathcal{H}$, solution of the problem

$$
\begin{equation*}
\boldsymbol{\sigma}_{\eta, \theta}(t)=B \mathbf{u}_{\eta}(t)+\int_{0}^{t} F\left(\boldsymbol{\sigma}_{\eta, \theta}(s)-A \dot{\mathbf{u}}_{\eta}(s), \mathbf{u}_{\eta}(s), \alpha_{\theta}(s)\right) d s, \text { a.e.t } \in(0, T) . \tag{3.8}
\end{equation*}
$$

Lemma 3.4. The problem $\mathcal{P}_{\eta, \theta}$ has a unique solution. Additionally, if $\mathbf{u}_{\eta_{i}}, \alpha_{\theta_{i}}$, and $\boldsymbol{\sigma}_{\eta_{i}, \theta_{i}}$ represent the solutions to problems $\mathcal{P}_{\eta}, \mathcal{P}_{\theta}$, and $\mathcal{P}_{\eta, \theta}$ for $i=1,2$, then there exists a positive constant C such that

$$
\begin{align*}
\left\|\boldsymbol{\sigma}_{\eta_{1}, \theta_{1}}(t)-\boldsymbol{\sigma}_{\eta_{2}, \theta_{2}}(t)\right\|_{\mathcal{H}}^{2} \leq & C\left(\left\|\mathbf{u}_{\eta_{1}}(t)-\mathbf{u}_{\eta_{2}}(t)\right\|_{V}^{2}+\int_{0}^{t}\left\|\mathbf{u}_{\eta_{1}}(s)-\mathbf{u}_{\eta_{2}}(s)\right\|_{V}^{2} d s\right. \tag{3.9}\\
& \left.+\int_{0}^{t}\left\|\alpha_{\theta_{1}}(s)-\alpha_{\theta_{2}}(s)\right\|_{L^{2}(\Omega)}^{2} d s\right)
\end{align*}
$$

Proof. Consider the mapping $\sum_{\eta, \theta}: L^{2}(0, T ; \mathcal{H}) \rightarrow L^{2}(0, T ; \mathcal{H})$ defined as

$$
\begin{equation*}
\sum_{\eta, \theta} \boldsymbol{\sigma}_{\eta, \theta}(t)=B \mathbf{u}_{\eta}(t)+\int_{0}^{t} F\left(\boldsymbol{\sigma}_{\eta, \theta}(s)-A \dot{\mathbf{u}}_{\eta}(s), \mathbf{u}_{\eta}(s), \alpha_{\theta}(s)\right) d s \tag{3.10}
\end{equation*}
$$

let $\boldsymbol{\sigma}_{i} \in L^{2}(0, T ; \mathcal{H}), \quad i=1,2$ and $t_{1} \in(0, T)$, we use the assumption (2.8) and the HÖlder inequality we find

$$
\begin{equation*}
\left\|\sum_{\eta, \theta} \boldsymbol{\sigma}_{1}\left(t_{1}\right)-\sum_{\eta, \theta} \boldsymbol{\sigma}_{2}\left(t_{1}\right)\right\|_{\mathcal{H}}^{2} \leq L_{F}^{2} T \int_{0}^{t_{1}}\left\|\boldsymbol{\sigma}_{1}(s)-\boldsymbol{\sigma}_{2}(s)\right\|_{\mathcal{H}}^{2} d s \tag{3.11}
\end{equation*}
$$

We have more

$$
\begin{aligned}
\| \sum_{\eta, \theta}\left(\sum_{\eta, \theta} \boldsymbol{\sigma}_{1}\left(t_{1}\right)\right)-\sum_{\eta, \theta} & \left(\sum_{\eta, \theta} \boldsymbol{\sigma}_{2}\left(t_{1}\right)\right) \|_{\mathcal{H}}^{2} \\
\leq & L_{F}^{2} T \int_{0}^{t_{1}}\left\|\sum_{\eta, \theta} \boldsymbol{\sigma}_{1}\left(t_{1}\right)-\sum_{\eta, \theta} \boldsymbol{\sigma}_{2}\left(t_{1}\right)\right\|_{\mathcal{H}}^{2} d t_{2} \\
& \leq L_{F}^{4} T^{2} \int_{0}^{t_{1}} \int_{0}^{t_{2}}\left\|\boldsymbol{\sigma}_{1}(s)-\sigma_{2}(s)\right\|_{\mathcal{H}}^{2} d s d t_{2} .
\end{aligned}
$$

By extending the inequality through recurrence, we deduce that for all $t_{1}, t_{2}, \ldots, t_{n} \in(0, T)$,

$$
\left\|\sum_{\eta, \theta}^{(n)} \boldsymbol{\sigma}_{1}\left(t_{n}\right)-\sum_{\eta, \theta}^{(n)} \boldsymbol{\sigma}_{2}\left(t_{n}\right)\right\|_{\mathcal{H}}^{2} \leq L_{F}^{2 n} T^{n} \int_{0}^{t_{1}} \int_{0}^{t_{2}} \ldots \int_{0}^{t_{n}}\left\|\boldsymbol{\sigma}_{1}(s)-\boldsymbol{\sigma}_{2}(s)\right\|_{\mathcal{H}}^{2} d s d t_{n} \ldots d t_{2}
$$

Thus, we can deduce by integrating with respect to $(0, T)$ the following inequality

$$
\begin{equation*}
\left\|\sum_{\eta, \theta}^{(n)} \boldsymbol{\sigma}_{1}-\sum_{\eta, \theta}^{(n)} \boldsymbol{\sigma}_{2}\right\|_{\mathcal{H}}^{2} \leq \frac{L_{F}^{2 n} T^{2 n}}{n!}\left\|\boldsymbol{\sigma}_{1}-\boldsymbol{\sigma}_{2}\right\|_{\mathcal{H}}^{2} \tag{3.12}
\end{equation*}
$$

Then from (3.12), for n sufficiently large, the operator $\sum_{\eta, \theta}^{(n)}$, is a contraction on space $L^{2}(0, T ; \mathcal{H})$ and according to the Banach fixed point theorem, there is a single element $\sigma_{\eta, \theta} \in L^{2}(0, T ; \mathcal{H})$ such that

A. Hamidat and A. Aissaoui

$\sum_{\eta, \theta}^{(n)} \sigma_{\eta, \theta}=\sigma_{\eta, \theta}$, which represents the unique solution of problem $\mathcal{P}_{\eta, \theta}$. Moreover, if $\mathbf{u}_{\eta_{i}}, \alpha_{\theta_{i}}$ and $\boldsymbol{\sigma}_{\eta_{i}, \theta_{i}}$, represents the solutions of problem $\mathcal{P}_{\eta_{i}}, \mathcal{P}_{\theta_{i}}$ and $\mathcal{P}_{\eta_{i}, \theta_{i}}$ respectively. For $i=1,2$. designate $\mathbf{u}_{\eta_{i}}=\mathbf{u}_{i}, \boldsymbol{\sigma}_{\eta_{i}, \theta_{i}}=\boldsymbol{\sigma}_{i}, \alpha_{\theta_{i}}=\alpha_{i}$.

We have

$$
\boldsymbol{\sigma}_{i}(t)=B \mathbf{u}_{i}(t)+\int_{0}^{t} F\left(\boldsymbol{\sigma}_{i}(s)-A \dot{\mathbf{u}}_{i}(s), \mathbf{u}_{i}(s), \alpha_{i}(s)\right) d s, \text { a.e. } t \in(0, T)
$$

we use the assumption (2.6),(2.8)), we find

$$
\begin{aligned}
\left\|\boldsymbol{\sigma}_{1}(t)-\boldsymbol{\sigma}_{2}(t)\right\|_{\mathcal{H}}^{2} & \leq C\left(\left\|\mathbf{u}_{1}(t)-\mathbf{u}_{2}(t)\right\|_{V}^{2}+\int_{0}^{t}\left\|\boldsymbol{\sigma}_{1}(s)-\boldsymbol{\sigma}_{2}(s)\right\|_{\mathcal{H}}^{2} d s\right. \\
& \left.+\int_{0}^{t}\left\|\mathbf{u}_{1}(s)-\mathbf{u}_{2}(s)\right\|_{V}^{2} d s+\int_{0}^{t}\left\|\alpha_{1}(s)-\alpha_{2}(s)\right\|_{L^{2}(\Omega)}^{2} d s\right)
\end{aligned}
$$

We employ the Gronwall argument within the resulting inequality to derive (3.9).
Now, let's contemplate the mapping

$$
\begin{gather*}
\Lambda: L^{2}\left(0, T ; \mathcal{H} \times L^{2}(\Omega)\right) \rightarrow L^{2}\left(0, T ; \mathcal{H} \times L^{2}(\Omega)\right) \\
\Lambda(\boldsymbol{\eta}, \theta)(t)=\left(\Lambda^{1}(\boldsymbol{\eta}, \theta)(t), \Lambda^{2}(\boldsymbol{\eta}, \theta)(t)\right) \tag{3.13}
\end{gather*}
$$

defined by equalities

$$
\begin{gather*}
\Lambda^{1}(\boldsymbol{\eta}, \theta)(t),=B \mathbf{u}_{\eta}(t)+\int_{0}^{t} F\left(\boldsymbol{\sigma}_{\eta, \theta}(s)-A \dot{\mathbf{u}}(s), \mathbf{u}_{\eta}(s), \alpha_{\theta}(s)\right) d s \tag{3.14}\\
\Lambda^{2}(\boldsymbol{\eta}, \theta)(t)=S\left(\left(\boldsymbol{\sigma}_{\eta, \theta}(t), \mathbf{u}_{\eta}(t)\right), \alpha_{\theta}(t)\right) \tag{3.15}
\end{gather*}
$$

We have the following result.
Lemma 3.5. For $(\boldsymbol{\eta}, \theta) \in L^{2}\left(0, T ; \mathcal{H} \times L^{2}(\Omega)\right)$, the operator $\Lambda(\boldsymbol{\eta}, \theta):[0, T] \rightarrow \mathcal{H} \times L^{2}(\Omega)$ have a unique fixed point denoted as $\left(\boldsymbol{\eta}^{*}, \theta^{*}\right) \in L^{2}\left(0, T ; \mathcal{H} \times L^{2}(\Omega)\right)$, satisfying

$$
\Lambda\left(\boldsymbol{\eta}^{*}, \theta^{*}\right)=\left(\boldsymbol{\eta}^{*}, \theta^{*}\right)
$$

Proof. Let $t \in(0, T)$ and $\left(\boldsymbol{\eta}_{1}, \theta_{1}\right),\left(\boldsymbol{\eta}_{2}, \theta_{2}\right) \in L^{2}\left(0, T ; \mathcal{H} \times L^{2}(\Omega)\right)$. We use the notation $\mathbf{u}_{\eta_{i}}=\mathbf{u}_{i}$, $\dot{\mathbf{u}}_{\eta_{i}}=$ $\dot{\mathbf{u}}_{i}, \alpha_{\eta_{i}}=\alpha_{i}, \boldsymbol{\sigma}_{\boldsymbol{\eta}_{i}, \theta_{i}}=\boldsymbol{\sigma}_{i}$, For $i=1,2$ and using the assumptions (2.5),(2.6) and (2.8)

$$
\begin{aligned}
\| \Lambda^{1}\left(\boldsymbol{\eta}_{1}, \theta_{1}\right)(t) & -\Lambda^{1}\left(\boldsymbol{\eta}_{2}, \theta_{2}\right)(t) \|_{\mathcal{H}}^{2} \\
& =\| B \mathbf{u}_{1}(t)+\int_{0}^{t} F\left(\boldsymbol{\sigma}_{1}(s)-A \dot{\mathbf{u}}_{1}(s), \mathbf{u}_{1}(s), \alpha_{1}(s)\right) d s \\
& -B \mathbf{u}_{2}(t)-\int_{0}^{t} F\left(\boldsymbol{\sigma}_{2}(s)-A \dot{\mathbf{u}}_{2}(s), \mathbf{u}_{2}(s), \alpha_{2}(s)\right) d s \|_{\mathcal{H}}^{2} \\
& \leq L_{B}\left\|\mathbf{u}_{1}(t)-\mathbf{u}_{2}(t)\right\|_{V}^{2}+L_{F} \int_{0}^{t}\left(\left\|\boldsymbol{\sigma}_{1}(s)-\boldsymbol{\sigma}_{2}(s)\right\|_{\mathcal{H}}^{2}+\right. \\
& \left.L_{A}\left\|\dot{\mathbf{u}}_{1}(s)-\dot{\mathbf{u}}_{2}(s)\right\|_{V}^{2}+\left\|\mathbf{u}_{1}(s)-\mathbf{u}_{2}(s)\right\|_{V}^{2}+\left\|\alpha_{1}(s)-\alpha_{2}(s)\right\|_{L^{2}(\Omega)}^{2}\right) d s
\end{aligned}
$$

We utilise the estimate (3.9) to derive

$$
\begin{aligned}
\| \Lambda^{1}\left(\boldsymbol{\eta}_{1}, \theta_{1}\right)(t) & -\Lambda^{1}\left(\boldsymbol{\eta}_{2}, \theta_{2}\right)(t) \|_{\mathcal{H}}^{2} \\
& \leq C\left(\left\|\mathbf{u}_{1}(t)-\mathbf{u}_{2}(t)\right\|_{V}^{2}+\int_{0}^{t}\left(\left\|\dot{\mathbf{u}}_{1}(s)-\dot{\mathbf{u}}_{2}(s)\right\|_{V}^{2}\right.\right. \\
& \left.\left.+\left\|\mathbf{u}_{1}(s)-\mathbf{u}_{2}(s)\right\|_{V}^{2}+\left\|\alpha_{1}(s)-\alpha_{2}(s)\right\|_{L^{2}(\Omega)}^{2}\right)\right) d s
\end{aligned}
$$

A frictionless contact problem

On the other hand, we know that $\mathbf{u}_{i}(t)=\mathbf{u}_{0}+\int_{0}^{t} \dot{\mathbf{u}}_{i}(s) d s$, for all $t \in(0, T)$

$$
\begin{equation*}
\left\|\mathbf{u}_{1}(s)-\mathbf{u}_{2}(s)\right\|_{V}^{2} \leq \int_{0}^{t}\left\|\dot{\mathbf{u}}_{1}(s)-\dot{\mathbf{u}}_{2}(s)\right\|_{V}^{2} d s \tag{3.16}
\end{equation*}
$$

By Apply the inequality (3.16) becomes

$$
\begin{align*}
\| \Lambda^{1}\left(\boldsymbol{\eta}_{1}, \theta_{1}\right)(t) & -\Lambda^{1}\left(\boldsymbol{\eta}_{2}, \theta_{2}\right)(t) \|_{\mathcal{H}}^{2} \leq C \int_{0}^{t}\left(\left\|\dot{\mathbf{u}}_{1}(s)-\dot{\mathbf{u}}_{2}(s)\right\|_{V}^{2}\right. \tag{3.17}\\
& \left.+\left\|\mathbf{u}_{1}(s)-\mathbf{u}_{2}(s)\right\|_{V}^{2}+\left\|\alpha_{1}(s)-\alpha_{2}(s)\right\|_{L^{2}(\Omega)}^{2}\right) d s
\end{align*}
$$

By a similar argument, from (3.9),(3.15) and (2.9) it follows that

$$
\begin{align*}
\| \Lambda^{2}\left(\boldsymbol{\eta}_{1}, \theta_{1}\right)(t) & -\Lambda^{2}\left(\boldsymbol{\eta}_{2}, \theta_{2}\right)(t) \|_{L^{2}(\Omega)}^{2} \leq C\left(\int _ { 0 } ^ { t } \left(\left\|\dot{\mathbf{u}}_{1}(s)-\dot{\mathbf{u}}_{2}(s)\right\|_{V}^{2}\right.\right. \\
& \left.+\left\|\mathbf{u}_{1}(s)-\mathbf{u}_{2}(s)\right\|_{V}^{2}+\left\|\alpha_{1}(s)-\alpha_{2}(s)\right\|_{L^{2}(\Omega)}^{2}\right) d s \tag{3.18}\\
& \left.+\left\|\mathbf{u}_{1}(t)-\mathbf{u}_{2}(t)\right\|_{V}^{2}+\left\|\alpha_{1}(t)-\alpha_{2}(t)\right\|_{L^{2}(\Omega)}^{2}\right)
\end{align*}
$$

Therefore,

$$
\begin{align*}
\| \Lambda\left(\boldsymbol{\eta}_{1}, \theta_{1}\right)(t)-\Lambda\left(\boldsymbol{\eta}_{2},\right. & \left.\theta_{2}\right)(t) \|_{\mathcal{H} \times L^{2}(\Omega)}^{2} \leq C\left(\int _ { 0 } ^ { t } \left(\left\|\dot{\mathbf{u}}_{1}(s)-\dot{\mathbf{u}}_{2}(s)\right\|_{V}^{2}\right.\right. \\
& \left.+\left\|\mathbf{u}_{1}(s)-\mathbf{u}_{2}(s)\right\|_{V}^{2}+\left\|\alpha_{1}(s)-\alpha_{2}(s)\right\|_{L^{2}(\Omega)}^{2}\right) d s \tag{3.19}\\
& \left.+\left\|\mathbf{u}_{1}(t)-\mathbf{u}_{2}(t)\right\|_{V}^{2}+\left\|\alpha_{1}(t)-\alpha_{2}(t)\right\|_{L^{2}(\Omega)}^{2}\right)
\end{align*}
$$

Combine the inequality (3.16) with (3.19) to obtain

$$
\begin{align*}
\left\|\Lambda\left(\boldsymbol{\eta}_{1}, \theta_{1}\right)(t)-\Lambda\left(\boldsymbol{\eta}_{2}, \theta_{2}\right)(t)\right\|_{\mathcal{H} \times L^{2}(\Omega)}^{2} \leq C \int_{0}^{t}\left(\left\|\dot{\mathbf{u}}_{1}(s)-\dot{\mathbf{u}}_{2}(s)\right\|_{V}^{2}\right. \tag{3.20}\\
\left.+\left\|\mathbf{u}_{1}(s)-\mathbf{u}_{2}(s)\right\|_{V}^{2}+\left\|\alpha_{1}(s)-\alpha_{2}(s)\right\|_{L^{2}(\Omega)}^{2}\right) d s
\end{align*}
$$

Using the inequality (3.4), by adding the results obtained we have

$$
\begin{equation*}
\left(A \dot{\mathbf{u}}_{1}(t)-A \dot{\mathbf{u}}_{2}(t), \dot{\mathbf{u}}_{1}(t)-\dot{\mathbf{u}}_{2}(t)\right)_{V}=\left(\boldsymbol{\eta}_{1}(t)-\boldsymbol{\eta}_{2}(t), \dot{\mathbf{u}}_{1}(t)-\dot{\mathbf{u}}_{2}(t)\right)_{V}, t \in(0, T) \tag{3.21}
\end{equation*}
$$

using inequality (2.4), we find

$$
M_{A}\left\|\dot{\mathbf{u}}_{1}-\dot{\mathbf{u}}_{2}\right\|_{V}^{2} \leq\left\|\boldsymbol{\eta}_{1}-\boldsymbol{\eta}_{2}\right\|_{V}\left\|\dot{\mathbf{u}}_{1}-\dot{\mathbf{u}}_{2}\right\|_{V}
$$

Therefore

$$
\left\|\dot{\mathbf{u}}_{1}(t)-\dot{\mathbf{u}}_{2}(t)\right\|_{V} \leq C\left\|\boldsymbol{\eta}_{1}(t)-\boldsymbol{\eta}_{2}(t)\right\|_{V}, \quad \forall t \in[0, T] .
$$

Let's use (3.16)

$$
\begin{equation*}
\left\|\mathbf{u}_{1}(t)-\mathbf{u}_{2}(t)\right\|_{V} \leq C \int_{0}^{t}\left\|\boldsymbol{\eta}_{1}(t)-\boldsymbol{\eta}_{2}(t)\right\|_{V} d s, \quad \forall t \in[0, T] \tag{3.22}
\end{equation*}
$$

Using (3.5) we find

$$
\begin{gathered}
\left(\dot{\alpha}_{1}-\dot{\alpha}_{2}, \alpha_{1}-\alpha_{2}\right)_{L^{2}(\Omega)}+a\left(\alpha_{1}-\alpha_{2}, \alpha_{1}-\alpha_{2}\right) \leq\left(\theta_{1}-\theta_{2}, \alpha_{1}-\alpha_{2}\right)_{L^{2}(\Omega)}, \\
a \cdot e \cdot t \in(0, T),
\end{gathered}
$$

A. Hamidat and A. Aissaoui

By integrating the inequality with respect to time and incorporating the initial conditions $\alpha_{1}(0)=\alpha_{2}(0)=$ α_{0}, along with the inequality $a\left(\alpha_{1}-\alpha_{2}, \alpha_{1}-\alpha_{2}\right) \geq 0$, we combine this inequality with Gronwall's lemma, resulting in the following result

$$
\begin{equation*}
\left\|\alpha_{1}(t)-\alpha_{2}(t)\right\|_{L^{2}(\Omega)}^{2} \leq C \int_{0}^{t}\left\|\theta_{1}(s)-\theta_{2}(s)\right\|_{L^{2}(\Omega)}^{2} d s, \forall t \in[0, T] \tag{3.23}
\end{equation*}
$$

From the previous inequality and estimates (3.20), (3.22) and (3.23) it follows that now

$$
\begin{aligned}
& \left\|\Lambda\left(\boldsymbol{\eta}_{1}, \theta_{1}\right)(t)-\Lambda\left(\boldsymbol{\eta}_{2}, \theta_{2}\right)(t)\right\|_{\mathcal{H} \times L^{2}(\Omega)}^{2} \\
& \quad \leq C\left(\int_{0}^{t}\left\|\left(\boldsymbol{\eta}_{1}, \theta_{1}\right)(s)-\left(\boldsymbol{\eta}_{2}, \theta_{2}\right)(s)\right\|_{\mathcal{H} \times L^{2}(\Omega)}^{2} d s\right)
\end{aligned}
$$

Let is introduce the following notations

$$
\left\{\begin{array}{l}
I_{1}=\int_{0}^{t}\left\|\left(\boldsymbol{\eta}_{1}, \theta_{1}\right)(s)-\left(\boldsymbol{\eta}_{2}, \theta_{2}\right)(s)\right\|_{\mathcal{H} \times L^{2}(\Omega)} d s \\
\vdots \\
I_{k}=\int_{0}^{t} \int_{0}^{s_{k-1}} \cdots \int_{0}^{s_{1}}\left\|\left(\boldsymbol{\eta}_{1}, \theta_{1}\right)(r)-\left(\boldsymbol{\eta}_{2}, \theta_{2}\right)(r)\right\|_{\mathcal{H} \times L^{2}(\Omega)}
\end{array}\right.
$$

Through an inductive process, denoting the $m^{t h}$ power of the operator Λ as Λ^{m}, we arrive at the following conclusion

$$
\begin{align*}
& \left\|\Lambda^{m}\left(\boldsymbol{\eta}_{1}, \theta_{1}\right)(t)-\Lambda^{m}\left(\boldsymbol{\eta}_{2}, \theta_{2}\right)(t)\right\|_{\mathcal{H} \times L^{2}(\Omega)} \\
& \quad \leq C^{m}\left(\sum_{k=1}^{m} C_{m}^{k} I^{m-k}\left\|\left(\boldsymbol{\eta}_{1}, \theta_{1}\right)(t)-\left(\boldsymbol{\eta}_{2}, \theta_{2}\right)(t)\right\|_{\mathcal{H} \times L^{2}(\Omega)}\right) \tag{3.24}
\end{align*}
$$

for all $t \in[0, T]$ and $m \in \mathbb{N}$,

$$
\begin{aligned}
I^{m-k}\left(\left(\boldsymbol{\eta}_{1}, \theta_{1}\right)-\left(\boldsymbol{\eta}_{2}, \theta_{2}\right)\right) & =\int_{(m-k) \text { fois }} \cdot \int\left\|\left(\boldsymbol{\eta}_{1}, \theta_{1}\right)-\left(\boldsymbol{\eta}_{2}, \theta_{2}\right)\right\| \\
& \leq \int_{0}^{s} \int \cdots \int_{(m-k) \text { fois }}\left\|\left(\boldsymbol{\eta}_{1}, \theta_{1}\right)-\left(\boldsymbol{\eta}_{2}, \theta_{2}\right)\right\|_{L^{2}\left(0, T ; \mathcal{H} \times L^{2}(\Omega)\right)} \\
& \leq \frac{t^{m-k}}{k!}\left\|\left(\boldsymbol{\eta}_{1}, \theta_{1}\right)-\left(\boldsymbol{\eta}_{2}, \theta_{2}\right)\right\|_{L^{2}\left(0, T ; \mathcal{H} \times L^{2}(\Omega)\right)} \\
& \leq \frac{T^{m-k}}{k!}\left\|\left(\boldsymbol{\eta}_{1}, \theta_{1}\right)-\left(\boldsymbol{\eta}_{2}, \theta_{2}\right)\right\|_{L^{2}\left(0, T ; \mathcal{H} \times L^{2}(\Omega)\right)}
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\| \Lambda^{m}\left(\boldsymbol{\eta}_{1},\right. & \left.\theta_{1}\right)(t)-\Lambda^{m}\left(\boldsymbol{\eta}_{2}, \theta_{2}\right)(t) \|_{L^{2}\left(0, T ; \mathcal{H} \times L^{2}(\Omega)\right)}^{2} \\
& \leq C^{m}\left(\sum_{k=1}^{m} C_{m}^{k} \frac{T^{m-k}}{k!}\left\|\left(\boldsymbol{\eta}_{1}, \theta_{1}\right)(t)-\left(\boldsymbol{\eta}_{2}, \theta_{2}\right)(t)\right\|_{L^{2}\left(0, T ; \mathcal{H} \times L^{2}(\Omega)\right)}^{2}\right) \\
& \leq \frac{(C T)^{m}}{m!}\left\|\left(\boldsymbol{\eta}_{1}, \theta_{1}\right)(t)-\left(\boldsymbol{\eta}_{2}, \theta_{2}\right)(t)\right\|_{L^{2}\left(0, T ; \mathcal{H} \times L^{2}(\Omega)\right)}^{2},
\end{aligned}
$$

this implies that for m large enough, the operator Λ^{m} of Λ is a contraction on Banach space $L^{2}\left(0, T ; \mathcal{H} \times L^{2}(\Omega)\right)$. So Λ^{m} has a unique fixed point $\left(\boldsymbol{\eta}^{*}, \theta^{*}\right) \in L^{2}\left(0, T ; \mathcal{H} \times L^{2}(\Omega)\right)$, and therefore $\left(\boldsymbol{\eta}^{*}, \theta^{*}\right)$ is the only fixed point of Λ.

A frictionless contact problem

Existence

Let $\left(\boldsymbol{\eta}^{*}, \theta^{*}\right) \in L^{2}\left(0, T ; \mathcal{H} \times L^{2}(\Omega)\right)$, be the fixed point of Λ defined by (3.14)-(3.15) and let $\mathbf{u}_{\eta}, \alpha_{\theta}$, be the solutions of problems $\mathcal{P}_{\eta}, \mathcal{P}_{\theta}$, for $\eta=\eta^{*}, \theta=\theta^{*}, \mathbf{u}=\mathbf{u}_{\eta^{*}}, \alpha=\alpha_{\theta^{*}}$, we find $(\mathbf{u}, \boldsymbol{\sigma}, \alpha)$ is a solution of problem \mathcal{P}. properties (3.1)-(3.3) follow from lemma 3.2, 3.3, 3.4.

Uniqueness

The uniqueness of the solution is a result of the uniqueness of the fixed point of operator Λ.

4. Application

In this section, we will utilise the main result from Section 3 to analyse a problem of contact without friction with condition of wear and damage. between an elastic-viscoplastic body and a rigid base in a quasistatic process. We provide the physical context for the contact problem and introduce certain notations that will be employed in the subsequent discussion. We consider a elastic-viscoplastic body which occupies a domain $\Omega \subset \mathbb{R}^{d}$, where $d=2,3$, such that the boundary $\Gamma=\partial \Omega$ is Lipschitz continuous. The boundary $\partial \Omega$ is divided into three disjoint measurable parts Γ_{1}, Γ_{2} and Γ_{3} with meas $\left(\Gamma_{1}\right)>0$. We are interested in an evolution of the body in a finite time interval $(0, T)$.

We consider the following classical formulation of the problem

Problem P

Find a displacement field $\mathbf{u}: \Omega \times[0, T] \rightarrow \mathbb{R}^{d}$, the stress field $\sigma: \Omega \times[0, T] \rightarrow \mathbb{S}^{d}$, the damage field $\alpha: \Omega \times[0, T] \rightarrow \mathbb{R}$.

$$
\begin{array}{lr}
0=\text { Div } \boldsymbol{\sigma}+f_{0}, & \text { in } \Omega \times(0, T), \\
\boldsymbol{\sigma}(t)=\mathcal{A} \varepsilon(\dot{\mathbf{u}}(t))+\mathcal{B} \varepsilon(\mathbf{u}(t)) & \text { in } \Omega \times(0, T), \\
\quad+\int_{0}^{t} \mathcal{F}(\boldsymbol{\sigma}(s)-\mathcal{A} \varepsilon(\dot{\mathbf{u}}(s)), \varepsilon(\mathbf{u}(s)), \alpha(s)) d s & \\
\dot{\alpha}-k_{0} \Delta \alpha+\partial \varphi_{K}(\alpha) \ni \phi(\boldsymbol{\sigma}, \varepsilon(\mathbf{u}), \alpha), & \text { in } \Omega \times(0, T), \\
\mathbf{u}=0, & \text { on } \Gamma_{1} \times(0, T), \\
\sigma \nu=f_{2}, & \text { on } \Gamma_{2} \times(0, T), \\
\begin{cases}-\sigma_{\nu}=k\left\|\dot{u}_{\nu}\right\| & \text { on } \Gamma_{3} \times(0, T), \\
\boldsymbol{\sigma}_{\tau}=0 & \text { on } \Gamma \times(0, T), \\
\frac{\partial \alpha}{\partial \nu}=0, & \text { in } \Omega . \\
\mathbf{u}(0)=\mathbf{u}_{0}, \quad \alpha(0)=\alpha_{0}, & \end{cases}
\end{array}
$$

Equation (4.1) describes the equation of motion, where f_{0} stands for the density of the voluminal forces exerted upon the deformable body Ω. Equation (4.2) describes the constitutive law applicable to an elastic-viscoplastic material with damage, (4.3) represents a differential inclusion describing the evolution of the damage field where S is a damage source function. φ_{K} is the sub-differential of the indicator function of the set of admissible damage functions K. The conditions (4.4) and (4.5) are displacement-traction conditions, (4.6) represent the boundary contact conditions with wear and without friction. (4.7) represents the boundary condition of Neumann, Finally,(4.8) represents the initial conditions.

A. Hamidat and A. Aissaoui

Next, we outline the assumptions concerning the data of the problem, starting with the viscosity operator $\mathcal{A}: \Omega \times \mathbb{S}^{d} \longrightarrow \mathbb{S}^{d}$ satisfied

$$
\left\{\begin{array}{l}
(a) \text { There exists } L_{\mathcal{A}}>0 \quad \text { such that } \\
\left\|\mathcal{A}\left(\mathbf{x}, \boldsymbol{v}_{1}\right)-\mathcal{A}\left(\mathbf{x}, \boldsymbol{v}_{2}\right)\right\| \leq L_{\mathcal{A}}\left\|\boldsymbol{v}_{1}-\boldsymbol{v}_{2}\right\|, \forall \boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in \mathbb{S}^{d}, \text { a.e. } \mathbf{x} \in \Omega . \\
(b) \text { There exists } m_{\mathcal{A}}>0 \quad \text { such that } \\
\left(\mathcal{A}\left(\mathbf{x}, \boldsymbol{v}_{1}\right)-\mathcal{A}\left(\mathbf{x}, \boldsymbol{v}_{2}\right)\right) .\left(\boldsymbol{v}_{1}-\boldsymbol{v}_{2}\right) \geq m_{\mathcal{A}}\left\|\boldsymbol{v}_{1}-\boldsymbol{v}_{2}\right\|^{2}, \forall \boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in \mathbb{S}^{d}, \text { a.e. } \mathbf{x} \in \Omega . \tag{4.9}\\
(c) \text { The mapping } \mathbf{x} \mapsto \mathcal{A}(\mathbf{x}, \boldsymbol{v}) \text { is lebesgue measurable on } \Omega, \forall \boldsymbol{v} \in \mathbb{S}^{d} . \\
(d) \text { The mapping } \mathbf{x} \mapsto \mathcal{A}(\mathbf{x}, \mathbf{0}) \in \mathcal{H} .
\end{array}\right.
$$

The elasticity operator $\mathcal{B}: \Omega \times \mathbb{S}^{d} \rightarrow \mathbb{S}^{d}$ satisfied

$$
\left\{\begin{array}{l}
(a) \text { There exists } L_{\mathcal{B}}>0 \quad \text { such that } \tag{4.10}\\
\left\|\mathcal{B}\left(\mathbf{x}, \boldsymbol{v}_{1}\right)-\mathcal{B}\left(\mathbf{x}, \boldsymbol{v}_{2}\right)\right\| \leq L_{\mathcal{B}}\left\|\boldsymbol{v}_{1}-\boldsymbol{v}_{2}\right\|, \quad \forall \boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in \mathbb{S}^{d}, \text { a.e. } \mathbf{x} \in \Omega . \\
(b) \text { There exists } m_{\mathcal{B}}>0 \quad \text { such that } \\
\left(\mathcal{B}\left(\mathbf{x}, \boldsymbol{v}_{1}\right)-\mathcal{B}\left(\mathbf{x}, \boldsymbol{v}_{2}\right)\right) .\left(\boldsymbol{v}_{1}-\boldsymbol{v}_{2}\right) \geq m_{\mathcal{B}}\left\|\boldsymbol{v}_{1}-\boldsymbol{v}_{2}\right\|^{2}, \forall \boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in \mathbb{S}^{d}, \text { a.e. } \mathbf{x} \in \Omega . \\
(c) \text { The mapping } \mathbf{x} \mapsto \mathcal{B}(\mathbf{x}, \boldsymbol{v}) \text { is lebesgue measurable on } \Omega, \\
\forall \boldsymbol{v} \in \mathbb{S}^{d} . \\
(d) \text { The mapping } \mathbf{x} \mapsto \mathcal{B}(\mathbf{x}, \mathbf{0}) \in \mathcal{H} .
\end{array}\right.
$$

The relaxation function $\mathcal{F}: \Omega \times \mathbb{S}^{d} \times \mathbb{S}^{d} \times \mathbb{R} \rightarrow \mathbb{S}^{d}$, satisfied

$$
\left\{\begin{array}{l}
(a) \text { There exists } L_{\mathcal{F}}>0 \quad \text { such that } \tag{4.11}\\
\left\|\mathcal{F}\left(\mathbf{x}, \boldsymbol{\sigma}_{1}, \boldsymbol{v}_{1}, \alpha_{1}\right)-\mathcal{F}\left(\mathbf{x}, \boldsymbol{\sigma}_{2}, \boldsymbol{v}_{2}, \alpha_{2}\right)\right\| \leq \\
\qquad L_{\mathcal{F}}\left(\left\|\boldsymbol{\sigma}_{1}-\boldsymbol{\sigma}_{2}\right\|+\mid \boldsymbol{v}_{1}-\boldsymbol{v}_{2}\|+\| \alpha_{1}-\alpha_{2} \|\right) \\
\forall \boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in \mathbb{S}^{d}, \forall \alpha_{1}, \alpha_{2} \in \mathbb{R}, \forall t \in[0, T] \text {, a.e. } \mathbf{x} \in \Omega \\
(b) \text { The mapping } \mathbf{x} \mapsto \mathcal{F}(\mathbf{x}, \boldsymbol{\sigma}, \boldsymbol{v}, \alpha) \text { is lebesgue measurable on } \Omega \\
\forall \boldsymbol{\sigma}, \boldsymbol{v} \in \mathbb{S}^{d}, \forall t \in[0, T], \forall \alpha \in \mathbb{R} . \\
(c) \text { The mapping } x \mapsto \mathcal{F}(\mathbf{x}, \mathbf{0}, \mathbf{0}, 0) \in \mathcal{H}, \forall t \in[0, T]
\end{array}\right.
$$

The function describing the source of damages, denoted as $\phi: \Omega \times \mathbb{S}^{d} \times \mathbb{R} \rightarrow \mathbb{R}$, is satisfied

$$
\left\{\begin{array}{l}
(a) \text { There exists } M_{\phi}>0 \quad \text { such that } \tag{4.12}\\
\left\|\phi\left(\mathbf{x}, \boldsymbol{v}_{1}, \alpha_{1}\right)-\phi\left(\mathbf{x}, \boldsymbol{v}_{2}, \alpha_{2}\right)\right\| \leq M_{\phi}\left(\left\|\boldsymbol{v}_{1}-\boldsymbol{v}_{2}\right\|+\left\|\alpha_{1}-\alpha_{2}\right\|\right), \\
\forall \boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in \mathbb{S}^{d}, \forall \alpha_{1}, \alpha_{2} \in \mathbb{R}, \text { a.e. } \mathbf{x} \in \Omega . \\
(b) \text { The mapping } \mathbf{x} \mapsto \phi(\mathbf{x}, \boldsymbol{v}, \alpha) \text { is lebesgue measurable on } \Omega, \\
\forall \boldsymbol{v} \in \mathbb{S}^{d}, \forall \alpha \in \mathbb{R} . \\
(c) \text { The mapping } \mathbf{x} \mapsto \phi(\mathbf{x}, \mathbf{0}, 0) \in L^{2}(\Omega)
\end{array}\right.
$$

The body force \mathbf{f}_{0}, surface traction \mathbf{f}_{2}, coefficient of friction k, initial conditions u_{0}, have the following properties

$$
\left\{\begin{array}{l}
\mathbf{f}_{0} \in L^{2}(0, T ; H) \tag{4.13}\\
\mathbf{f}_{2} \in L^{2}\left(0, T ; L^{2}\left(\Gamma_{2}\right)^{d}\right) \\
k \in L^{\infty}\left(\Gamma_{3}\right), \quad k(x) \geq 0 \text { for a.e. } x \in \Gamma_{3} \\
\mathbf{u}_{0} \in V
\end{array}\right.
$$

A frictionless contact problem

We establish the bilinear form $a: H^{1}(\Omega) \times H^{1}(\Omega) \rightarrow \mathbb{R}$ as follows

$$
\begin{equation*}
a(\xi, \zeta)=k_{0} \int_{\Omega} \nabla \xi \nabla \zeta d x \tag{4.14}
\end{equation*}
$$

and the micro crack diffusion coefficient verifies $k_{0}>0$.
The initial damage α_{0} field satisfies

$$
\begin{equation*}
\alpha_{0} \in K \tag{4.15}
\end{equation*}
$$

To consider the field of displacements, we require the closed subspace V within the space H_{1}, defined by:

$$
\begin{equation*}
V=\left\{\mathbf{u} \in H_{1} \mid \mathbf{u}=\mathbf{0} \text { on } \Gamma_{1}\right\} \tag{4.16}
\end{equation*}
$$

Using Riesz's representation theorem, we find

$$
\begin{equation*}
(\mathbf{f}(t), \mathbf{v})_{V}=\int_{\Gamma} \mathbf{f}_{0} \cdot \mathbf{v} d x+\int_{\Gamma_{\mathbf{2}}} \mathbf{f}_{2} \cdot \mathbf{v} d x, \quad \forall \mathbf{v} \in V, t \in[0, T] \tag{4.17}
\end{equation*}
$$

It's important to observe that condition (4.13) results in the implication that

$$
\begin{equation*}
\mathbf{f} \in L^{2}(0, T ; V) \tag{4.18}
\end{equation*}
$$

Now, consider the application $j: V \times V \rightarrow \mathbb{R}$, defined as follows

$$
\begin{equation*}
j(\mathbf{u}, \mathbf{v})=\int_{\Gamma_{3}} k\left\|u_{\nu}\right\| v_{\nu} d a \tag{4.19}
\end{equation*}
$$

The variational formulation for problem P is presented as follows

$$
\begin{align*}
& \boldsymbol{\sigma}(t)= \\
& +\mathcal{A}^{\mathcal{L}}(\dot{\mathbf{u}}(t))+\mathcal{B} \varepsilon(\mathbf{u}(t)) \tag{4.20}\\
& +\int_{0}^{t} \mathcal{F}(\boldsymbol{\sigma}(s)-\mathcal{A} \varepsilon(\dot{\mathbf{u}}(s)), \varepsilon(\mathbf{u}(s)), \alpha(s)) d s \quad \text { a.e } . t \in(0, T), \tag{4.21}\\
& \tag{4.22}\\
& \quad(\boldsymbol{\sigma}(t), \varepsilon(\mathbf{v}))_{\mathcal{H}}+j(\dot{\mathbf{u}}(t), \mathbf{v})=(\mathbf{f}, \mathbf{v})_{V}, \quad \forall \mathbf{v} \in V, \\
& \alpha(t) \in K, \quad(\dot{\alpha}(t), \zeta-\alpha(t))_{L^{2}(\Omega)}+a(\alpha(t), \zeta-\alpha(t)) \tag{4.23}\\
& \quad \geq(\phi(\boldsymbol{\sigma}(t), \varepsilon(\mathbf{u}(t)), \alpha(t)), \zeta-\alpha(t))_{L^{2}(\Omega)}, \quad \forall \zeta \in K, t \in[0, T], \\
& \quad \mathbf{u}(0)=\mathbf{u}_{0}, \quad \alpha(0)=\alpha_{0} .
\end{align*}
$$

Utilising Riesz's representation theorem, we define the operator $A: V \rightarrow V$ as follows:

$$
\begin{equation*}
(A \mathbf{u}, \mathbf{v})_{V}=(\mathcal{A}(\varepsilon(\mathbf{u})), \varepsilon(\mathbf{v}))_{\mathcal{H}}+j(\mathbf{u}, \mathbf{v}), \quad \forall \mathbf{u}, \mathbf{v} \in V \tag{4.24}
\end{equation*}
$$

We will verify the hypotheses (2.4),(2.5). Let $\mathbf{u}_{1}, \mathbf{u}_{2} \in V$. Using (4.9),(4.24) and the definition of j given by (4.19), we let's find

$$
\begin{align*}
\left\|A \mathbf{u}_{1}-A \mathbf{u}_{2}\right\|_{V} & =\left\|\mathcal{A} \varepsilon\left(\mathbf{u}_{1}\right)-\mathcal{A} \varepsilon\left(\mathbf{u}_{2}\right)\right\|_{\mathcal{H}}+C_{0}^{2}\|k\|_{L^{\infty}\left(\Gamma_{3}\right)}\left\|\mathbf{u}_{1}-\mathbf{u}_{2}\right\|_{V} \\
& \leq L_{\mathcal{A}}\left\|\varepsilon\left(\mathbf{u}_{1}\right)-\varepsilon\left(\mathbf{u}_{2}\right)\right\|_{\mathcal{H}}+C_{0}^{2}\|k\|_{L^{\infty}\left(\Gamma_{3}\right)}\left\|\mathbf{u}_{1}-\mathbf{u}_{2}\right\|_{V} \tag{4.25}\\
& =\left(L_{\mathcal{A}}+C_{0}^{2}\|k\|_{L^{\infty}\left(\Gamma_{3}\right)}\right)\left\|\mathbf{u}_{1}-\mathbf{u}_{2}\right\|_{V}, \quad \forall \mathbf{u}_{1}, \mathbf{u}_{2} \in V .
\end{align*}
$$

Similarly for all $\mathbf{u}_{1}, \mathbf{u}_{2} \in V$ we have

$$
\begin{equation*}
\left(A \mathbf{u}_{1}-A \mathbf{u}_{2}, \mathbf{u}_{1}-\mathbf{u}_{2}\right)_{V} \geq\left(m_{\mathcal{A}}-C_{0}^{2}\|k\|_{L^{\infty}\left(\Gamma_{3}\right)}\right)\left\|\mathbf{u}_{1}-\mathbf{u}_{2}\right\|_{V}^{2}, \quad \forall \mathbf{u}_{1}, \mathbf{u}_{2} \in V \tag{4.26}
\end{equation*}
$$

Let $\gamma_{0}=\frac{m_{\mathcal{A}}}{C_{0}^{2}}$, it is clear that γ_{0} is positive which depends on Ω_{1}, Γ_{3}, and \mathcal{A}. Then A is strongly monotonic on V if

$$
\|k\|_{L^{\infty}\left(\Gamma_{3}\right)}<\gamma_{0}
$$

After confirming that all the assumptions of Theorem 3.1 are met, we can conclude that a unique weak solution to problem P exists, satisfying (4.20)-(4.23), along with the regularity conditions (3.1)-(3.3).

A. Hamidat and A. Aissaoui

References

[1] K.T. Andrews and M. Shillor, Dynamic Contact of the Membrane, Adv. Math. Sci. Appl., 13(2003), 343-356.
[2] V. Barbu and Th Precupanu, Convexity and Optimisation in Banach Spaces, Sijthoff and Noordhoff, (1978).
[3] M. Cocu and R. Rocca, Existence results for unilateral quasistatic contact problems with friction and adhesion, Math. Model. and Numer. Anal., 34(2000), 981-1001.
[4] J. Chen, W. Han and M. Sofonea, Numerical analysis of a quasistatic problem of sliding frictional contact with wear, Math. Appl. Anal., 7(4)(2000), 687-704.
[5] A. Djabi and A. Merouani, Bilateral contact problem with friction and wear for an elastic-viscoplastic materials with damage, Taiwanese J. Math., (2015), 1161-1182.
[6] A. Djabi, A. Merouani and A. Aissaoui, A frictional contact problem with wear involving elasticviscoplastic materials with damage and thermal effects, Electron. J. Qual. Theory Differ. Equ., 27(2015), 1-18.
[7] L. GASINSKI, A. Ochal and M. Shillor, Quasistatic thermoviscoelastic problem with normal compliance, multivalued friction and wear diffusion, Nonlinear Anal. RWA., 27(2016), 183-202.
[8] W. Han and M. Sofonea, Numerical analysis of a frictionless contact problem for elastic-Viscoplastic materials, Comp. Meth. Appl. Mech. Engng., 190(2000), 179-191.
[9] M. Jureczka and A. Ochal, Numerical analysis and simulations of contact problem with wear, Comput. Math. Appl., 77(110(2019), 2980-2988.
[10] M. Rochdi, M. Shillor and M. Sofonea, Quasistatic nonlinear viscoelastic contact with normal compliance and friction, Journal of Elastcity, 51(1998), 105-126.
[11] M. Selmani and L. Selmani, A frictional contact problem with wear and damage for electro-viscoelastic materials, Sétif, (2010), 89-109.
[12] M. Sofonea, W. Han and M. Shillor, Analysis and Approximations of Contact Problems with Adhesion Or Damage, Pure and Applied Mathematics Chapman Hall/CRC Press, Boca Raton, Florida, 2006.

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^0]: * Corresponding author. Email address: hamidat-ahmed@univ-eloued.dz (Ahmed Hamidat), aissaouiadel@gmail.com (Adel Aissaoui)

