MALAYA JOURNAL OF MATEMATIK

Malaya J. Mat. **09(02)**(2021), 1–11. http://doi.org/10.26637/mjm0902/001

On lacunary \mathcal{I} -invariant arithmetic convergence

ÖMER KİŞİ*1

¹ Faculty of Science, Department of Mathematics, Bartin University, Bartin, Turkey.

Received 12 November 2020; Accepted 17 March 2021

Abstract. In this study, we investigate the notion of lacunary \mathcal{I}_{σ} arithmetic convergence for real sequences and examine relations between this new type convergence notion and the notions of lacunary invariant arithmetic summability, lacunary strongly *q*-invariant arithmetic summability and lacunary σ -statistical arithmetic convergence which are defined in this study. Finally, giving the notions of lacunary \mathcal{I}_{σ} arithmetic statistically convergence, lacunary strongly \mathcal{I}_{σ} arithmetic summability, we prove the inclusion relation between them.

AMS Subject Classifications: 40A05, 40A99, 46A70, 46A99.

Keywords: Lacunary sequence, statistical convergence, invariant, arithmetic convergence.

Contents

1	Introduction and Background	1
2	Main Results	4
3	Acknowledgement	9

1. Introduction and Background

The idea of arithmetic convergence was firstly originated by Ruckle [22]. Then, it was further investigated by many authors (for examples, see [9, 10, 34–38]).

A sequence $x = (x_m)$ is called arithmetically convergent if for each $\varepsilon > 0$, there is an integer n such that for every integer m we have $|x_m - x_{(m,n)}| < \varepsilon$, where the symbol $\langle m, n \rangle$ denotes the greatest common divisior of two integers m and n. We denote the sequence space of all arithmetic convergent sequence by AC.

Statistical convergence of a real number sequence was firstly originated by Fast [2]. It became a notable topic in summability theory after the work of Fridy [3] and Šalát [23].

By a lacunary sequence, we mean an increasing integer sequence $\theta = \{k_r\}$ such that

$$k_0 = 0$$
 and $h_r = k_r - k_{r-1} \to \infty$ as $r \to \infty$.

The intervals determined by θ is denoted by $I_r = (k_{r-1}, k_r]$. The idea of lacunary statistical convergence was investigated by Fridy and Orhan [4] and then studied by several authors (for examples, see [5, 6, 13, 17, 27]).

In the wake of the study of ideal convergence defined by Kostyrko et al. [11], there has been comprehensive research to discover applications and summability studies of the classical theories. A lot of development have been seen in area about \mathcal{I} -convergence of sequences after the work of [1, 7, 8, 12, 16, 24, 28–30, 32].

An ideal \mathcal{I} on \mathbb{N} for which $\mathcal{I} \neq \mathcal{P}(\mathbb{N})$ is called a proper ideal. A proper ideal \mathcal{I} is called admissible if \mathcal{I} contains all finite subsets of \mathbb{N} .

^{*}Corresponding author. Email address: okisi@bartin.edu.tr (Ömer KİŞİ)

A family of sets $\mathcal{I} \subseteq 2^{\mathbb{N}}$ is called an ideal if and only if $(i) \ \emptyset \in \mathcal{I}$, (ii) For each $A, B \in \mathcal{I}$ we have $A \cup B \in \mathcal{I}$, (iii) For each $A \in \mathcal{I}$ and each $B \subseteq A$ we have $B \in \mathcal{I}$.

A family of sets $\mathcal{F} \subseteq 2^{\mathbb{N}}$ is a filter in \mathbb{N} if and only if $(i) \notin \mathcal{F}$, (ii) For each $A, B \in \mathcal{F}$ we have $A \cap B \in \mathcal{F}$, (iii) For each $A \in \mathcal{F}$ and each $B \supseteq A$ we have $B \in \mathcal{F}$.

If \mathcal{I} is proper ideal of \mathbb{N} (i.e., $\mathbb{N} \notin \mathcal{I}$), then the family of sets

$$\mathcal{F}(\mathcal{I}) = \{ M \subset \mathbb{N} : \exists A \in \mathcal{I} : M = \mathbb{N} \setminus A \}$$

is a filter of \mathbb{N} , it is called the filter associated with the ideal.

Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be a proper admissible ideal in \mathbb{N} . The sequence (x_k) of elements of \mathbb{R} is said to be \mathcal{I} -convergent to $L \in \mathbb{R}$ if for each $\varepsilon > 0$,

$$A(\varepsilon) = \{k \in \mathbb{N} : |x_k - L| \ge \varepsilon\} \in \mathcal{I}.$$

If (x_k) is \mathcal{I} -convergent to L, then we write $\mathcal{I} - \lim x = L$.

An admissible ideal $\mathcal{I} \subseteq 2^{\mathbb{N}}$ is said to have the property (AP) if for any sequence $\{A_1, A_2, ...\}$ of mutually disjoint sets of I, there is sequence $\{B_1, B_2, ...\}$ of sets such that each symmetric difference $A_i \Delta B_i$ (i = 1, 2, ...) is finite and $\bigcup_{i=1}^{\infty} B_i \in \mathcal{I}$.

Let σ be a mapping such that $\sigma : \mathbb{N}^+ \to \mathbb{N}^+$ (the set of all positive integers). A continuous linear functional Φ on l_{∞} , the space of real bounded sequences, is said to be an invariant mean or a σ mean, if it satisfies the following conditions:

(1) $\Phi(x_n) \ge 0$, when the sequence (x_n) has $x_n \ge 0$ for all $n \in \mathbb{N}$;

(2) $\Phi(e) = 1$, where e = (1, 1, 1, ...);

(3) $\Phi(x_{\sigma(n)}) = \Phi(x_n)$ for all $(x_n) \in l_{\infty}$.

The mappings Φ are assumed to be one-to-one such that $\sigma^m(n) \neq n$ for all positive integers n and m, where $\sigma^m(n)$ denotes the m th iterate of the mapping σ at n. Thus, Φ extends the limit functional on c, the space of convergent sequences, in the sense that $\Phi(x_n) = \lim x_n$, for all $(x_n) \in c$.

In case σ is translation mappings $\sigma(n) = n + 1$, the σ -mean is often called a Banach limit.

The space V_{σ} , the set of bounded sequences whose invariant means are equal, can be shown that

$$V_{\sigma} = \left\{ (x_k) \in l_{\infty} : \lim_{m \to \infty} \frac{1}{m} \sum_{k=1}^m x_{\sigma^k(n)} = L \right\}$$

uniformly in n.

Several authors studied invariant mean and invariant convergent sequence (for examples, see [14, 15, 18–21, 25, 26, 31, 33]).

Savaş and Nuray [18] introduced the concepts of σ -statistical convergence and lacunary σ -statistical convergence and gave some inclusion relations. Nuray et al. [20] defined the concepts of σ -uniform density of subsets A of the set \mathbb{N} , \mathcal{I}_{σ} -convergence for real sequences and investigated relationships between \mathcal{I}_{σ} -convergence and invariant convergence also \mathcal{I}_{σ} -convergence and $[V_{\sigma}]_p$ -convergence. Ulusu and Nuray [33] investigated lacunary \mathcal{I} -invariant convergence and lacunary \mathcal{I} -invariant Cauchy sequence of real numbers. Recently, the concept of strong σ -convergence was generalized by Savaş [25]. The concept of strongly σ -convergence was defined by Mursaleen [14].

Let θ be a lacunary sequence, $E \subseteq \mathbb{N}$ and

$$s_r := \min_n \left\{ |E \cap \{\sigma^m(n) : m \in I_r\}| \right\}$$
$$S_r := \max_n \left\{ |E \cap \{\sigma^m(n) : m \in I_r\}| \right\}$$

If the following limits exist

$$\underline{V}_{\theta}\left(E\right) = \lim_{r \to \infty} \frac{s_r}{h_r}, \ \overline{V}_{\theta}\left(E\right) = \lim_{r \to \infty} \frac{S_r}{h_r},$$

then they are called a lower lacunary invariant uniform density and an upper lacunary invariant uniform density of the set E, respectively. If $\underline{V}_{\theta}(E) = \overline{V}_{\theta}(E)$, then $V_{\theta}(E) = \underline{V}_{\theta}(E) = \overline{V}_{\theta}(E)$ is called the lacunary invariant uniform density of E.

The class of all $E \subseteq \mathbb{N}$ with $\underline{V}_{\theta}(E) = 0$ will be denoted by $\mathcal{I}_{\sigma\theta}$. Note that $\mathcal{I}_{\sigma\theta}$ is an admissible ideal. A sequence (x_m) is lacunary \mathcal{I}_{σ} -convergent to L, if for each $\varepsilon > 0$,

$$E(\varepsilon) := \{ m \in \mathbb{N} : |x_m - L| \ge \varepsilon \} \in \mathcal{I}_{\sigma\theta},$$

i.e., $V_{\theta}(E(\varepsilon)) = 0$. In this case, we write $\mathcal{I}_{\sigma\theta} - \lim x_m = L$.

The arithmetic statistically convergence and lacunary arithmetic statistically convergence was examined by Yaying and Hazarika [38].

A sequence $x = (x_m)$ is said to be arithmetic statistically convergent if for $\varepsilon > 0$, there is an integer n such that

$$\lim_{t \to \infty} \frac{1}{t} |\{m \le t : |x_m - x_{\langle m, n \rangle}| \ge \varepsilon\}| = 0.$$

We shall use ASC to denote the set of all arithmetic statistical convergent sequences. We shall write $ASC - \lim x_m = x_{(m,n)}$ to denote the sequence (x_m) is arithmetic statistically convergent to $x_{(m,n)}$.

A sequence $x = (x_m)$ is said to be lacunary arithmetic statistically convergent if for $\varepsilon > 0$ there is an integer n such that

$$\lim_{r \to \infty} \frac{1}{h_r} | \left\{ m \in I_r : |x_m - x_{\langle m, n \rangle}| \ge \varepsilon \right\} = 0.$$

We will use $ASC_{\theta} - \lim x_m = x_{(m,n)}$ to denote the sequence (x_m) is lacunary arithmetic statistically convergent to $x_{(m,n)}$.

Kişi [9] investigated the concepts of invariant arithmetic convergence, strongly invariant arithmetic convergence, invariant arithmetic statistically convergence, lacunary invariant arithmetic statistical convergence and obtained interesting results.

In [10], arithmetic \mathcal{I} -statistically convergent sequence space and \mathcal{I} -lacunary arithmetic statistically convergent sequence space were given and established interesting results.

Kişi [10] examined \mathcal{I} -invariant arithmetic convergence, \mathcal{I}^* -invariant arithmetic convergence, q-strongly invariant arithmetic convergence of sequences.

A sequence $x = (x_p)$ is said to be invariant arithmetic convergent if for an integer n

$$\lim_{m \to \infty} \frac{1}{m} \sum_{p=1}^m x_{\sigma^p(s)} = x_{\langle p, n \rangle}$$

uniformly in s. In this case we write $x_p \to x_{(p,n)}(AV_{\sigma})$ and the set of all invariant arithmetic convergent sequences will be demostrated by AV_{σ} .

A sequence $x = (x_p)$ is said to be strongly invariant arithmetic convergent if for an integer n

$$\lim_{m \to \infty} \frac{1}{m} \sum_{p=1}^{m} |x_{\sigma^p(s)} - x_{\langle p, n \rangle}| = 0$$

uniformly in s. In this case we write $x_p \to x_{(p,n)} [AV_{\sigma}]$ to denote the sequence (x_p) is strongly invariant arithmetic convergent to $x_{(p,n)}$ and the set of all invariant arithmetic convergent sequences will be demostrated by $[AV_{\sigma}]$.

A sequence $x = (x_p)$ is said to be invariant arithmetic statistically convergent if for every $\varepsilon > 0$, there is an integer n such that

$$\lim_{m \to \infty} \frac{1}{m} \left| \left\{ p \le m : |x_{\sigma^p(s)} - x_{\langle p, n \rangle}| \ge \varepsilon \right\} \right| = 0$$

uniformly in s. We shall use $AS_{\sigma}C$ to denote the set of all invariant arithmetic statistical convergent sequences. In this case we write $AS_{\sigma}C - \lim x_p = x_{\langle p,n \rangle}$ or $x_p \to x_{\langle p,n \rangle} (AS_{\sigma}C)$.

A sequence $x = (x_p)$ is said to be lacunary invariant arithmetic statistical convergent if for every $\varepsilon > 0$, there is an integer n such that

$$\lim_{r \to \infty} \frac{1}{h_r} |\{ p \in I_r : |x_{\sigma^p(s)} - x_{\langle p, n \rangle}| \ge \varepsilon \}| = 0$$

uniformly in s. We shall use $AS_{\sigma\theta}C$ to denote the set of all lacunary invariant arithmetic statistical convergent sequences. In this case we write $AS_{\sigma\theta}C - \lim x_p = x_{\langle p,n \rangle}$.

The \mathcal{I} -invariant arithmetic convergence was defined by [10] as below:

A sequence $x = (x_p)$ is said to be \mathcal{I} -invariant arithmetic convergent if for every $\varepsilon > 0$, there is an integer η such that

$$\left\{ p \in \mathbb{N} : |x_p - x_{\langle p,\eta \rangle}| \ge \varepsilon \right\} \in \mathcal{I}_{\sigma}.$$

In this case we write $A\mathcal{I}_{\sigma}C - \lim x_p = x_{\langle p,\eta \rangle}$. We shall use $A\mathcal{I}_{\sigma}C$ to denote the set of all \mathcal{I} -invariant arithmetic convergent sequences.

2. Main Results

Definition 2.1. A sequence $x = (x_p)$ is said to be lacunary invariant arithmetic summable to $x_{(p,n)}$ if

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{p \in I_r} x_{\sigma^p(s)} = x_{\langle p, \eta \rangle},$$

uniformly in s, for an integer η .

Also, the set of lacunary strongly invariant arithmetic convergence sequences is defined as below:

$$[AV_{\sigma\theta}] = \left\{ x = (x_p) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{p \in I_r} \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right| = 0 \right\}$$

uniformly in s. In this case, we write $x_p \to x_{\langle p,\eta \rangle}$ ([$AV_{\sigma\theta}$]) to demonstrate the sequence (x_p) is lacunary strongly invariant arithmetic summable to $x_{\langle p,\eta \rangle}$.

Definition 2.2. A sequence $x = (x_p)$ is said to be lacunary strongly q-invariant arithmetic summable $(0 < q < \infty)$ to $x_{(p,\eta)}$ if

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{p \in I_r} \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right|^q = 0,$$

uniformly in s and it is indicated by $x_p \to x_{\langle p,\eta \rangle} \left([AV_{\sigma\theta}]_q \right)$.

Definition 2.3. A sequence $x = (x_p)$ is said to be lacunary σ -statistical arithmetic convergent to $x_{\langle p,\eta \rangle}$ if for every $\varepsilon > 0$, there is an integer η such that

$$\lim_{r \to \infty} \frac{1}{h_r} \left| \left\{ p \in I_r : \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right| \ge \varepsilon \right\} \right| = 0,$$

uniformly in s.

Definition 2.4. A sequence $x = (x_p)$ is lacunary \mathcal{I}_{σ} arithmetic convergent to $x_{\langle p,\eta\rangle}$, if for each $\varepsilon > 0$, there is an integer η such that

$$K(\varepsilon) := \left\{ p \in \mathbb{N} : \left| x_p - x_{\langle p, \eta \rangle} \right| \ge \varepsilon \right\} \in \mathcal{I}_{\sigma\theta},$$

i.e., $V_{\theta}(K(\varepsilon)) = 0$. In this case, we write $x_p \to x_{\langle p,\eta \rangle}(A\mathcal{I}_{\sigma\theta})$ or $A\mathcal{I}_{\sigma\theta} - \lim x_p = x_{\langle p,\eta \rangle}$.

Theorem 2.5. Let (x_p) is bounded sequence. If (x_p) is lacunary \mathcal{I}_{σ} arithmetic convergent to $x_{\langle p,\eta\rangle}$, then (x_p) is lacunary invariant arithmetic summable to $x_{\langle p,\eta\rangle}$.

Proof. Let $s \in \mathbb{N}$ be arbitrary and $\varepsilon > 0$. Also, we suppose that (x_p) is bounded sequence and (x_p) is lacunary \mathcal{I}_{σ} arithmetic convergent to $x_{\langle p,\eta \rangle}$. Now, we estimate

$$t_{\theta}(s) := \left| \frac{1}{h_r} \sum_{p \in I_r} x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right|.$$

For every s = 1, 2, ..., we have

$$t_{\theta}\left(s\right) \leq t_{\theta}^{1}\left(s\right) + t_{\theta}^{2}\left(s\right),$$

where

$$t_{\theta}^{1}(s) := \frac{1}{h_{r}} \sum_{p \in I_{r}, \left| x_{\sigma^{p}(s)} - x_{\langle p, \eta \rangle} \right| \ge \varepsilon} \left| x_{\sigma^{p}(s)} - x_{\langle p, \eta \rangle} \right|$$

and

$$t_{\theta}^{2}(s) := \frac{1}{h_{r}} \sum_{p \in I_{r}, \left| x_{\sigma^{p}(s)} - x_{\langle p, \eta \rangle} \right| < \varepsilon} \left| x_{\sigma^{p}(s)} - x_{\langle p, \eta \rangle} \right|.$$

For every s = 1, 2, ..., it is obvious that $t_{\theta}^2(s) < \varepsilon$. Since (x_p) is bounded sequence, there is a M > 0 such that

$$\left|x_{\sigma^{p}(s)} - x_{\langle p,\eta\rangle}\right| \le M, \ (p \in I_{r}, s = 1, 2, \ldots)$$

and so we have

$$\begin{split} t^{1}_{\theta}\left(s\right) &= \frac{1}{h_{r}} \sum_{p \in I_{r}, \left|x_{\sigma^{p}\left(s\right)} - x_{\langle p, \eta \rangle}\right| \geq \varepsilon} \left|x_{\sigma^{p}\left(s\right)} - x_{\langle p, \eta \rangle}\right| \\ &\leq \frac{M}{h_{r}} \left|\left\{p \in I_{r} : \left|x_{\sigma^{p}\left(s\right)} - x_{\langle p, \eta \rangle}\right| \geq \varepsilon\right\}\right| \\ &\leq M \frac{\max_{s} \left|\left\{p \in I_{r} : \left|x_{\sigma^{p}\left(s\right)} - x_{\langle p, \eta \rangle}\right| \geq \varepsilon\right\}\right|}{h_{r}} = M \frac{S_{r}}{h_{r}}. \end{split}$$

Hence, due to our assumption, (x_p) is lacunary invariant arithmetic summable to $x_{(p,\eta)}$.

In general, the converse of the Theorem 2.5 does not hold. For example, let $x = (x_p)$ be the sequence defined as follows:

$$x_p := \begin{cases} 1, & \text{if } p_{r-1}$$

When $\sigma(s) = s + 1$, this sequence is lacunary invariant arithmetic summable to $\frac{1}{2}$ but it is not lacunary \mathcal{I}_{σ} arithmetic convergent.

Now, we will give the following theorems which state relations between the notions of lacunary \mathcal{I}_{σ} arithmetic convergence and lacunary strongly *q*-invariant arithmetic summability, and we will denote that these notions are equivalent for bounded sequences.

Theorem 2.6. If a sequence $x = (x_p)$ is lacunary strongly q-invariant arithmetic summable to $x_{\langle p,\eta\rangle}$, then it is lacunary \mathcal{I}_{σ} arithmetic convergent to $x_{\langle p,\eta\rangle}$.

Proof. Let $0 < q < \infty$. Suppose that $x_p \to x_{\langle p,\eta \rangle} \left([AV_{\sigma\theta}]_q \right)$ for an integer η . Then, for every s = 1, 2, ... and $\varepsilon > 0$ we have

$$\sum_{p \in I_r} |x_{\sigma^p(s)} - x_{\langle p, \eta \rangle}|^q$$

$$\geq \sum_{p \in I_r, |x_{\sigma^p(s)} - x_{\langle p, \eta \rangle}| \geq \varepsilon} |x_{\sigma^p(s)} - x_{\langle p, \eta \rangle}|^q$$

$$\geq \varepsilon^q |\{p \in I_r : |x_{\sigma^p(s)} - x_{\langle p, \eta \rangle}| \geq \varepsilon\}|$$

$$\geq \varepsilon^q \max_s |\{p \in I_r : |x_{\sigma^p(s)} - x_{\langle p, \eta \rangle}| \geq \varepsilon\}|$$

and so

$$\frac{1}{h_r} \sum_{p \in I_r} \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right|^q \ge \varepsilon^q \frac{\max_s \left| \left\{ p \in I_r : \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right| \ge \varepsilon \right\} \right|}{h_r} = \varepsilon^q \frac{S_r}{h_r}.$$

Hence, due to our assumption, $A\mathcal{I}_{\sigma\theta} - \lim x_p = x_{\langle p,\eta \rangle}$.

Theorem 2.7. Let (x_p) is bounded sequence. If $x = (x_p)$ is lacunary \mathcal{I}_{σ} arithmetic convergent to $x_{\langle p,\eta\rangle}$, then it is lacunary strongly q-invariant arithmetic summable to $x_{\langle p,\eta\rangle}$.

Proof. Assume that $(x_p) \in l_{\infty}$ and $A\mathcal{I}_{\sigma\theta} - \lim x_p = x_{\langle p,\eta \rangle}$. Let $0 < q < \infty$ and $\varepsilon > 0$. The boundedness of (x_p) implies that there exists a M > 0 such that $|x_{\sigma^p(s)} - x_{\langle p,\eta \rangle}| \leq M$, $(p \in I_r, s = 1, 2, ...)$. Therefore, we obtain

$$\begin{split} &\frac{1}{h_r} \sum_{p \in I_r} \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right|^q = \frac{1}{h_r} \sum_{\substack{p \in I_r \\ |x_{\sigma^p(s)} - x_{\langle p, \eta \rangle}| \ge \varepsilon}} \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right|^q + \frac{1}{h_r} \sum_{\substack{p \in I_r \\ |x_{\sigma^p(s)} - x_{\langle p, \eta \rangle}| \ge \varepsilon}} \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right| < \varepsilon \\ &\leq M \frac{\max_s \left| \left\{ p \in I_r : \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right| \ge \varepsilon \right\} \right|}{h_r} + \varepsilon^q \\ &= M \frac{S_r}{h_r} + \varepsilon^q. \end{split}$$

Therefore, we obtain

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{p \in I_r} \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right|^q = 0,$$

uniformly in s. Hence, we get $x_p \to x_{\langle p,\eta \rangle} \left([AV_{\sigma\theta}]_q \right)$.

Theorem 2.8. A sequence $(x_p) \in l_{\infty}$. Then, $x = (x_p)$ to lacunary \mathcal{I}_{σ} arithmetic convergent to $x_{\langle p,\eta \rangle}$ iff it is lacunary strongly q-invariant arithmetic summable to $x_{\langle p,\eta \rangle}$.

Proof. This is an immediate consequence of Theorem 2.6 and Theorem 2.7.

Now, without proof, we will state a theorem that gives a relation between the notions of lacunary \mathcal{I}_{σ} arithmetic convergence and lacunary σ -statistical arithmetic convergence.

Theorem 2.9. A sequence $x = (x_p)$ is lacunary \mathcal{I}_{σ} arithmetic convergent to $x_{\langle p,\eta \rangle}$ iff this sequence is lacunary σ -statistical arithmetic convergent to $x_{\langle p,\eta \rangle}$.

Finally, introducing the notion of lacunary \mathcal{I}_{σ}^* arithmetic convergence, we will give the relation between this notion and the notion of lacunary \mathcal{I}_{σ} arithmetic convergence.

Definition 2.10. A sequence $x = (x_p)$ is said to be lacunary \mathcal{I}^*_{σ} arithmetic convergent or $A\mathcal{I}^*_{\sigma\theta}$ -convergent to $x_{\langle p,\eta\rangle}$, if there exists a set $M = \{m_1 < m_2 < ... < m_p < ...\} \in \mathcal{F}(\mathcal{I}_{\sigma\theta}) \ (\mathbb{N} \setminus M = H \in \mathcal{I}_{\sigma\theta})$ and there is an integer η such that

$$\lim_{p \to \infty} x_{m_p} = x_{\langle p, \eta \rangle}.$$

In this case, we write $A\mathcal{I}_{\sigma\theta}^* - \lim x_p = x_{\langle p,\eta \rangle} \text{ or } x_p \to x_{\langle p,\eta \rangle} (A\mathcal{I}_{\sigma\theta}^*)$.

Theorem 2.11. If a sequence $x = (x_p)$ is lacunary \mathcal{I}^*_{σ} arithmetic convergent to $x_{\langle p,\eta\rangle}$, then this sequence is lacunary \mathcal{I}_{σ} arithmetic convergent to $x_{\langle p,\eta\rangle}$.

Proof. Let $\varepsilon > 0$. Since $A\mathcal{I}^*_{\sigma\theta} - \lim x_p = x_{(p,\eta)}$, there exists a set $H \in \mathcal{I}_{\sigma\theta}$ such that for

$$M = \mathbb{N} \setminus H = \{ m_1 < m_2 < \dots < m_p < \dots \}$$

and so there exists a $p_0 \in \mathbb{N}$ such that $|x_{m_p} - x_{\langle p, \eta \rangle}| < \varepsilon$ for every $p > p_0$. Then, for every $\varepsilon > 0$, we have

$$K(\varepsilon) = \{ p \in \mathbb{N} : \left| x_p - x_{\langle p, \eta \rangle} \right| \ge \varepsilon \}$$

$$\subset H \cup \{m_1 < m_2 < \dots < m_p < \dots\}.$$

Since $\mathcal{I}_{\sigma\theta}$ is admissible ideal,

$$H \cup \{m_1 < m_2 < \dots < m_p < \dots\} \in \mathcal{I}_{\sigma\theta}$$

and so we have $K(\varepsilon) \in \mathcal{I}_{\sigma\theta}$. Hence, we get $A\mathcal{I}_{\sigma\theta} - \lim x_p = x_{\langle p,\eta \rangle}$.

The converse of the Theorem 2.11 holds if the ideal $\mathcal{I}_{\sigma\theta}$ has the property (AP).

Theorem 2.12. Let the ideal $\mathcal{I}_{\sigma\theta}$ be with property (AP). If a sequence $x = (x_p)$ is lacunary \mathcal{I}_{σ} arithmetic convergent to $x_{\langle p,\eta\rangle}$, then this sequence is lacunary \mathcal{I}_{σ}^* arithmetic convergent to $x_{\langle p,\eta\rangle}$.

Proof. Let the ideal $\mathcal{I}_{\sigma\theta}$ be with the property (AP) and $\varepsilon > 0$. Also, we suppose that $A\mathcal{I}_{\sigma\theta} - \lim x_p = x_{\langle p,\eta \rangle}$. Then, for every $\varepsilon > 0$ we have

$$K(\varepsilon) = \left\{ p \in \mathbb{N} : \left| x_p - x_{\langle p, \eta \rangle} \right| \ge \varepsilon \right\} \in \mathcal{I}_{\sigma\theta}.$$

Denote $K_1, K_2, ..., K_n$ as following

$$K_1 := \left\{ p \in \mathbb{N} : \left| x_p - x_{\langle p, \eta \rangle} \right| \ge 1 \right\}$$

and

$$K_n := \left\{ p \in \mathbb{N} : \frac{1}{n} \le \left| x_p - x_{\langle p, \eta \rangle} \right| < \frac{1}{n-1} \right\},\,$$

where $n \ge 2$ $(n \in \mathbb{N})$. Note that $K_i \cap K_j = \emptyset$ $(i \ne j)$ and $K_i \in \mathcal{I}_{\sigma\theta}$ (for each $i \in \mathbb{N}$). Since $\mathcal{I}_{\sigma\theta}$ has the property (AP), there exists a set sequence $\{F_n\}_{n\in\mathbb{N}}$ such that the symmetric differences $K_i\Delta F_i$ are finite (for each $i \in \mathbb{N}$) and $F = \bigcup_{j=1}^{\infty} F_j \in \mathcal{I}_{\sigma\theta}$. Now, to complete the proof, it is enough to prove that

$$\lim_{p \to \infty} x_p = x_{\langle p, \eta \rangle}, p \in M, \tag{2.1}$$

where $M = \mathbb{N} \setminus F$. Let $\gamma > 0$. Select $n \in \mathbb{N}$ such that $\frac{1}{n+1} < \gamma$. Then, we get

$$\left\{p \in \mathbb{N} : \left|x_p - x_{\langle p,\eta \rangle}\right| \ge \gamma\right\} \subset \bigcup_{i=1}^{n+1} K_i.$$

Since the symmetric differences $K_i \Delta F_i$ (i = 1, 2, ..., n + 1) are finite, there exists a $p_0 \in \mathbb{N}$ such that

$$\begin{pmatrix} \bigcup_{i=1}^{n+1} K_i \end{pmatrix} \cap \{ p \in \mathbb{N} : p > p_0 \}$$

= $\begin{pmatrix} \bigcup_{i=1}^{n+1} F_i \end{pmatrix} \cap \{ p \in \mathbb{N} : p > p_0 \}.$ (2.2)

If $p > p_0$ and $p \notin F$, then

$$p \notin \bigcup_{i=1}^{n+1} F_i$$
 and by (2.2) $p \notin \bigcup_{i=1}^{n+1} K_i$.

This give that

$$\left|x_p - x_{\langle p,\eta\rangle}\right| < \frac{1}{n+1} < \gamma$$

and so (2.1) holds. As a result, $A\mathcal{I}^*_{\sigma\theta} - \lim x_p = x_{\langle p,\eta \rangle}$.

Definition 2.13. A sequence $x = (x_p)$ is said to be lacunary \mathcal{I} invariant arithmetic statistically convergent to $x_{\langle p,\eta\rangle}$, for each $\varepsilon > 0$ and $\delta > 0$, there is an integer η such that

$$\left\{ r \in \mathbb{N} : \frac{1}{h_r} \left| \left\{ p \in I_r : \left| x_p - x_{\langle p, \eta \rangle} \right| \ge \varepsilon \right\} \right| \ge \delta \right\} \in \mathcal{I}_{\sigma\theta}$$

In this case, we write $x_p \to x_{\langle p,\eta \rangle} (A\mathcal{I}_{\sigma\theta} (S)).$

Definition 2.14. A sequence $x = (x_p)$ is said to be lacunary strongly \mathcal{I}_{σ} arithmetic summable to $x_{\langle p,\eta \rangle}$ if for each $\varepsilon > 0$, there is an integer η such that

$$\left\{ r \in \mathbb{N} : \frac{1}{h_r} \sum_{p \in I_r} \left| x_p - x_{\langle p, \eta \rangle} \right| \ge \varepsilon \right\} \in \mathcal{I}_{\sigma\theta}.$$

We will use $[A(\mathcal{I}_{\sigma\theta})] - \lim x_p = x_{\langle p,\eta \rangle}$ or $x_p \to x_{\langle p,\eta \rangle} ([A(\mathcal{I}_{\sigma\theta})])$ to indicate the sequence (x_m) is lacunary strongly \mathcal{I}_{σ} arithmetic convergent to $x_{\langle m,n \rangle}$.

Theorem 2.15. Let $\theta = \{k_r\}$ be a lacunary sequence.

- (i) If $x_p \to x_{\langle p,\eta \rangle}$ ([A $(\mathcal{I}_{\sigma\theta})$]), then $x_p \to x_{\langle p,\eta \rangle}$ (A $\mathcal{I}_{\sigma\theta}$ (S)).
- (ii) If $x \in l_{\infty}$ and $x_p \to x_{(p,\eta)}$ (AI_{\sigma\theta\theta}(S)), then $x_p \to x_{(p,\eta)}$ ([A (I_{\sigma\theta\theta)}]).}
- (*iii*) $(A\mathcal{I}_{\sigma\theta}(S)) \cap l_{\infty} = [A(\mathcal{I}_{\sigma\theta})] \cap l_{\infty}.$

Proof. (i) Let $\varepsilon > 0$ and $x_p \to x_{(p,\eta)}([A(\mathcal{I}_{\sigma\theta})])$. Then, we can write

$$\frac{1}{h_r} \sum_{p \in I_r} \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right| \ge \frac{1}{h_r} \sum_{\substack{p \in I_r \\ \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right| \ge \varepsilon}} \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right|$$

$$\geq \varepsilon \cdot \frac{1}{h_r} \left| \left\{ p \in I_r : \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right| \geq \varepsilon \right\} \right|$$

for s = 1, 2, So, for any $\delta > 0$,

$$\left\{ r \in \mathbb{N} : \frac{1}{h_r} \left| \left\{ p \in I_r : \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right| \ge \varepsilon \right\} \right| \ge \delta \right\}$$
$$\subseteq \left\{ r \in \mathbb{N} : \frac{1}{h_r} \sum_{p \in I_r} \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right| \ge \varepsilon .\delta \right\}$$

uniformly in s. Since $x_p \to x_{\langle p,\eta \rangle}$ ($[A(\mathcal{I}_{\sigma\theta})]$), the set on the right-hand side belongs to $\mathcal{I}_{\sigma\theta}$ and so we obtain $x_p \to x_{\langle p,\eta \rangle}$ ($A\mathcal{I}_{\sigma\theta}(S)$).

(ii) Suppose that $x \in l_{\infty}$ and $x_p \to x_{\langle p,\eta \rangle}$ ($\mathcal{AI}_{\sigma\theta}(S)$). Then, there exists a M > 0 such that

$$\left|x_{\sigma^{p}(s)} - x_{\langle p,\eta\rangle}\right| \le M$$

for s = 1, 2,

Given $\varepsilon > 0$, we obtain

$$\begin{split} \frac{1}{h_r} \sum_{p \in I_r} \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right| &= \frac{1}{h_r} \sum_{\substack{p \in I_r \\ \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right| \ge \varepsilon}} \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right| + \frac{1}{h_r} \sum_{\substack{p \in I_r \\ \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right| < \varepsilon}} \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right| \le \varepsilon \\ &\leq \frac{M}{h_r} \left| \left\{ p \in I_r : \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right| \ge \varepsilon \right\} \right| + \varepsilon \end{split}$$

uniformly in s. Note that

$$A(\varepsilon) = \left\{ r \in \mathbb{N} : \frac{1}{h_r} \left| \left\{ p \in I_r : \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right| \ge \varepsilon \right\} \right| \ge \frac{\varepsilon}{M} \right\}.$$

It is obvious that $A(\varepsilon) \in \mathcal{I}_{\sigma\theta}$. If $r \in (A(\varepsilon))^c$ then

$$\frac{1}{h_r}\sum_{p\in I_r} \left|x_{\sigma^p(s)} - x_{\langle p,\eta\rangle}\right| < 2\varepsilon.$$

Hence

$$\left\{ r \in \mathbb{N} : \frac{1}{h_r} \sum_{p \in I_r} \left| x_{\sigma^p(s)} - x_{\langle p, \eta \rangle} \right| \ge 2\varepsilon \right\} \subset A\left(\varepsilon\right)$$

and so belongs to $\mathcal{I}_{\sigma\theta}$. This shows that $x_p \to x_{\langle p,\eta \rangle}$ ($[A(\mathcal{I}_{\sigma\theta})]$). This completes the proof. (*iii*) This is an immediate consequence of (*i*) ve (*ii*).

3. Acknowledgement

The author is thankful to the referee for his valuable suggestions which improved the presentation of the paper.

References

- P. DAS, E. SAVAŞ AND S.K. GHOSAL, On generalizations of certain summability methods using ideals, *Appl. Math. Lett.*, 24(2011), 1509–1514.
- [2] H. FAST, Sur la convergence statistique, Colloq. Math., 2(1951), 241–244.
- [3] J.A. FRIDY, On statistical convergence, Analysis, 5(1985), 301–313.
- [4] J.A. FRIDY AND C. ORHAN, Lacunary statistical convergence, Pac J Math., 160(1)(1993), 43–51.
- [5] A.R. FREEDMAN, J.J. SEMBER AND M. RAPHAEL, Some Cesàro-type summability spaces, Proc. Lond. Math. Soc., 37(1978), 508–520.
- [6] J.A. FRIDY AND C. ORHAN, Lacunary statistical summability, J. Math. Anal. Appl., 173(2)(1993), 497–504.

- [7] M. GÜRDAL AND M.B HUBAN, On *I*-convergence of double sequences in the Topology induced by random 2-norms, *Mat. Vesnik*, 66(1)(2014), 73–83.
- [8] M. GÜRDAL AND A. ŞAHINER, Extremal *I*-limit points of double sequences, *Appl. Math. E-Notes*, 8(2008), 131–137.
- [9] Ö. Kışı, On invariant arithmetic statistically convergence and lacunary invariant arithmetic statistically convergence, *Palest. J. Math.*, in press.
- [10] Ö. Kışı, On \mathcal{I} -lacunary arithmetic statistical convergence, J. Appl. Math. Informatics, in press.
- [11] P. KOSTYRKO, M. MACAJ AND T. ŠALÁT, \mathcal{I} -convergence, Real Anal. Exchange, 26(2)(2000), 669–686.
- [12] P. KOSTYRKO, M. MACAJ, T. ŠALÁT AND M. SLEZIAK, *I*-convergence and extremal *I*-limit points, *Math. Slovaca*, 55(2005), 443–464.
- [13] J. LI, Lacunary statistical convergence and inclusion properties between lacunary methods, Int. J. Math. Math. Sci., 23(3)(2000), 175–180.
- [14] M. MURSALEEN, Matrix transformation between some new sequence spaces, *Houston J. Math.*, **9**(1983), 505–509.
- [15] M. MURSALEEN, On finite matrices and invariant means, Indian J. Pure Appl. Math., 10(1979), 457-460.
- [16] A. NABIEV, S. PEHLIVAN AND M. GÜRDAL, On *I*-Cauchy sequences, *Taiwanese J. Math.*, 11(2007), 569–566.
- [17] F. NURAY, Lacunary statistical convergence of sequences of fuzzy numbers, *Fuzzy Sets and Systems*, **99(3)**(1998), 353–355.
- [18] F. NURAY AND E. SAVAŞ, Invariant statistical convergence and A-invariant statistical convergence, Indian J. Pure Appl. Math., 25(3)(1994), 267–274.
- [19] F. NURAY AND E. SAVAŞ, On σ statistically convergence and lacunary σ statistically convergence, *Math. Slovaca*, **43(3)**(1993), 309–315.
- [20] F. NURAY AND H. GÖK AND U. ULUSU, \mathcal{I}_{σ} -convergence, Math. Commun., 16(2011), 531–538.
- [21] R.A. RAIMI, Invariant means and invariant matrix methods of summability, *Duke Math. J.*, **30**(1963), 81–94.
- [22] W.H. RUCKLE, Arithmetical summability, J. Math. Anal. Appl., 396(2012), 741–748.
- [23] T. ŠALÁT, On statistically convergent sequences of real numbers, *Math. Slovaca*, **30**(1980), 139–150.
- [24] T. ŠALÁT, B.C. TRIPATHY AND M. ZIMAN, On some properties of *I*-convergence, *Tatra Mt. Math. Publ.*, 28(2004), 279–286.
- [25] E. SAVAŞ, Some sequence spaces involving invariant means, *Indian J. Math.*, **31**(1989), 1–8.
- [26] E. SAVAŞ, Strong σ -convergent sequences, Bull. Calcutta Math. Soc., 81(1989), 295–300.
- [27] E. SAVAŞ AND R.F. PATTERSON, Lacunary statistical convergence of multiple sequences, Appl. Math. Lett., 19(6)(2006), 527–534.
- [28] E. SAVAŞ AND M. GÜRDAL, *I*-statistical convergence in probabilistic normed space, *Sci. Bull. Series A Appl. Math. Physics*, 77(4)(2015), 195–204.

- [29] E. SAVAŞ AND M. GÜRDAL, Certain summability methods in intuitionistic fuzzy normed spaces, J. Intell. Fuzzy Syst., 27(4)(2014), 1621–1629.
- [30] E. SAVAŞ AND M. GÜRDAL, A generalized statistical convergence in intuitionistic fuzzy normed spaces, *Science Asia*, **41**(2015), 289–294.
- [31] P. SCHAEFER, Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36(1972), 104–110.
- [32] B.C. TRIPATHY AND B. HAZARIKA, *I*-monotonic and *I*-convergent sequences, *Kyungpook Math. J.*, **51**(2011), 233–239.
- [33] U. ULUSU AND F. NURAY, Lacunary *I*-invariant convergence, *Cumhuriyet Sci. J.*, **41**(3)(2020), 617–624.
- [34] T. YAYING AND B. HAZARIKA, On arithmetical summability and multiplier sequences, *Nat. Acad. Sci. Lett.*, **40**(1)(2017), 43–46.
- [35] T. YAYING AND B. HAZARIKA, On arithmetic continuity, Bol. Soc. Parana Mater., 35(1)(2017), 139–145.
- [36] T. YAYING, B. HAZARIKA AND H. ÇAKALLI, New results in quasi cone metric spaces, *J. Math. Comput. Sci.*, **16**(2016), 435–444.
- [37] T. YAYING AND B. HAZARIKA, On arithmetic continuity in metric spaces, Afr. Mat., 28(2017), 985-989.
- [38] T. YAYING AND B. HAZARIKA, Lacunary Arithmetic Statistical Convergence, *Nat. Acad. Sci. Lett.*, **43(6)**(2020), 547–551.

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

