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On lacunary I-invariant arithmetic convergence
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Abstract. In this study, we investigate the notion of lacunary Iσ arithmetic convergence for real sequences and examine
relations between this new type convergence notion and the notions of lacunary invariant arithmetic summability, lacunary
strongly q-invariant arithmetic summability and lacunary σ-statistical arithmetic convergence which are defined in this study.
Finally, giving the notions of lacunary Iσ arithmetic statistically convergence, lacunary strongly Iσ arithmetic summability,
we prove the inclusion relation between them.
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1. Introduction and Background

The idea of arithmetic convergence was firstly originated by Ruckle [22]. Then, it was further investigated by
many authors (for examples, see [9, 10, 34–38]).

A sequence x = (xm) is called arithmetically convergent if for each ε > 0, there is an integer n such that for
every integer m we have |xm − x〈m,n〉| < ε, where the symbol 〈m,n〉 denotes the greatest common divisior of
two integers m and n. We denote the sequence space of all arithmetic convergent sequence by AC.

Statistical convergence of a real number sequence was firstly originated by Fast [2]. It became a notable topic
in summability theory after the work of Fridy [3] and Šalát [23].

By a lacunary sequence, we mean an increasing integer sequence θ = {kr} such that

k0 = 0 and hr = kr − kr−1 →∞ as r →∞.

The intervals determined by θ is denoted by Ir = (kr−1, kr]. The idea of lacunary statistical convergence was
investigated by Fridy and Orhan [4] and then studied by several authors (for examples, see [5, 6, 13, 17, 27]).

In the wake of the study of ideal convergence defined by Kostyrko et al. [11], there has been comprehensive
research to discover applications and summability studies of the classical theories. A lot of development have
been seen in area about I-convergence of sequences after the work of [1, 7, 8, 12, 16, 24, 28–30, 32].

An ideal I on N for which I 6= P (N) is called a proper ideal. A proper ideal I is called admissible if I
contains all finite subsets of N.
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A family of sets I ⊆ 2N is called an ideal if and only if (i) ∅ ∈ I, (ii) For eachA,B ∈ I we haveA∪B ∈ I,
(iii) For each A ∈ I and each B ⊆ A we have B ∈ I.

A family of sets F ⊆ 2N is a filter in N if and only if (i) ∅ /∈ F , (ii) For each A,B ∈ F we have A∩B ∈ F ,
(iii) For each A ∈ F and each B ⊇ A we have B ∈ F .

If I is proper ideal of N (i.e., N /∈ I), then the family of sets

F (I) = {M ⊂ N : ∃A ∈ I : M = N\ A}

is a filter of N, it is called the filter associated with the ideal.
Let I ⊂ 2N be a proper admissible ideal in N. The sequence (xk) of elements of R is said to be I-convergent

to L ∈ R if for each ε > 0,
A (ε) = {k ∈ N : |xk − L| ≥ ε} ∈ I.

If (xk) is I-convergent to L, then we write I − limx = L.

An admissible ideal I ⊆ 2N is said to have the property (AP ) if for any sequence {A1, A2, ...} of mutually
disjoint sets of I, there is sequence {B1, B2, ...} of sets such that each symmetric differenceAi∆Bi (i = 1, 2, ...)

is finite and
∞⋃
i=1

Bi ∈ I.

Let σ be a mapping such that σ : N+ → N+ (the set of all positive integers). A continuous linear functional
Φ on l∞, the space of real bounded sequences, is said to be an invariant mean or a σ mean, if it satisfies the
following conditions:

(1) Φ (xn) ≥ 0, when the sequence (xn) has xn ≥ 0 for all n ∈ N;

(2) Φ (e) = 1, where e = (1, 1, 1, ...) ;

(3) Φ
(
xσ(n)

)
= Φ (xn) for all (xn) ∈ l∞.

The mappings Φ are assumed to be one-to-one such that σm (n) 6= n for all positive integers n and m, where
σm (n) denotes the m th iterate of the mapping σ at n. Thus, Φ extends the limit functional on c, the space of
convergent sequences, in the sense that Φ (xn) = limxn, for all (xn) ∈ c.

In case σ is translation mappings σ (n) = n+ 1, the σ-mean is often called a Banach limit.
The space Vσ , the set of bounded sequences whose invariant means are equal, can be shown that

Vσ =

{
(xk) ∈ l∞ : lim

m→∞

1

m

m∑
k=1

xσk(n) = L

}
uniformly in n.

Several authors studied invariant mean and invariant convergent sequence (for examples, see [14, 15, 18–
21, 25, 26, 31, 33]).

Savaş and Nuray [18] introduced the concepts of σ-statistical convergence and lacunary σ-statistical
convergence and gave some inclusion relations. Nuray et al. [20] defined the concepts of σ-uniform density of
subsets A of the set N, Iσ-convergence for real sequences and investigated relationships between
Iσ-convergence and invariant convergence also Iσ-convergence and [Vσ]p-convergence. Ulusu and Nuray [33]
investigated lacunary I-invariant convergence and lacunary I-invariant Cauchy sequence of real numbers.
Recently, the concept of strong σ-convergence was generalized by Savaş [25]. The concept of strongly
σ-convergence was defined by Mursaleen [14].

Let θ be a lacunary sequence, E ⊆ N and

sr : = min
n
{|E ∩ {σm (n) : m ∈ Ir}|}

Sr : = max
n
{|E ∩ {σm (n) : m ∈ Ir}|} .

If the following limits exist

V θ (E) = lim
r→∞

sr
hr
, V θ (E) = lim

r→∞

Sr
hr
,
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then they are called a lower lacunary invariant uniform density and an upper lacunary invariant uniform density
of the set E, respectively. If V θ (E) = V θ (E), then Vθ (E) = V θ (E) = V θ (E) is called the lacunary invariant
uniform density of E.

The class of all E ⊆ N with V θ (E) = 0 will be denoted by Iσθ. Note that Iσθ is an admissible ideal.
A sequence (xm) is lacunary Iσ-convergent to L, if for each ε > 0,

E (ε) := {m ∈ N : |xm − L| ≥ ε} ∈ Iσθ,

i.e., Vθ (E (ε)) = 0. In this case, we write Iσθ − limxm = L.
The arithmetic statistically convergence and lacunary arithmetic statistically convergence was examined by

Yaying and Hazarika [38].
A sequence x = (xm) is said to be arithmetic statistically convergent if for ε > 0, there is an integer n such

that

lim
t→∞

1

t
|{m ≤ t : |xm − x〈m,n〉| ≥ ε}| = 0.

We shall use ASC to denote the set of all arithmetic statistical convergent sequences. We shall write ASC −
limxm = x〈m,n〉 to denote the sequence (xm) is arithmetic statistically convergent to x〈m,n〉.

A sequence x = (xm) is said to be lacunary arithmetic statistically convergent if for ε > 0 there is an integer
n such that

lim
r→∞

1

hr
|
{
m ∈ Ir : |xm − x〈m,n〉| ≥ ε

}
= 0.

We will useASCθ− limxm = x〈m,n〉 to denote the sequence (xm) is lacunary arithmetic statistically convergent
to x〈m,n〉.

Kişi [9] investigated the concepts of invariant arithmetic convergence, strongly invariant arithmetic
convergence, invariant arithmetic statistically convergence, lacunary invariant arithmetic statistical convergence
and obtained interesting results.

In [10], arithmetic I-statistically convergent sequence space and I-lacunary arithmetic statistically
convergent sequence space were given and established interesting results.

Kişi [10] examined I-invariant arithmetic convergence, I∗-invariant arithmetic convergence, q-strongly
invariant arithmetic convergence of sequences.

A sequence x = (xp) is said to be invariant arithmetic convergent if for an integer n

lim
m→∞

1

m

m∑
p=1

xσp(s) = x〈p,n〉

uniformly in s. In this case we write xp → x〈p,n〉 (AVσ) and the set of all invariant arithmetic convergent
sequences will be demostrated by AVσ.

A sequence x = (xp) is said to be strongly invariant arithmetic convergent if for an integer n

lim
m→∞

1

m

m∑
p=1

|xσp(s) − x〈p,n〉| = 0

uniformly in s. In this case we write xp → x〈p,n〉 [AVσ] to denote the sequence (xp) is strongly invariant
arithmetic convergent to x〈p,n〉 and the set of all invariant arithmetic convergent sequences will be demostrated
by [AVσ] .

A sequence x = (xp) is said to be invariant arithmetic statistically convergent if for every ε > 0, there is an
integer n such that

lim
m→∞

1

m

∣∣{p ≤ m : |xσp(s) − x〈p,n〉| ≥ ε}
∣∣ = 0
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uniformly in s. We shall use ASσC to denote the set of all invariant arithmetic statistical convergent sequences.
In this case we write ASσC − limxp = x〈p,n〉 or xp → x〈p,n〉 (ASσC) .

A sequence x = (xp) is said to be lacunary invariant arithmetic statistical convergent if for every ε > 0, there
is an integer n such that

lim
r→∞

1

hr
|{p ∈ Ir : |xσp(s) − x〈p,n〉| ≥ ε}| = 0

uniformly in s. We shall use ASσθC to denote the set of all lacunary invariant arithmetic statistical convergent
sequences. In this case we write ASσθC − limxp = x〈p,n〉.

The I-invariant arithmetic convergence was defined by [10] as below:
A sequence x = (xp) is said to be I-invariant arithmetic convergent if for every ε > 0, there is an integer η

such that {
p ∈ N : |xp − x〈p,η〉| ≥ ε

}
∈ Iσ .

In this case we write AIσC − limxp = x〈p,η〉. We shall use AIσC to denote the set of all I-invariant arithmetic
convergent sequences.

2. Main Results

Definition 2.1. A sequence x = (xp) is said to be lacunary invariant arithmetic summable to x〈p,η〉 if

lim
r→∞

1

hr

∑
p∈Ir

xσp(s) = x〈p,η〉,

uniformly in s, for an integer η.

Also, the set of lacunary strongly invariant arithmetic convergence sequences is defined as below:

[AVσθ] =

x = (xp) : lim
r→∞

1

hr

∑
p∈Ir

∣∣xσp(s) − x〈p,η〉∣∣ = 0


uniformly in s. In this case, we write xp → x〈p,η〉 ([AVσθ]) to demonstrate the sequence (xp) is lacunary strongly
invariant arithmetic summable to x〈p,η〉.

Definition 2.2. A sequence x = (xp) is said to be lacunary strongly q-invariant arithmetic summable
(0 < q <∞) to x〈p,η〉 if

lim
r→∞

1

hr

∑
p∈Ir

∣∣xσp(s) − x〈p,η〉∣∣q = 0,

uniformly in s and it is indicated by xp → x〈p,η〉

(
[AVσθ]q

)
.

Definition 2.3. A sequence x = (xp) is said to be lacunary σ-statistical arithmetic convergent to x〈p,η〉 if for
every ε > 0, there is an integer η such that

lim
r→∞

1

hr

∣∣{p ∈ Ir :
∣∣xσp(s) − x〈p,η〉∣∣ ≥ ε}∣∣ = 0,

uniformly in s.

Definition 2.4. A sequence x = (xp) is lacunary Iσ arithmetic convergent to x〈p,η〉, if for each ε > 0, there is
an integer η such that

K (ε) :=
{
p ∈ N :

∣∣xp − x〈p,η〉∣∣ ≥ ε} ∈ Iσθ,

i.e., Vθ (K (ε)) = 0. In this case, we write xp → x〈p,η〉 (AIσθ) or AIσθ − limxp = x〈p,η〉.
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Theorem 2.5. Let (xp) is bounded sequence. If (xp) is lacunary Iσ arithmetic convergent to x〈p,η〉, then (xp) is
lacunary invariant arithmetic summable to x〈p,η〉.

Proof. Let s ∈ N be arbitrary and ε > 0. Also, we suppose that (xp) is bounded sequence and (xp) is lacunary
Iσ arithmetic convergent to x〈p,η〉. Now, we estimate

tθ (s) :=

∣∣∣∣∣∣ 1

hr

∑
p∈Ir

xσp(s) − x〈p,η〉

∣∣∣∣∣∣ .
For every s = 1, 2, ..., we have

tθ (s) ≤ t1θ (s) + t2θ (s) ,

where

t1θ (s) :=
1

hr

∑
p∈Ir, |xσp(s)−x〈p,η〉|≥ε

∣∣xσp(s) − x〈p,η〉∣∣
and

t2θ (s) :=
1

hr

∑
p∈Ir, |xσp(s)−x〈p,η〉|<ε

∣∣xσp(s) − x〈p,η〉∣∣ .
For every s = 1, 2, ..., it is obvious that t2θ (s) < ε. Since (xp) is bounded sequence, there is a M > 0 such that∣∣xσp(s) − x〈p,η〉∣∣ ≤M, (p ∈ Ir, s = 1, 2, ...)

and so we have
t1θ (s) = 1

hr

∑
p∈Ir, |xσp(s)−x〈p,η〉|≥ε

∣∣xσp(s) − x〈p,η〉∣∣
≤ M

hr

∣∣{p ∈ Ir :
∣∣xσp(s) − x〈p,η〉∣∣ ≥ ε}∣∣

≤M maxs|{p∈Ir:|xσp(s)−x〈p,η〉|≥ε}|
hr

= M Sr
hr

.

Hence, due to our assumption, (xp) is lacunary invariant arithmetic summable to x〈p,η〉. �

In general, the converse of the Theorem 2.5 does not hold. For example, let x = (xp) be the sequence defined
as follows:

xp :=


1,

if pr−1 < p < pr−1 +
[√
hr
]

,
and p is an even integer,

0,
if pr−1 < p < pr−1 +

[√
hr
]

,
and p is an odd integer.

When σ (s) = s + 1, this sequence is lacunary invariant arithmetic summable to 1
2 but it is not lacunary Iσ

arithmetic convergent.
Now, we will give the following theorems which state relations between the notions of lacunary Iσ arithmetic

convergence and lacunary strongly q-invariant arithmetic summability, and we will denote that these notions are
equivalent for bounded sequences.

Theorem 2.6. If a sequence x = (xp) is lacunary strongly q-invariant arithmetic summable to x〈p,η〉, then it is
lacunary Iσ arithmetic convergent to x〈p,η〉.
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Proof. Let 0 < q < ∞. Suppose that xp → x〈p,η〉

(
[AVσθ]q

)
for an integer η. Then, for every s = 1, 2, ... and

ε > 0 we have ∑
p∈Ir

∣∣xσp(s) − x〈p,η〉∣∣q
≥

∑
p∈Ir,|xσp(s)−x〈p,η〉|≥ε

∣∣xσp(s) − x〈p,η〉∣∣q
≥ εq

∣∣{p ∈ Ir :
∣∣xσp(s) − x〈p,η〉∣∣ ≥ ε}∣∣

≥ εq maxs
∣∣{p ∈ Ir :

∣∣xσp(s) − x〈p,η〉∣∣ ≥ ε}∣∣
and so

1
hr

∑
p∈Ir

∣∣xσp(s) − x〈p,η〉∣∣q ≥ εqmaxs|{p∈Ir:|xσp(s)−x〈p,η〉|≥ε}|
hr

= εq Srhr .

Hence, due to our assumption, AIσθ − limxp = x〈p,η〉. �

Theorem 2.7. Let (xp) is bounded sequence. If x = (xp) is lacunary Iσ arithmetic convergent to x〈p,η〉, then it
is lacunary strongly q-invariant arithmetic summable to x〈p,η〉.

Proof. Assume that (xp) ∈ l∞ and AIσθ − limxp = x〈p,η〉. Let 0 < q < ∞ and ε > 0. The boundedness of
(xp) implies that there exists a M > 0 such that

∣∣xσp(s) − x〈p,η〉∣∣ ≤ M , (p ∈ Ir, s = 1, 2, ...). Therefore, we
obtain

1
hr

∑
p∈Ir

∣∣xσp(s) − x〈p,η〉∣∣q = 1
hr

∑
p∈Ir

|xσp(s)−x〈p,η〉|≥ε

∣∣xσp(s) − x〈p,η〉∣∣q + 1
hr

∑
p∈Ir

|xσp(s)−x〈p,η〉|<ε

∣∣xσp(s) − x〈p,η〉∣∣q

≤M maxs|{p∈Ir:|xσp(s)−x〈p,η〉|≥ε}|
hr

+ εq

= M Sr
hr

+ εq.

Therefore, we obtain

lim
r→∞

1

hr

∑
p∈Ir

∣∣xσp(s) − x〈p,η〉∣∣q = 0,

uniformly in s. Hence, we get xp → x〈p,η〉

(
[AVσθ]q

)
. �

Theorem 2.8. A sequence (xp) ∈ l∞. Then, x = (xp) to lacunary Iσ arithmetic convergent to x〈p,η〉 iff it is
lacunary strongly q-invariant arithmetic summable to x〈p,η〉.

Proof. This is an immediate consequence of Theorem 2.6 and Theorem 2.7. �

Now, without proof, we will state a theorem that gives a relation between the notions of lacunary Iσ arithmetic
convergence and lacunary σ-statistical arithmetic convergence.

Theorem 2.9. A sequence x = (xp) is lacunary Iσ arithmetic convergent to x〈p,η〉 iff this sequence is lacunary
σ-statistical arithmetic convergent to x〈p,η〉.

Finally, introducing the notion of lacunary I∗σ arithmetic convergence, we will give the relation between this
notion and the notion of lacunary Iσ arithmetic convergence.

6



I-invariant arithmetic convergence

Definition 2.10. A sequence x = (xp) is said to be lacunary I∗σ arithmetic convergent or AI∗σθ-convergent to
x〈p,η〉, if there exists a set M = {m1 < m2 < ... < mp < ...} ∈ F (Iσθ) (N \M = H ∈ Iσθ) and there is an
integer η such that

lim
p→∞

xmp = x〈p,η〉.

In this case, we write AI∗σθ − limxp = x〈p,η〉 or xp → x〈p,η〉 (AI∗σθ) .

Theorem 2.11. If a sequence x = (xp) is lacunary I∗σ arithmetic convergent to x〈p,η〉, then this sequence is
lacunary Iσ arithmetic convergent to x〈p,η〉.

Proof. Let ε > 0. Since AI∗σθ − limxp = x〈p,η〉, there exists a set H ∈ Iσθ such that for

M = N\H = {m1 < m2 < ... < mp < ...}

and so there exists a p0 ∈ N such that |xmp − x〈p,η〉| < ε for every p > p0. Then, for every ε > 0, we have

K (ε) = {p ∈ N :
∣∣xp − x〈p,η〉∣∣ ≥ ε}

⊂ H ∪ {m1 < m2 < ... < mp < ...} .

Since Iσθ is admissible ideal,
H ∪ {m1 < m2 < ... < mp < ...} ∈ Iσθ

and so we have K (ε) ∈ Iσθ. Hence, we get AIσθ − limxp = x〈p,η〉. �

The converse of the Theorem 2.11 holds if the ideal Iσθ has the property (AP ) .

Theorem 2.12. Let the ideal Iσθ be with property (AP ). If a sequence x = (xp) is lacunary Iσ arithmetic
convergent to x〈p,η〉, then this sequence is lacunary I∗σ arithmetic convergent to x〈p,η〉.

Proof. Let the ideal Iσθ be with the property (AP ) and ε > 0. Also, we suppose that AIσθ − limxp = x〈p,η〉.
Then, for every ε > 0 we have

K (ε) =
{
p ∈ N :

∣∣xp − x〈p,η〉∣∣ ≥ ε} ∈ Iσθ.
Denote K1,K2, ...,Kn as following

K1 :=
{
p ∈ N :

∣∣xp − x〈p,η〉∣∣ ≥ 1
}

and

Kn :=

{
p ∈ N :

1

n
≤
∣∣xp − x〈p,η〉∣∣ < 1

n− 1

}
,

where n ≥ 2 (n ∈ N). Note that Ki∩Kj = ∅ (i 6= j) and Ki ∈ Iσθ (for each i ∈ N). Since Iσθ has the property
(AP ), there exists a set sequence {Fn}n∈N such that the symmetric differencesKi∆Fi are finite (for each i ∈ N)

and F =
∞⋃
j=1

Fj ∈ Iσθ. Now, to complete the proof, it is enough to prove that

lim
p→∞

xp = x〈p,η〉, p ∈M, (2.1)

where M = N \ F . Let γ > 0. Select n ∈ N such that 1
n+1 < γ. Then, we get

{
p ∈ N :

∣∣xp − x〈p,η〉∣∣ ≥ γ} ⊂ n+1⋃
i=1

Ki.

7
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Since the symmetric differences Ki∆Fi (i = 1, 2, ..., n+ 1) are finite, there exists a p0 ∈ N such that(
n+1⋃
i=1

Ki

)
∩ {p ∈ N : p > p0}

=

(
n+1⋃
i=1

Fi

)
∩ {p ∈ N : p > p0} .

(2.2)

If p > p0 and p /∈ F , then

p /∈
n+1⋃
i=1

Fi and by (2.2) p /∈
n+1⋃
i=1

Ki.

This give that ∣∣xp − x〈p,η〉∣∣ < 1

n+ 1
< γ

and so (2.1) holds. As a result, AI∗σθ − limxp = x〈p,η〉. �

Definition 2.13. A sequence x = (xp) is said to be lacunary I invariant arithmetic statistically convergent to
x〈p,η〉, for each ε > 0 and δ > 0, there is an integer η such that{

r ∈ N :
1

hr

∣∣{p ∈ Ir :
∣∣xp − x〈p,η〉∣∣ ≥ ε}∣∣ ≥ δ} ∈ Iσθ.

In this case, we write xp → x〈p,η〉 (AIσθ (S)).

Definition 2.14. A sequence x = (xp) is said to be lacunary strongly Iσ arithmetic summable to x〈p,η〉 if for
each ε > 0, there is an integer η such thatr ∈ N :

1

hr

∑
p∈Ir

∣∣xp − x〈p,η〉∣∣ ≥ ε
 ∈ Iσθ.

We will use [A (Iσθ)] − limxp = x〈p,η〉 or xp → x〈p,η〉 ([A (Iσθ)]) to indicate the sequence (xm) is lacunary
strongly Iσ arithmetic convergent to x〈m,n〉.

Theorem 2.15. Let θ = {kr} be a lacunary sequence.

(i) If xp → x〈p,η〉 ([A (Iσθ)]), then xp → x〈p,η〉 (AIσθ (S)).

(ii) If x ∈ l∞ and xp → x〈p,η〉 (AIσθ (S)), then xp → x〈p,η〉 ([A (Iσθ)]) .

(iii) (AIσθ (S)) ∩ l∞ = [A (Iσθ)] ∩ l∞.

Proof. (i) Let ε > 0 and xp → x〈p,η〉 ([A (Iσθ)]). Then, we can write

1
hr

∑
p∈Ir

∣∣xσp(s) − x〈p,η〉∣∣ ≥ 1
hr

∑
p∈Ir

|xσp(s)−x〈p,η〉|≥ε

∣∣xσp(s) − x〈p,η〉∣∣

≥ ε. 1
hr

∣∣{p ∈ Ir :
∣∣xσp(s) − x〈p,η〉∣∣ ≥ ε}∣∣

for s = 1, 2, .... So, for any δ > 0,{
r ∈ N : 1

hr

∣∣{p ∈ Ir :
∣∣xσp(s) − x〈p,η〉∣∣ ≥ ε}∣∣ ≥ δ}

⊆

{
r ∈ N : 1

hr

∑
p∈Ir

∣∣xσp(s) − x〈p,η〉∣∣ ≥ ε.δ
}
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uniformly in s. Since xp → x〈p,η〉 ([A (Iσθ)]), the set on the right-hand side belongs to Iσθ and so we obtain
xp → x〈p,η〉 (AIσθ (S)).

(ii) Suppose that x ∈ l∞ and xp → x〈p,η〉 (AIσθ (S)). Then, there exists a M > 0 such that∣∣xσp(s) − x〈p,η〉∣∣ ≤M
for s = 1, 2, ....

Given ε > 0, we obtain

1

hr

∑
p∈Ir

∣∣xσp(s) − x〈p,η〉∣∣ =
1

hr

∑
p∈Ir

|xσp(s)−x〈p,η〉|≥ε

∣∣xσp(s) − x〈p,η〉∣∣+
1

hr

∑
p∈Ir

|xσp(s)−x〈p,η〉|<ε

∣∣xσp(s) − x〈p,η〉∣∣

≤ M

hr

∣∣{p ∈ Ir :
∣∣xσp(s) − x〈p,η〉∣∣ ≥ ε}∣∣+ ε

uniformly in s. Note that

A (ε) ={
r ∈ N : 1

hr

∣∣{p ∈ Ir :
∣∣xσp(s) − x〈p,η〉∣∣ ≥ ε}∣∣ ≥ ε

M

}
.

It is obvious that A (ε) ∈ Iσθ. If r ∈ (A (ε))
c then

1

hr

∑
p∈Ir

∣∣xσp(s) − x〈p,η〉∣∣ < 2ε.

Hence r ∈ N :
1

hr

∑
p∈Ir

∣∣xσp(s) − x〈p,η〉∣∣ ≥ 2ε

 ⊂ A (ε)

and so belongs to Iσθ. This shows that xp → x〈p,η〉 ([A (Iσθ)]). This completes the proof.
(iii) This is an immediate consequence of (i) ve (ii). �
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