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Kpoumié et al.

1. Introduction

Partial differential equations play a crucial role in providing mathematical answers to natural phenomena and
they continue to be an indispensable tool in scientific investigations of real-world problems. The future behaviors
of many phenomenas are therefore supposed to be described by the solutions of an ordinary or partial differential
equations. These have long played important roles in the history of mathematical modeling and will undoubtedly
continue to serve as indispensable tools in future investigations. They are encountered in a variety of problems in
physics, chemistry, biology, medicine, economics, engineering, climate and disease modeling and many others.

In this work, we study the existence of mild solutions for the following partial functional differential equation
with state-dependent infinite delay

ẋ(t) = A(t)x(t) + F (t, xρ(t,xt)); t ∈ J := [0, b],

x0 = φ ∈ B
(1.1)

in a Banach space (X, ∥·∥). Here (A(t))t≥0 is a given family of closed linear operators inX with non necessarily
dense domain and satisfying the hyperbolic conditions (A1) through (A3) introduce by Tanaka in [45, 46] which
will be specified later. The phase space B is a linear space of functions mapping (−∞, 0] into X satisfying some
Axioms which will be described in the sequel. F : J ×B is continuous and ρ : J ×B → (−∞, b] are appropriate
functions. The history xt (t ≥ 0), represents the mapping defined from (−∞, 0] into X by

xt(θ) = x(t+ θ) for θ ∈ (- ∞, 0].

For the nonautonomous dynamical systems, the basic law of evolution is not static in the sense that the
environment change with time. Parameters in real-world situations and particularly in the life sciences are rarely
constant over time. The theory of nonautonomous dynamical systems is a well-developed and successful
mathematical framework to describe time-varying phenomena. Its applications in the life sciences range from
simple predator-prey models to complicated signal traduction pathways in biological cells, in physics from the
motion of a pendulum to complex climate models, and beyond that to further fields as diverse as chemistry
(reaction kinetics), economics, engineering, sociology, demography, and biosciences. Nonautonomous
differential equations has received the great attention see for instance the works [22, 26, 28, 40, 42, 47, 51] and
some recent works [9, 37–39]. For some applications, we refer the reader to the handbook by Peter E. Kloeden
and Christian Pötzsche [44]. Note that when A(t) := A is independent of t, the theory of partial functional
differential equations was studied by several authors. Hernández et al. [34] studied the existence of mild
solutions of Equation (1.1) by using the classical C0-semigroup theory. Later on, Belmekki et al. [12] obtained
the existence results of the following partial functional differential equations with state-dependent delay:

ẋ(t) = Ax(t) + F (t, x(t− τ(x(t)))) for t ∈ [a, b];

x0 = φ ∈ C([−r, 0];X)

(1.2)

where the operator A satisfies the usual Hille-Yosida condition except the density of D(A) in X . They obtained
their results by using the variation of constants formula which is given in terms of integrated semigroups. In the
autonomous case where ρ(t, xt) = t, we refer the reader to Adimy et al [2], K. Ezzinbi et al [23, 24], Hale and
Lunel [30], G. F. Webb. [48, 49], Wu [50], and the papers [2, 3, 13, 14, 16–18, 18, 36].

The literature related to partial nonautonomous functional differential equations with delay for which
ρ(t, ψ) = t is very extensive and we refer the reader to the papers in [9, 13, 25, 37, 38, 40, 47] concerning this
case. Recently Kpoumié et al in [9], investigate several results on the existence of solutions of the following
nonautonomous equation :
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
ẋ(t) = A(t)x(t) + F (t, xt) for t ≥ 0,

x0 = φ ∈ B,
(1.3)

where (A(t))t≥0 is a given family of closed linear operators on a Banach space (X, ∥ · ∥) not necessarily densely
defined satisfying the hyperbolic conditions, B is a linear space of functions mapping (−∞, 0] to X satisfying
some Axioms and F a continuous function defined on [0,+∞) × B with values in X. In this context, they have
studied the local existence of the mild solutions which may blow up at the finite time, the global existence of mild
solutions are given and under sufficient conditions, the existence of the strict solutions have been obtained.

Functional differential equations with state-dependent delay appear frequently in applications as models of
equations and for this reason the study of this type of equation has attracted attention in recent years and more
than ten years ago we refer the reader to the handbook by Cañada et al. [5], the book [19], the papers [6, 8, 11,
12, 20, 26, 27, 31, 32] and the references therein. In [39], we investigated the existence of mild solutions of the
following nonautonomous equation:

ẋ(t) = A(t)x(t) + F (t, x(t− ρ(x(t)))) for t ∈ [0, a]

x0 = φ ∈ C([−r, 0], X),

(1.4)

where (A(t))t≥0 is a given family of closed linear operators on a Banach space (X, ∥ · ∥) not necessarily densely
defined and satisfying the hyperbolic conditions (A1) through (A3) introduced by Tanaka in [46] which will
be specified in Section 2. F is a given function defined on [0,+∞) × X with values in X , the initial data
ρ : [−r; 0] → X is a continuous function, ρ is a positive bounded continuous function on X and r is the maximal
delay defined by

r = sup
x∈X

ρ(x)

.
In this paper, we study the existence of at least one mild solutions where the family of closed linear operators

on a Banach space is not necessarily densely defined. Note that there are many examples where evolution
equations are not densely defined. One can refer to [1, 4, 21] for references and discussion on this subject.
Our work is motivated by [9, 34]. The results obtained is a continuation of work done by Hernãndez et al in [34],
Belmekki et al. [12] and Kpoumié et al in [39].

In the whole of this work we employ an axiomatic definition for the phase space B due to Hale and Kato [29].
We assume that B is a normed linear space of functions mapping (−∞, 0] to X endowed with a normed | · |B and
satisfying the following Axioms:

(B1) There exist a positive constant H and functions K(·);M(·) : [0,+∞) → [0; +∞), with K continuous and
M locally bounded, and the are independent of x, such that for any σ ∈ R and a > 0, if x is a function
mapping (−∞, σ+a[ into X , a > 0, such that xσ ∈ B, and x(·) is continuous on [σ, σ+a[, then for every
t in [σ, σ + a[ the following conditions hold :

(i) xt ∈ B,

(ii) ∥x(t)∥X ≤ H∥xt∥B which is equivalent to

(ii)
′ ∥φ(0)∥X ≤ H∥φ∥B for every φ ∈ B.

(iii) ∥xt∥B ≤M(t− σ)∥xσ∥B +K(t− σ) sup
σ≤s≤t

∥x(s)∥X

(B2) For the function x(·) in (B1), t 7→ xt is a B−valued continuous function for t ∈ [σ;σ + a[.

(B) The space B is complete.
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For examples and more details on phase space, see the book by Y. Hino, S. Murakami and T. Naito [35].
The organization of this work is as follows: in Section 2, we recall some results on nonautonomous evolution

family with nondensely domain theory that will be used to develop our main results. In Section 3, we use the
variant of Shauder’s Fixed Point Theorem and the nonlinear alternative of Leray-Schauder’s to prove the existence
of at least one mild solution. In Section 4, we propose an application to some models with state dependent delay.

2. Nonautonomous evolution family with nondense domain

In this section, we recall some notations, definitions and preliminary facts concerning our work. Throughout
this paper we used the results which are detailed in [43, 45, 46]. We assume that B(X) is the Banach space of all
bounded linear operators from X to itself. In this work, we assume the following hyperbolic assumptions:

(A1) D(A(t)) := D independent of t and not necessarily densely defined.

(A2) The family (A(t))t≥0 is stable that means there are constants M ≥ 1 and w ∈ R such that:

(w,+∞) ⊂ ρ(A(t)) and
∥∥∥ k∏

j=1

R(λ,A(tj))
∥∥∥ ≤M(λ− w)−k

for t ≥ 0, λ > w and for very finite sequence {tj}kj=1 with 0 ≤ t1 ≤ t2 ≤ . . . ≤ tk < +∞ and
k = 1, 2, . . ., where ρ(A(t)) is the resolvent set of A(t) and R(λ,A(t)) = (λI −A(t))−1.

(A3) The mapping t 7−→ A(t)x is continuously differentiable in X for all x ∈ D.

We recall here the classical result which gives us the existence and explicit formula of the evolution family
generated by (A(t))t≥0 due to Oka and Tanaka [43] and Tanaka [46].

Theorem 2.1. (Oka and Tanaka [43]; Tanaka [46]) Assume that (A(t))t≥0 satisfies conditions (A1) -(A3). Then
the limit

U(t, s)x = lim
λ→0+

[ t
λ ]∏

i=[ sλ ]+1

(I − λA(iλ))−1x

exists for x ∈ D and t ≥ s ≥ 0, where the convergence is uniform on Γ := {(t, s) : t ≥ s ≥ 0}. Moreover, the
family {U(t, s) : (t, s) ∈ Γ} satisfies the following properties:

i) U(t, s) : D → D for (t, s) ∈ Γ;

ii) U(t, t)x = x and U(t, s)x = U(t, r)U(r, s)x for x ∈ D and t ≥ r ≥ s ≥ 0;

iii) the mapping (t, s) 7→ U(t, s)x is continuous on Γ for any x ∈ D;

iv) ∥U(t, s)x∥ ≤Mew(t−s)∥x∥ for x ∈ D and (t, s) ∈ Γ;

v) U(t, s)D(s) ⊂ D(t) for all t ≥ s ≥ 0 where D(t) := {x ∈ D : A(t)x ∈ D};

vi) for all x ∈ D(s) and t ≥ s ≥ 0, the function t 7→ U(t, s)x is continuously differentiable with:
∂
∂tU(t, s)x = A(t)U(t, s)x and ∂+

∂s U(t, s)x = −U(t, s)A(s)x.

Let λ > 0, t ≥ s ≥ 0 and x ∈ X . We define Uλ(t, s) by:

Uλ(t, s)x =

[ t
λ ]∏

i=[ sλ ]+1

(I − λA(iλ))−1x
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Remark 2.1. For x ∈ X , λ > 0 and t ≥ r ≥ s ≥ 0 one can see that

Uλ(t, t)x = x and Uλ(t, s)x = Uλ(t, r)Uλ(r, s)x.

We consider the following nonautonomous linear evolution equation:
ẋ(t) = A(t)x(t) + f(t) for t ∈ [0, a],

x(0) = x0 ∈ X

(2.1)

where f : [0, a] → X is a function.

Theorem 2.2. (Tanaka [46]) Assume that (A1)-(A3) hold. Let x0 ∈ D and f ∈ L1([0, a], X). Then the limit

x(t) := U(t, 0)x0 + lim
λ→0+

∫ t

0

Uλ(t, r)f(r)dr (2.2)

exists uniformly for t ∈ [0, a] and x is a continuous function on [0, a].

Definition 2.1. (Tanaka [46]) For x0 ∈ D, a continuous function x : [0, a] → X is called a mild solution of the
initial value of Equation (2.1) if x satisfies the following equation:

x(t) = U(t, 0)x0 + lim
λ→0+

∫ t

0

Uλ(t, r)f(r)dr. (2.3)

Lemma 2.1. (Ezzinbi, Békollè and Kpoumiè [37]) Assume f ∈ L1([0, a], X). If x is the mild solution of Equation
(2.1), then

∥x(t)∥ ≤Mewt∥x0∥+
∫ t

0

Meω(t−s)∥f(s)∥ds.

Definition 2.2. (Kpoumiè, Ezzinbi and Békollè [38]) For φ(0) ∈ D, a continuous function x : (−∞, b] → X is
a mild solution of Equation (1.3) if x satisfies the following equation

x(t) =


U(t, 0)φ(0) + lim

λ→0+

∫ t

0

Uλ(t, s)F (s, xs)ds for 0 ≤ t ≤ b,

φ(t) for −∞ ≤ t ≤ 0.

(2.4)

In the whole of this work, we assume that (A1) - (A3) are true and w > 0.

3. Existence of mild solutions

In this section, we use some Fixed Point Theorems and the Kuratowski’s measure of noncompactness to
establish the existence of mild solutions of Equation (1.1). In this work, we always assume that ρ : J × B →
(−∞, b] is continuous.

Definition 3.1. Let φ(0) ∈ D. We say that a continuous function x : (−∞, b] → X is a mild solution of Equation
(1.1) if x satisfies the following equation

x(t) =


U(t, 0)φ(0) + lim

λ→0+

∫ t

0

Uλ(t, s)F (s, xρ(s,xs))ds for 0 ≤ t ≤ b,

φ(t) for −∞ ≤ t ≤ 0.

(3.1)
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We introduce the Kuratowski’s measure of noncompactness α(·) of bounded sets K on a Banach space Y
which is defined by:

α(K) = inf {ε > 0 : K has a finite cover of ball with diameter < ε} .

Some basic properties of α(·) are given in the following Lemma.

Lemma 3.1. ( Akhmerov et al. in [7])

(i) α(A1) ≤ diaA1, where dia(A1) = supx,y∈A1
|x− y|,

(ii) α(A1) = 0 if and only if A1 is relatively compact in X ,

(iii) α(A1 ∪A2) = max(α(A1), α(A2)),

(iv) if A1 ⊂ A2, then α(A1) ≤ α(A2),

(v) α(A1 +A2) ≤ α(A1) + α(A2),

(vi) α(B(0, ε)) = 2ε if dimX = +∞.

The terminology and notations employed in this work coincide with those generally used in functional
analysis. In particular, for Banach spaces (X, ∥ · ∥), (Y, ∥ · ∥), the notation L(X,Y ) stands for the Banach space
of bounded linear operators from X into Y, and we abbreviate this notation to L(X) when X = Y . Moreover
Br(z,X) denotes the open ball with center at z and radius r > 0 in X and for a bounded function x : J → X

and 0 ≤ t ≤ b we employ the notation ∥x∥X,t for ∥x∥X,t := sup
θ∈[0,t]

∥x(θ)∥. We will simply write ∥x∥t when no

confusion arises.
To prove our main result we will use the following variant of Schauder’s Theorem see Radu Precup [41] and

the Nonlinear Alternative of Leray-Schauder see A. Granas [27] or W. Arendt [10].

Theorem 3.1. (Schauder) Let X be a Banach space, D ⊂ X a nonempty convex bounded closed set and let
T : D → D be a completely continuous operator. Then T has at least one fixed point.

Theorem 3.2. (Leray-Schauder) Let W be a convex subset of a Banach space X and assume that 0 ∈ W . Let
F : W → W be a completely continuous map. Then either

(i) F has a fixed point in W , or

(ii) the set {x ∈ W : x = αF(x), 0 < α < 1} is unbounded.

Theorem 3.3 (Banach’s Fixed Point Theorem). Let (E, d) be a non empty complete metric space and a mapping
T : E → E such that T p is a strict contraction (p ∈ N⋆). Then T admits a unique fixed point x̄ in E (i.e.
T (x̄) = x̄) and the sequence (xn)n define by xn = T (xn−1) with x0 ∈ E, converges to x̄.

Lemma 3.2. (Lemma Bellman-Gronwall) Let f, g the continuous positives fonctions from [a, b] to R+.
If Ψ is constant, then from

g(t) ≤ Ψ+

∫ t

a

f(s)g(s)ds for all t ∈ [a, b],

it follows that

g(t) ≤ Ψexp
(∫ t

a

f(s)ds
)

for all t ∈ [a, b].

Let us consider the following assumptions:

(C1). U(t, s)t>s is compact on D for t > s.
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(C2). The function F : J × B → X satisfies the following properties.

(a) The function F (·, ψ) : J → X is strongly measurable for every ψ ∈ B.
(b) The function F (t, ·) : B → X is continuous for each t ∈ J.

(c) Let L1(J, [0,+∞)) be the space of integrable functions from J to [0,+∞). There exist
p ∈ L1(J, [0,+∞)) and a continuous non-decreasing function V : (0,+∞) → (0,+∞) such that

∥F (t, ψ)∥ ≤ p(t)V (∥ψ∥B) for all (t, ψ) ∈ J × B.

(C3). Let φ ∈ B such that x0 = φ and t 7−→ φt is a B-valued well defined continuous function on ρ− where
ρ− = {ρ(s, ψ) : (s, ψ) ∈ J × B, ρ(s, ψ) ≤ 0}, and there exists a continuous and bounded function η :

ρ− → (0,∞) such that ∥φt∥B ≤ η(t)∥φ∥B for every t ∈ ρ−.

Remark 3.1. For φ ∈ B such that φt ∈ B and φ = x0 we can see that for all t < 0, φt = xt. In fact
if for all t < 0, φt ̸= xt, then for all θ ∈ (−∞, 0], φt(θ) ̸= xt(θ) hence φ(t + θ) ̸= x(t + θ) thus for all
t ∈ (−∞, 0], φ(t) ̸= x(t) which is absurd because φ = x0 that means for all t ∈ (−∞; 0], φ(t) = x(t).
Therefore for all t < 0, φt = xt.

To continue with the next step we need the following Lemma due to E. Hernández.

Lemma 3.3. (Hernández et al. [33]) Let φ ∈ B such that φt ∈ B for every t ∈ ρ−. Assume that there
exists a locally bounded function η : ρ− → [0,∞) such that ∥φt∥B ≤ η(t)∥φ∥B for every t ∈ ρ− and ζ =

sup {η(s) : s ∈ ρ−}. If x : (−∞, b] → X is continuous on J and x0 = φ, then

∥xs∥B ≤ (Mb + ζ) ∥φ∥B +Kb sup
0≤θ≤s

∥x(θ)∥, s ∈ ρ− ∪ J

Where Kb = sup
t∈J

K(t) , Mb = sup
t∈J

M(t)

.

In the sequel, we prove the existence of mild solution of equation (1.1).

Theorem 3.4. Let Ω be a nonempty open subset of B and the function F : [0, b] × B → X is Carathéodory
mapping. Assume that (C1) − (C3) and (A1) − (A3) hold. Let φ ∈ Ω be such that φ(0) ∈ D. Then, Equation
(1.1) has at least one mild solution x(·, φ) define on ]−∞, a] → X , for some a ∈]0, b].

Proof. We use the classic Schauder’s Fixed Point Theorem.

Step 1. Let φ ∈ Ω be such that φ(0) ∈ D. Then, there exists a constants r > 0, r < b such that
BX(φ, r) = {ψ ∈ B such that ∥ψ − φ∥B ≤ r} ⊂ Ω and ∥F (s, ψ)∥ ≤ ∥p∥L1V (∥ψ∥) for all s ∈ [0, r] and
ψ ∈ BX(φ, r).
Define the function y : (−∞, b] −→ X defined by:

y(t) =


U(t, 0)φ(0) for t ∈ J,

φ(t) for −∞ ≤ t ≤ 0.

By virtue of Axioms (B1)− (i) and (B2), yt ∈ B and t 7→ yt is a continuous function. Then for γ ∈ (0, r) there
exists b1 ∈ (0, r] such that ∥yt − φ∥B ≤ γ for all t ∈ [0, b1].
Set Kb := sup

t∈[0,b]

K(t). Let a be a constant such that:

0 < a ≤ min
{
b1,

r − γ

MewaKb∥p∥L1V (l)

}
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where l = (Mb + ζ +Kb +KbH)∥φ∥B +KbHr. For u ∈ C([0, a];X) such that u(0) = φ(0), we define its
extension on (∞, a] by :

ũ(t) =


u(t) for t ∈ [0, a],

φ(t) for −∞ ≤ t ≤ 0.

Let us introduce the following space:

Fa :=
{
u : [0, a] → X continuous such that u0 = φ and sup

0≤t≤a
∥ũt − φ∥B ≤ r

}
endowed with the uniform norm topology. ∥.∥Fa defined by:

∥u∥Fa
:= ∥u0∥B + sup

0≤s≤a
∥u(s)∥

The restriction of y to (∞, a] is an element of Fa. In fact ∥yt − φ∥B ≤ γ for all t ∈ [0, b1] whereas γ < r then
∥ỹt − φ∥B ≤ r for all t ∈ [0, a] thus y ∈ Fa. Therefore Fa is nonempty.

For all u ∈ Fa, we have

∥u∥Fa = ∥u0∥B + sup
0≤s≤a

∥u(s)∥

≤ ∥u0 − φ∥B + ∥φ∥B + sup
0≤s≤a

H∥us∥ by (B1)− (iii)

≤ ∥φ∥B +H sup
0≤s≤a

{∥(us − φ) + φ∥B} since u0 = φ

≤ ∥φ∥B +H{ sup
0≤s≤a

∥(us − φ)∥B + ∥φ∥B}

≤ ∥φ∥B +H(r + ∥φ∥B). (3.2)

Then Fa is bounded.
By using the triangular inequality in B it is clear that λp+ (1− λ)q ∈ Fa for any p, q ∈ Fa, with λ ∈ [0, 1].

Indeed
∥λp̃t + (1− λ)q̃t − φ∥B = ∥λp̃t + (1− λ)q̃t − (1− λ)φ+ (1− λ)φ− φ∥B

= ∥λp̃t + (1− λ)(q̃t − φ) + φ− λφ− φ∥B

= ∥λ(p̃t − φ) + (1− λ)(q̃t − φ)∥B

≤ λ∥(p̃t − φ)∥+ (1− λ)∥(q̃t − φ)∥B

≤ λr + (1− λ)r

= r.

Then Fa is convex.
Now we prove that Fa is closed. To prove that, consider a convergent sequence (ũnt )n∈N of Fa which

converges to ũt. We want to show that ũt ∈ Fa.

∥ũt − φ∥B = ∥ũt − ũnt ∥B + ∥ũnt − φ∥B

≤ ∥ũt − ũnt ∥B + r, since ũnt ∈ Fa.
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whereas
∥ũt − ũnt ∥B ≤ Kb sup

0≤s≤t
∥ũ(s)− ũn(s)∥+Mb∥ũ0 − ũn0∥B

≤ Max(Kb,Mb) sup
0≤s≤t

∥ũ(s)− ũn(s)∥+Max(Kb,Mb)∥ũ0 − ũn0∥B

≤ Max(Kb,Mb)∥ũ− ũn∥Fa
.

Thus ∥ũt − ũnt ∥B ≤ Max(Kb,Mb)∥ũ − ũn∥Fa as ∥ũ − ũn∥Fa → 0 with n → +∞ hence
∥ũt − ũnt ∥B → 0 with n→ +∞ then ∥ũt − φ∥ ≤ r, hence ũt ∈ Fa thus Fa is closed.

To continue our proof, we need the following Lemma.

Lemma 3.4. Let φ ∈ B such that φt ∈ B for every t ∈ ρ−. Assume that there exists a locally bounded function
η : ρ− → [0,∞) such that ∥φt∥B ≤ η(t)∥φ∥B for every t ∈ ρ− and ζ = sup {η(s) : s ∈ ρ−}. If u ∈ Fa, then

∥ũρ(s,ũs)∥B ≤ l < +∞

Where l =Mb + ζ +Kb +KbH)∥φ∥B +KbHr.

Proof.

∥ũρ(s,ũs)∥B ≤ (Mb + ζ) ∥φ∥B +Kb sup
0≤θ≤ρ(s,ũs)

∥ũ(θ)∥, by the Lemma 3.3

≤ (Mb + ζ) ∥φ∥B +Kb(∥φ∥B + sup
0≤θ≤a

∥u(θ)∥)

≤ (Mb + ζ) ∥φ∥B +Kb∥u∥Fa since ∥u∥Fa = ∥φ∥B + sup
0≤θ≤a

∥u(θ)∥

≤ (Mb + ζ +Kb +KbH)∥φ∥B +KbHr. By relation (3.2)

■

Consider the mapping K defined on Fa by:
(Kx)(t) = U(t, 0)φ(0) + lim

λ→0+

∫ t

0

Uλ(t, s)F (s, x̃ρ(s,x̃s))ds for t ∈ [0, a],

φ(t) for −∞ < t ≤ 0.

(3.3)

From definition (3.1), theorem (2.1) and the assumptions on φ, we infer that (Kx)(·) is well defined. We claim
that K(Fa) ⊂ Fa. In fact, Axiom (C2) implies that for every x ∈ Fa, the mapping s 7→ F (s, x̃ρ(s,x̃)) is
continuous on [0, a]. Hence this mapping v := Kx is continuous on [0, a]. In the other hand, One has

∥ṽt − φ∥B ≤ ∥ṽt − yt∥B + ∥yt − φ∥B

≤ ∥ṽt − yt∥B + γ

On one hand, by Axiom (B1)− (iii), we have for any t ∈ [0, a],

∥ṽt − yt∥B ≤ Kb sup
0≤s≤t

∥v(s)− y(s)∥
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For any t ∈ [0, a]

∥v(t)− y(t)∥ =
∥∥∥U(t, 0)φ(0)− limλ→0+

∫ t

0

Uλ(t, s)F (s, ṽρ(s,ṽs))ds− U(t, 0)φ(0)
∥∥∥

=
∥∥∥ limλ→0+

∫ t

0

Uλ(t, s)F (s, ṽρ(s,ṽs))ds
∥∥∥

≤
∫ t

0

Mew(t−s)
∥∥∥F (s, ṽρ(s,ṽs))∥∥∥ds

≤ Mewa

∫ t

0

∥p∥L1V (∥ṽρ(s,ṽs)∥B)ds

≤ Mewaa∥p∥L1V (l), by Lemma 3.4

≤ r−γ
Kb

.

hence Kb sup
0≤s≤t

∥v(s) − y(s)∥ ≤ r − γ then ∥ṽt − yt∥B ≤ r − γ we have ∥ṽt − φ∥B ≤ r, for any t ∈ [0, a].

Therefore v ∈ Fa. We have proved that Fa is a nonempty, bounded, convex and closed subset of Fa:
Now we want to prove that K is a completely continuous operator.

Step 2. The continuity of K. Let (un)n∈N∗ be a sequence in Fa such that lim
n→∞

un = u. For t ∈ [0, a], we have

by Axiom (B1 − iii) :

∥ũt − ũnt ∥B ≤ Kb sup
0≤s≤t

∥ũ(s)− ũn(s)∥+Mb∥ũ0 − ũn0∥B

≤ Max(Kb,Mb) sup
0≤s≤t

∥ũ(s)− ũn(s)∥+Max(Kb,Mb)∥ũ0 − ũn0∥B

≤ Max(Kb,Mb)∥ũ− ũn∥Fa
.

then lim
n→∞

ũns = ũs. we recall that ρ : [0, a]× B → (−∞, a] is continuous then lim
n→∞

ρ(s, ũn)s = ρ(s, ũs).

Let us study therefore the convergence of the sequence (ũnρ(s,ũn
s )
)n∈N for s ∈ [0, a]. At first, if s ∈ [0, a] such

that ρ(s, ũs) > 0, and there exists N ∈ N such that for all n ∈ N, n > N ρ(s, ũns ) > 0.
In this case one has

∥ũnρ(s,ũn
s )

− ũρ(s,ũs)∥B ≤ ∥ũnρ(s,ũn
s )

− ũρ(s,ũn
s )
∥B + ∥ũρ(s,ũn

s )
− ũρ(s,ũs)∥B

≤ Kb sup
0≤θ≤ρ(s,ũn

s )

∥un(θ)− u(θ)∥+Mb∥φ− φ∥+ ∥ũρ(s,ũn
s )

− ũρ(s,ũs)∥B

by (B1 − iii)

≤ Kb∥un − u∥a + ∥ũρ(s,ũn
s )

− ũρ(s,ũs)∥B

whereas
lim
n→∞

un = u then ∥un − u∥a → 0 for n→ +∞,
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∥ũρ(s,ũn
s )

− ũρ(s,ũs)∥B → 0 for n→ +∞ by (B1 − iii),

which proves that ũnρ(s,ũn
s )

→ ũρ(s,ũs) in B as n → +∞ for every s ∈ [0, a] such that ρ(s, ũs) > 0. Similar, if
s ∈ [0, a] such that ρ(s, ũs) < 0, and there exists N ∈ N such that for all n ∈ N, n > N ρ(s, ũns ) < 0.

In this case one has

∥ũnρ(s,ũn
s )

− ũρ(s,ũs)∥B = ∥φρ(s,ũn
s )

− φρ(s,ũs)∥B, by Remark 3.1

≤ η(t)∥φ− φ∥, by (C3) with t < 0.

Which proves that ũnρ(s,ũn
s )

→ ũρ(s,ũs) in B as n→ +∞ for every s ∈ [0, a] such that ρ(s, ũs) < 0. Then

lim
n→∞

ũnρ(s,ũn
s )

= ũρ(s,ũs).

For t ∈ [0, b], we have :

∥(Kun)(t)− (Ku)(t)∥ =
∥∥∥ lim

λ→0+

∫ t

0

Uλ(t, s)F (s, ũ
n
ρ(s,ũn

s )
)ds− lim

λ→0+

∫ t

0

Uλ(t, s)F (s, ũρ(s,ũs))ds
∥∥∥

=
∥∥∥ lim

λ→0+

∫ t

0

Uλ(t, s)(F (s, ũ
n
ρ(s,ũn

s )
)− F (s, ũρ(s,ũs)))ds

∥∥∥
≤Meωb

∫ t

0

∥∥∥F (s, ũnρ(s,ũn
s )
)− F (s, ũρ(s,ũs))

∥∥∥ds.
As lim

n→∞
ũnρ(s,ũn

s )
= ũρ(s,ũs), F (s, ·) is continuous from assumption (C2) − (b), then

(
F (s, ũnρ(s,ũn

s )
)
)
n∈N

converges to F (s, ũρ(s,ũs)), and from assumption (C2) − (c) we can conclude by the Lebesgue Dominated
Convergence Theorem that Kun → Ku.

Next, we will show now that the range of K ; Range(K) := {Ku, u ∈ Fa}, is relatively compact in Fa. By
the Arzela–Ascoli theorem, it suffices to prove that Range(K)(t) is relatively compact in X for each t ∈ [0, a] ,
and Range(K) is equicontinuous on [0, a].

Step 3. The set of fonctionsRange(K)(t) of is relatively compact on Fa. To prove this assertion, it is sufficient
to show that the set

{
(Ku)(t)− U(t, 0)φ(0) : u ∈ Fa

}
is relatively compact.

Let 0 < ϵ < t ≤ a. Then

Ku(t)− U(t, 0)φ(0) = lim
λ→0+

∫ t

0

Uλ(t, s)F (s, ũρ(s,ũs))ds

= lim
λ→0+

∫ t−ϵ

0

Uλ(t, s)F (s, ũρ(s,ũs))ds+ lim
λ→0+

∫ t

t−ϵ

Uλ(t, s)F (s, ũρ(s,ũs))ds

= U(t, t− ϵ) lim
λ→0+

∫ t−ϵ

0

Uλ(t− ϵ, s)F (s, ũρ(s,ũs))ds+ lim
λ→0+

∫ t

t−ϵ

Uλ(t, s)F (s, ũρ(s,ũs))ds.

We claim that {
lim

λ→0+

∫ t−ϵ

0

Uλ(t− ϵ, s)F (s, ũρ(s,ũs))ds : u ∈ Fa

}
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is a bounded. In fact, for u ∈ Fa :∥∥∥ lim
λ→0+

∫ t−ϵ

0

Uλ(t− ϵ, s)F (s, ũρ(s,ũs))ds
∥∥∥ ≤Meωa

∫ t−ϵ

0

p(s)V (∥ũρ(s,ũs)∥B)ds

≤MeωaV (l)

∫ t−ϵ

0

p(s)ds by Lemma 3.4.

Where l =Mb + ζ +Kb +KbH)∥φ∥B +KbHr. Since U(t, t− ϵ) is a compact operator for 0 < ϵ < t, the set

U(t, t− ϵ)
{

lim
λ→0+

∫ t−ϵ

0

Uλ(t− ϵ, s)F (s, ũρ(s,ũs))ds : u ∈ Fa

}
is relatively compact in X for every ϵ, 0 < ϵ < t. We know that,∥∥∥ lim

λ→0+

∫ t

t−ϵ

Uλ(t, s)F (s, ũρ(s,ũs))ds
∥∥∥ ≤Meωa

∫ t

t−ϵ

p(s)V (∥ũρ(s,ũs)∥B)ds

≤MeωaV (l)

∫ t

t−ϵ

p(s)ds by Lemma 3.4.

Where l =Mb + ζ +Kb +KbH)∥φ∥B +KbHr. Thus

lim
λ→0+

∫ t

t−ϵ

Uλ(t, s)F (s, ũρ(s,ũs))ds ∈ B
(
0,MeωaV (l)

∫ t

t−ϵ

p(s)ds
)
.

By Lemma 2.1 it follows that

α
(
B
(
0,MeωaV (l)

∫ t

t−ϵ

p(s)ds
))

= 2MeωaV (l)

∫ t

t−ϵ

p(s)ds. (3.4)

where α(·) is Kuratowski’s measure of noncompactness of sets in X. Letting ϵ tends to 0 , we obtain in relation
(3.4) that α

(
B
(
0,MeωaV (l)

∫ t

t−ϵ
p(s)ds

))
= 0. By Lemma 2.1,

{
lim

λ→0+

∫ t

t−ϵ

Uλ(t, s)F (s, ũρ(s,ũs))ds : u ∈ Fa

}
is relatively compact. Then {

(Ku)(t)− U(t, 0)φ(0) : u ∈ Fa

}
is relatively compact. Hence, Range(K)(t) is relatively compact in X for each t ∈ J .

Step 4. The set of fonctions Range(K) is equicontinuous on [0, a]. For every 0 ≤ t0 ≤ t ≤ a, one has:

(Ku)(t)− (Ku)(t0) =
(
U(t, 0)− U(t0, 0)

)
φ(0) + lim

λ→0+

∫ t

0

Uλ(t, s)F (s, ũρ(s,ũs))ds

− lim
λ→0+

∫ t0

0

Uλ(t0, s)F (s, ũρ(s,ũs))ds

=
(
U(t, 0)− U(t0, 0)

)
φ(0) + lim

λ→0+

∫ t

t0

Uλ(t, s)F (s, ũρ(s,ũs))ds

+
(
U(t, t0)− I

)
lim

λ→0+

∫ t0

0

Uλ(t0, s)F (s, ũρ(s,ũs))ds.
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This implies that

∥(Ku)(t)− (Ku)(t0)∥ ≤
∥∥∥(U(t, 0)− U(t0, 0)

)
φ(0)

∥∥∥+MeωbV (l)

∫ t

t0

p(s)ds

+
∥∥∥(U(t, t0)− I

)
lim

λ→0+

∫ t0

0

Uλ(t0, s)F (s, ũρ(s,ũs))ds
∥∥∥.

Since Range(K)(t0) is relatively compact and{
lim

λ→0+

∫ t0

0

Uλ(t0, s)F (s, ũρ(s,ũs))ds : u ∈ Fa

}
⊆ Range(K)(t0)

. There exists a compact set G such that:{
lim

λ→0+

∫ t0

0

Uλ(t0, s)F (s, ũρ(s,ũs))ds : u ∈ Fa

}
⊆ G.

Then
lim
t→t0
t>t0

sup
u∈G

∥∥∥(U(t, t0)− I
)
u
∥∥∥ = 0.

Thus, we get
lim
t→t0
t>t0

∥(Ku)(t)− (Ku)(t0)∥ = 0 for all u ∈ Fa.

Using similar argument for 0 ≤ t ≤ t0 ≤ b, we conclude that Range(K) is equicontinuous. Then by Arzelá-
Ascoli’s Theorem, Range(K) is retlatively compact. Since K is continuous by Step 2, we can conclude that K
is a completely continuous operator. The existence of at least one a mild solution for Equation (1.1) is now a
consequence of the variant of Schauder’s Fixed Point Theorem. □

Theorem 3.5. Let (C1)− (C3) be satisfied. If ρ(t, ψ) ≤ t for every (t, ψ) ∈ J ×B and

MKbe
ωb∥p∥L1 <

∫ ∞

N

ds

V (s)
(3.5)

where N = (Mb + ζ)∥φ∥B +Kb∥φ(0)∥X with Kb = sup
t∈J

k(t) , Mb = sup
t∈J

M(t), ζ := sup{η(s) : s ∈ ρ−}.

Then there exists a mild solution of Equation (1.1).

Proof. Let E = C(J,X) and K : E → E be the operator defined by (3.3). In order to use Leray Schauder
Alternative Theorem. We claim that the set

ξ :=
{
x ∈ C(J,X) : x = µK(x), 0 < µ < 1

}
is bounded. Indeed

∥x∥ ≤Meωt∥φ(0)∥+
∫ t

0

Meω(t−s)∥F (s, x̃ρ(s,x̃s))∥ds

≤MeωtH∥φ∥B +M

∫ t

0

eω(t−s)p(s)V (∥x̃ρ(s,x̃s)∥B)ds by (B1)− (ii)
′
and (C2)

≤MeωtH∥φ∥B +Meωb

∫ t

0

p(s)V
(
(Mb + ζ)∥φ∥B +Kb sup

0≤θ≤ρ(s,x̃s)

∥x̃(θ)∥
)
ds by Lemma 3.3

≤MeωtH∥φ∥B +Meωb

∫ t

0

p(s)V
(
(Mb + ζ)∥φ∥B +Kb∥x∥ρ(s,x̃s)

)
ds

≤MeωtH∥φ∥B +Meωb

∫ t

0

p(s)V
(
(Mb + ζ)∥φ∥B +Kb∥x∥s

)
ds
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since ρ(t, x̃t) ≤ t for every t ∈ J . If

ϑ(t) := (Mb + ζ)∥φ∥B +Kb∥x∥t,

we obtain that

ϑ(t) ≤ (Mb + ζ +KbMeωbH)∥φ∥B +MKbe
ωb

∫ t

0

p(s)V (ϑ(s))ds

since ∥x∥t ⩽ ∥x∥ for all t ∈ J. Setting

ν(t) := (Mb + ζ +KbMeωbH)∥φ∥B +MKbe
ωb

∫ t

0

p(s)V (ϑ(s))ds

and using the nondecreasing character of V , we have :

ν(t) ≤ (Mb + ζ +KbMeωbH)∥φ∥B +MKbe
ωb

∫ t

0

p(s)V (ν(s))ds

since ϑ(t) ⩽ ν(t) for every t ∈ J . Since ν is defferentiable, we have

ν′(t) ≤MKbe
ωbp(t)V (ν(t)) for every t ∈ J.

Thus ∫ ν(t)

ν(0)=N

ds

V (s)
≤MKbe

ωb

∫ t

0

p(s)ds.

Hence ∫ ν(t)

ν(0)=N

ds

V (s)
≤MKbe

ωb∥p∥L1 .

Using relation (3.5), we get ∫ ν(t)

ν(0)=N

ds

V (s)
<

∫ +∞

N

ds

V (s)
.

This implies that, the set of functions {ν(·) : 0 < µ < 1} is bounded in C(J : X). Thus the set
{x(·) : 0 < µ < 1} is also bounded in C(J : X) since

(Mb + ζ)∥φ∥B +Kb∥x∥t ≤ ν(t) for all t ∈ J .

We obtain the completely continuous property of K by proceeding as in the proof of Theorem 3.4. Since E
is convex and 0 ∈ E, then the Nonlinear Alternative Leray-Schauder’s Fixed Point Theorem guaranties the
existence of at least one mild solution for Equation (1.1).

Arguing as in the proof of Theorem 3.2 we can prove that K is completely continuous. Then by the Nonlinear
Alternative Leray-Schauder’s Fixed Point Theorem the exists at least one mild solution for Equation (1.1). □

4. Global existence of mild solutions and Blowing up phenomena

Let us give the following local Lipschitz condition on the nonlinear part F of Equation (1.1):
(C4) For each α > 0 there exists a positive constant r0(α) such that for φ,ψ ∈ B with |φ|B, |ψ|B ≤ α, we

have:
∥F (t, φ)− F (t, ψ)∥ ≤ r0(α)|φ− ψ|B for t ≥ 0.

Contrarily to the previous results, if we replace conditions ((C2) by condition (C4), the following local existence
results hold.
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Theorem 4.1. Assume that (C1), (C3) and (C4) hold. Then, for φ ∈ B such that φ(0) ∈ D, Equation (1.1) has a
mild solution x(., φ) in a maximal interval (−∞, amax) and either

amax = +∞ or lim sup
t→a−

max

∥x(t, φ)∥ = +∞.

Moreover, x(., φ) depends continuously on the initial data φ in the sense that, if φ ∈ B, φ(0) ∈ D and t ∈
[0, amax), then there exist positive constants k and ε > 0 such that, for ψ ∈ B and |φ− ψ|B ≤ ε, we have

∥x(s, φ)− x(s, ψ)∥ ≤ k|φ− ψ|B for s ∈]−∞, a].

Proof. Let x(., φ) be a mild solution of Equation (1.1) in (−∞, b]. We know that, x(t) ∈ D for all t ∈
[0, a]. Repeating the procedure used in the local existence result, this yields existence of a > a1 and a function
x(., xa(., φ)) : (−∞, a1] → X which satisfies for t ∈ [a, a1]:

x(., xa(., φ)) = U(t, 0)x(a, φ) + lim
λ→0+

∫ t

a

Uλ(t, s)F (s, x̃ρ(s,x̃s)(., xa(., φ)))ds.

Proceeding inductively, we obtain the maximal interval of existence (−∞, amax) of the solution x(., φ). Assume
that amax < +∞ and limt→a−

max
sup ∥x(t, φ)∥ < M . We claim that x(., φ) is uniformly continuous and

consequently limt→a−
max

x(., φ) exists in X , which contradicts the maximality of [0, amax[. In the following,
we show uniform continuity of x(., φ). Let t, t+ h ∈ [0, amax) with h > 0. Then,

∥x(t+ h, φ)− x(t, φ)∥
≤ ∥U(t+ h, 0)φ(0)− U(t, 0)φ(0)∥

+
∥∥∥ lim

λ→0+

∫ t+h

0

Uλ(t+ h, τ)F (τ, x̃ρ(τ,x̃τ ))dτ − lim
λ→0+

∫ t

0

Uλ(t, τ)F (τ, x̃ρ(τ,x̃τ ))dτ
∥∥∥

≤ ∥U(t+ h, 0)φ(0)− U(t, 0)φ(0)∥+
∥∥∥Uλ(t+ h, t) lim

λ→0+

∫ t

0

Uλ(t, τ)F (τ, x̃ρ(τ,x̃τ ))dτ

+ lim
λ→0+

∫ t+h

t

Uλ(t+ h, τ)F (τ, x̃ρ(τ,x̃τ ))dτ − lim
λ→0+

∫ t

0

Uλ(t, τ)F (τ, x̃ρ(τ,x̃τ ))dτ
∥∥∥

≤ ∥(U(t+ h, 0)− U(t, 0))φ(0)∥+
∥∥∥(U(t+ h, t)− I) lim

λ→0+

∫ t

0

Uλ(t, τ)F (τ, x̃ρ(τ,x̃τ ))dτ
∥∥∥

+ lim
λ→0+

∥∥∥∫ t+h

t

Uλ(t+ h, τ)F (τ, x̃ρ(τ,x̃τ ))dτ
∥∥∥.

Since W :=
{∫ t

0

Uλ(t, τ)F (τ, x̃ρ(τ,x̃τ ))dτ : x ∈ Fa

}
⊆ G with G compact. We obtain that

lim
h→0
t+h>t

∥ (U(t+ h, t)− I)x∥ = 0 for x ∈ W.

Since

lim
λ→0+

∥∥∥∫ t+h

t

Uλ(t+ h, τ)F (τ, x̃ρ(τ,x̃τ ))dτ
∥∥∥ ≤Mewh∥p∥L1V (l)h,

then
lim
h→0
t+h>t

∥x(t+ h, φ)− x(h, φ)∥ = 0.

Similarly, we show that
lim
h→0
t+h<t

∥x(t+ h, φ)− x(t, φ)∥ = 0.
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Then x(., φ) is uniformly continuous on [0, amax) and therefore, limt→amax x(., φ) exists. If we define
x(amax, φ) := limt→amax x(., φ), we can extend x(., φ) beyond amax which contradict the maximality of
]−∞, amax).

We prove now that K is strict contraction in Fa(φ) and for this end, we consider x, z ∈ Fa(φ). For t ∈ [0, a],
we have

∥(Kx)− (Kz)∥Fa = sup
0≤t≤b

∥(Kx)(t)− (Kz)(t)∥

and

∥(Kx)− (Kz)∥Fa =
∥∥∥ lim

λ→0+

∫ t

0

Uλ(t, s)F (s, x̃ρ(s,x̃s))ds− lim
λ→0+

∫ t

0

Uλ(t, s)F (s, z̃ρ(s,z̃s))ds
∥∥∥

≤
∫ t

0

Mew(t−s)∥F (s, x̃ρ(s,x̃s))− F (s, z̃ρ(s,z̃s))∥ds

≤Mewbr0(α)

∫ t

0

∥x̃ρ(s,x̃s) − z̃ρ(s,z̃s)∥Bds

≤ KbMewbr0(α)

∫ t

0

sup
0≤θ≤ρ(s,x̃s)

∥x(θ)− z(θ)∥Xds

≤ KbMewbr0(α)a∥x− z∥Fa
.

Following the same reasoning, we can see that

∥(K2x)(t)− (K2z)(t)∥Fa
≤ KbMewbr0(α)

∫ t

0

sup
0≤θ≤ρ(s,x̃s)

∥(Kx)(θ)− (Kz)(θ)∥Xds

≤ (KbMewbr0(α))
2

∫ t

0

sup
0≤θ≤s

∫ θ

0

sup
0≤ξ≤p

∥x(ξ)− z(ξ)∥Xdpds

≤ (KbMewbr0(α))
2

∫ t

0

∫ s

0

∥x− z∥Fadpds

≤ (KbMewbr0(α))
2a2

2
∥x− z∥Fa

.

We can repeat the previous argument, and we obtain

∥(Knx)(t)− (Knz)(t)∥Fa
≤ (KbMewbr0(α))

nan

n!
∥x− z∥Fa

.

Since (KbMewbr0(α))
nan

n! → 0 as n → +∞ then ∃n ∈ N such that (KbMewbr0(α))
nan

n! < 1. It follows that Kn

is strict contraction and by the Banach fixe point theorem, we deduce there ∃!x ∈ Fa such that Knx = x. Thus
Knx = x implies that Kn+1x = Kx on the other hand Kn(Kx) = K(x) it follows that K(x) is a fixed point
of Kn and since fixed point is unique then we get K(x) = x. Equation (1.1) has a unique mild solution x(., φ)
which is defined on the interval (−∞, a]. This is true for all a > 0, then x(., φ) is a global solution of Equation
(1.1) on R.

Next, we prove that the solution depends continuously on initial data. Let φ ∈ B and t ∈ [0, a[ be fixed. Show
that x(·, φ) is continuous in the sense of φ. ∀ε > 0, look for k(a) > 0 such that for ψ ∈ B and |φ − ψ|B ≤ ε

implies that

∥x(ι, φ)− x(ι, ψ)∥ ≤ k(a)|φ− ψ|B for ι ∈]−∞, a].
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We have by Lemme 3.3

|xs(·, φ)− xs(·, ψ)|B ≤ (Mb + ζ) |φ− ψ|B +Kb sup
0≤θ≤s

∥x(θ, φ)− xs(θ, ψ)∥X , s ∈ ρ− ∪ J

≤ (Mb + ζ) |φ− ψ|B +Kb sup
0≤θ≤s

∥U(θ, 0)(φ− ψ)∥X

+Kb sup
0≤θ≤s

lim
λ→0+

∫ θ

0

∥U(θ, τ)F (τ, x̃ρ(τ,x̃τ )(·, φ))− F (τ, x̃ρ(τ,x̃τ )(·, ψ))∥dτ

≤ (Mb + ζ) |φ− ψ|B +Kb sup
0≤θ≤s

∥U(θ, 0)(φ− ψ)∥X

+Kb sup
0≤θ≤s

lim
λ→0+

∫ θ

0

Mew(θ−τ)∥F (τ, x̃ρ(τ,x̃τ )(·, φ))− F (τ, x̃ρ(τ,x̃τ )(·, ψ))∥dτ

≤ (Mb + ζ +HKbMewa) |φ− ψ|B

+KbMewar0(α)

∫ θ

0

∥x̃ρ(τ,x̃τ )(·, φ)− x̃ρ(τ,x̃τ )(·, ψ)∥dτ

using the Bellman-Gronwall Lemma it follows that

≤ (Mb + ζ +HKbMewa) eKbMewar0(α)θ|φ− ψ|B.

Hence we can write

|xs(ϑ, φ)− xs(ϑ, ψ)|B ≤ (Mb + ζ +HKbMewa) eKbMewar0(α)θ|φ− ψ|B for ϑ ∈]−∞, 0]

thus

|x(s+ ϑ, φ)− x(s+ ϑ, ψ)|B ≤ (Mb + ζ +HKbMewa) eKbMewar0(α)θ∥φ− ψ∥B for ϑ ∈]−∞, 0]

therefore

∥x(ι, φ)− x(ι, ψ)∥B ≤ (Mb + ζ +HKbMewa) eKbMewar0(α)θ∥φ− ψ∥B for ι ∈]−∞, a]

It is clear that (Mb + ζ +HKbMewa) eKbMewar0(α)θ > 0 hence, we deduce the continuous dependence on the
initial data. □

Corollary 4.1. Assume that (C4) holds. Let q1 and q2 be continuous fonctions from R+ to R+ such that

∥F (t, ϕ)∥ ≤ q1(t)|ϕ|B + q2(t) for t ∈ R+ and ϕ ∈ B.

Then, for ϕ ∈ B such that ϕ(0) ∈ D, Equation (1.1) has a unique mild solution which is defined on R.

Proof. Let x(· , ϕ) the solution of Equation (1.1) defined on a maximal interval (−∞, amax). Then by the
Theorem 4.1

amax = +∞ or lim sup
t→a−

max

∥x(t, φ)∥ = +∞.

We assume that amax < +∞ and lim sup
t→a−

max

∥x(t, φ)∥ = +∞.

For all t ∈ [0, amax[ :
On has
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∥x(t, ϕ)∥ ≤ ∥U(t, 0)∥∥ϕ(0)∥+ lim
λ→0+

∫ t

0

∥Uλ(t, s)∥∥F (s, x̃ρ(s,x̃s))∥ds

≤Meωt∥ϕ(0)∥+
∫ t

0

Meωt
(
q1(t)|x̃ρ(s,x̃s)|B + q2(t)

)
ds

≤Meωamax

(
∥ϕ(0)∥+

∫ t

0

q2(θ)dθ
)
+Meωamax

∫ t

0

q1(t)|x̃ρ(s,x̃s)|Bds

By Lemma 3.3

|x̃ρ(s,x̃s)(· , ϕ)|B ≤ (Mb + ζ) ∥ϕ∥B +Kb sup
0≤θ≤ρ(s,x̃s)

∥x(θ, ϕ)∥

.
Thus

|x̃ρ(s,x̃s)(· , ϕ)|B ≤ (Mb + ζ) |ϕ|B +Kb sup
0≤θ≤ρ(s,x̃s)

[
Mbe

ωamax

(
∥ϕ(0)∥+

∫ t

0

q2(θ)dθ
)

+Mbe
ωamax

∫ t

0

q1(t)|x̃ρ(s,x̃s)|Bds
]

≤ (Mb + ζ) |ϕ|B +KbMbe
ωamax

(
∥ϕ(0)∥+

∫ ρ(s,x̃s)

0

q2(θ)dθ
)

+Mbe
ωamax

∫ ρ(s,x̃s)

0

q1(θ)|x̃ρ(s,x̃s)|Bds

= P1 + P1

∫ ρ(s,x̃s)

0

q1(θ)|x̃ρ(s,x̃s)|Bds.

With P1 = (Mb + ζ) |ϕ|B +KbMbe
ωamax

(
∥ϕ(0)∥+

∫ ρ(s,x̃s)

0
q2(θ)dθ

)
and P1 =Mbe

ωamax .
By Gronwall’s Lemma, we deduce that

|x̃ρ(s,x̃s)(· , ϕ)|B ≤ P1e
amaxP2

∫ ρ(s,x̃s)
0 q1(θ)dθ.

Hence lim sup
t→a−

max

∥x(t, φ)∥ < +∞. Therefore amax = +∞

■

5. Application

For illustration of our previous result, we propose to study the following model.



∂

∂t
v(t, x) = δ(t)

∂2

∂x2
v(t, x) + β(t)

∫ 0

−∞
g
(
θ, v

(
θ + t− ρ1(t)ρ2

(∫ π

0

w(s)|v(t, θ)|2ds
)
, x

))
dθ

for 0 ≤ t ≤ b and x ∈ [0, π],

v(t, 0) = v(t, π) = 0 for 0 ≤ t ≤ b,

v(θ, x) = v0(θ, x) for θ ≤ 0, 0 ≤ x ≤ π,

(5.1)
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where δ(·) is a positive function in C1(R+,R+) with δ0 := inf
t≥0

δ(t) > 0 and β : [0, b] → R+ with β ∈

L1(J ; [0,+∞)). g : R− × B → R and v0 : (−∞, 0] × [0, π] → R are functions. The functions ρi : [0,∞) →
[0,∞), i = 1, 2 are continuous and w : R → R is a positive continuous function. To rewrite Eq. (5.1) in the
abstract form, we introduce the space X := C([0, π],R) of continuous functions from [0, π] to R equipped with
the uniform norm topology and we consider the operator A : D ⊂ X → X defined by:

D = {z ∈ C2([0, π]) : z(0) = z(π) = 0}

Az(t, x) = ∆z(t, x) with ∆ :=
∂2

∂x2
; t ∈ [0, b] and x ∈ [0, π].

Then it is well know that 
D = {z ∈ C([0, π] : R) : z(0) = z(π) = 0} ≠ X,

(0,+∞) ⊂ ρ(A) and ∥R(λ,A)∥ ≤ 1
λ for λ > 0.

(5.2)

We choose the space of bounded uniformly continuous functions from R− to X denoted by BUC(R−, X)

as a phase space B := BUC(R−, X) endowed with the following norm:

∥ψ∥B := sup
θ≤0

∥ψ(θ)∥.

Then, B satisfies Axioms (B1)− (B).
By defining the operators F : I × B → X and τ : I × B → R by:

y(t)(x) := v(t, x).

φ(θ)(x) := v0(θ, x) for θ ≤ 0.

F (t, ϕ)(x) := β(t)

∫ 0

−∞
g
(
θ, ϕ(θ)(x)

)
dθ.

τ(t, ϕ) := t− ρ1(t)ρ2

(∫ π

0

w(s)|ϕ(0)(x)|2ds
)
.

Suppose that ϕB and let (A(t))t≥0 be the family of operators defined by A(t) := δ(t)
∂2

∂x2
. Then, Equation

(5.1) takes the following abstract form :
ẏ(t) = A(t)y(t) + F (t, yτ(t,yt)) for t ∈ [0, b],

y0 = φ ∈ B,
(5.3)

We have D(A(t)) = D independent of t and for λ > 0,

R(λ,A(t)) = (λI − δ(t)A)−1

=
1

δ(t)
R
( λ

δ(t)
, A

)
. (5.4)

Using (5.2) and (5.4), we have for every λ > 0, λ ∈ ρ(A(t)) and ∥R(λ,A(t))∥ ≤ 1
λ .

Then (0,+∞) ⊂ ρ(A(t)) and∥∥∥ k∏
i=1

R(λ,A(ti))
∥∥∥ ≤ 1

λk
, 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk < +∞.
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Hence, the family of linear operators (A(t))t≥0 on X satisfies the assumptions (A1) - (A3).

It is known from [10] that, the part ∆0 of ∆ =
∂2

∂x2
in D(∆) given by

D(∆0) =
{
z ∈ D(∆) : ∆z ∈ D(∆)

}
∆0z = ∆z,

(5.5)

generates a compact semigroup (T0(t))t≥0 on D(∆) such that

∥T0(t)∥ ≤ e−t for t ≥ 0. (5.6)

Thus, the part A0(.) of A(.) in D generates an evolution family (U(t, s))t≥s≥0 on D given by

U(t, s) = T0

(∫ t

s

δ(τ)dτ

)
which is compact for t > s. By (5.6), one has

∥U(t, s)∥ ≤ e−δ0(t−s).

Hence (C1) is satisfies. We assume that:

1) g : R− × B → R+ is nondecreasing integrable function which satisfies : g(θ, 0) = 0 for θ ≤ 0.

2) v0 is uniformly continuous and bounded with respect to θ ∈ R− , uniformly with respect to x[0, π].

Under the above conditions, we claim that φ ∈ B. In fact,

∥φ∥B = sup
θ≤0

∥φ(θ)∥ = sup
θ≤0

x∈[0,π]

∥v0(θ, x)∥ < +∞.

and

∥φ(θ)− φ(θ′)∥ = sup
x∈[0,π]

∥φ(θ)(x)− φ(θ′)(x)∥

= sup
x∈[0,π]

∥v0(θ, x)− v0(θ
′, x)∥ → 0 as ∥θ − θ′∥ → 0.

Therefore, φ ∈ B with φ(0) ∈ D.

On the other hand, we have:

∥F (t, ϕ)∥ ≤ β(t)

∫ 0

−∞

∥∥∥g(θ, ϕ(θ))∥∥∥dθ
for ϕ ∈ B. F satisfies (C2) with p(t) = β(t) and V (∥ϕ∥B) =

∫ 0

−∞

∥∥∥g(θ, ϕ(θ))∥∥∥dθ.
3) Let φ ∈ B such that x0 = φ and t 7−→ φt is a B-valued. We assume that ∥φt∥B ≤ η(t)∥φ∥B for every t ∈ τ−

where η : τ− → (0,∞) is a continuous and bounded function with

τ− = {τ(s, ψ) : (s, ψ) ∈ J × B, τ(s, ψ) ≤ 0} .

Hence (C3) is satisfies.
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Then, the existence of mild solutions can be deduced from a direct application of Theorem 3.5 and we have the
following result.

Theorem 5.1. Assume φ(0) ∈ D and

Kbe
δ0b∥p∥L1 <

∫ ∞

N

ds

V (s)
(5.7)

where M = 1, ω = δ0, N = (Mb + ζ)∥φ∥B + Kb∥φ(0)∥. Then there exists at least one mild solution of
Equation (5.1).
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