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Abstract. This study aims to investigate the existence of mild solutions for a class of impulsive stochastic integrodifferential
equations with state-dependent delay in a real separable Hilbert space, as well as the controllability of these solutions. We
offer Sufficient conditions for the existence and controllability results using the fixed point techniques combined with the
theory of resolvent operator in Grimmer and analysis stochastic. Finally, we provide an example to illustrate the obtained
results.
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1. Introduction

Integrodifferential equations represent a wide range of natural phenomena, including biological models,
chemical kinetics, electronics, and fluid dynamics. The theory of the integrodifferential equations was
generalized to a stochastic functional integrodifferential equations by considering disturbances. As a result,
many mathematicians have studied the theory of integrodifferential equations with resolution operators in recent
decades (see [22, 23, 35, 39] and the references therein). The resolvent operator is analogous to the semigroup
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for differential equations in a Banach space. However, it will not be a semigroup since it does not satisfy the
semigroup properties. The existence, uniqueness, stability, controllability, and other quantitative and qualitative
aspects of stochastic integrodifferential equations have recently attracted much attention (see [6, 12–14, 37]). In
many cases, deterministic models will fluctuate due to random or seemingly random environmental noise. As a
result, we have to move from deterministic to stochastic situations

Delay differential equations are an essential branch of nonlinear analysis with numerous applications in
almost every field. Usually, the deviation of the arguments depends only on time (see [4, 15, 16]); however,
when the deviation of the arguments depends on both the state variable x and the time t, this form of the equation
is known as self-reference or state-dependent equations. Equations with state-dependent delays have piqued the
interest of specialists because they have numerous application models, such as the two-body problem of classical
electrodynamics, and they also have numerous applications within the class of problems with memories, such as
in hereditary phenomena, see [42, 43]. Several articles (see [1, 18, 30, 31]) investigated this equation.

Many phenomena and evolution processes in physics, chemical technology, population dynamics, and natural
sciences can change state abruptly or be perturbed quickly. We can see these disruptions as impulses in the
system. In addition to communications, mechanics (jump discontinuities in velocity), electrical engineering,
medicine, and biology, impulsive issues emerge in various other areas. The monographs by Benchohra et al.
[7], Graef et al. [20, 21], Laskshmikantham et al. [3], and Samoilenko and Perestyuk [40] provide a thorough
introduction to basic theory. On the other hand, Milman and Myshkis [34] studied differential equations with
impulses for the first time, followed by a period of active research culminating in the monograph by Halanay and
Wexler [24].

In the field of mathematical control theory, the idea of controllability plays an essential role. It makes it
possible to use a control that is admissible to guide the system from its initial state to its final state within a
specified amount of time. The concept of controllability is crucial to the study of finite-dimensional control
theory. Therefore, it is only natural to attempt to generalize it to an infinite number of dimensions. The
controllability of nonlinear systems with different types of nonlinearities has been studied using fixed point
concepts[5]. Several authors have investigated the controllability of semilinear and nonlinear systems, represented
by differential and integrodifferential equations in finite or infinite dimensional Banach spaces, respectively[9,
36, 44, 46].

Recently, Ma and Liu [32] studied the exact controllability and continuous dependence of fractional neutral
integrodifferential equations with state-dependent delay in Banach spaces. Slama and Boudaoui [41], authors
proved a new set of sufficient conditions for a class of fractional nonlinear stochastic differential inclusions
using fractional calculus, stochastic analysis theory, semigroup theory, and Bohnenblust-Karlin’s fixed point
theorem.To the best of our knowledge, the literature related to stochastic impulsive integrodifferential remains
limited.

Inspired by the works mentioned above, the main objective of this manuscript is to investigate the existence
and controllability results for the following model

dz(t) =
[
Az(t) +

∫ t

0

Γ(t− s)z(s)ds+ g

(
t, zt,

∫ t

0

h(t, s, zs)ds

)]
dt

+ξ(t, zσ(t,zt))dw(t), t ∈ J = [0, a], t ̸= ti,

∆z(ti) = Ii(zti), i = 1, . . . ,m

z0 = φ ∈ B,

(1.1)

where the state z(·) takes values in a real separable Hilbert space X, the operator A is an infinitesimal
generator of a C0-semigroup

(
T (t)

)
t≥0

on X, (Γ(t))t≥0 is a family of closed linear operators on X with domain
D(Γ(t)) ⊃ D(A), the history zt : (−∞, 0] −→ X, zt(α) = z(t + α), for t ≤ 0, belongs to the phase space
B, which will be described axiomatically later, the mappings g : J × B × X −→ X, h : J × J × B −→ X, ξ :

J×B −→ LQ (Y,X) , σ : J×B×(−∞, a] are appropriate functions that will be specified later, for i = 1, . . . ,m,

the functions Ii : B −→ X represent the impulses, let 0 = t0 < t1 < · · · < tm < tm+1 = a be prefixed points,
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and ∆z(ti) represents the jump of the function z at ti, which is defined by ∆z(ti) = z(t+i )−x(t−z ), where z(t+i )
and z(t−i ) denote the right and left limits of z(t) at t = ti, respectively. It should be emphasized that the existence
and controllability results for impulsive stochastic evolution integral differential equations with state dependent
delay in the form (1.1) have not yet been explored.

Here, we discuss the existence and controllability of the system(1.1) by using resolvent operator in the sense
of Grimmer and stochastic analysis tools combined with fixed point theory.

We will proceed as follows: Definitions and Lemma, which are necessary to derive the main results, are
outlined in Section 2. In Section 3, we prove the existence results using the Krasnoselskii-Schaefer fixed point
theorem’s implication. Section 4 is devoted to controllability. As a concluding point, an example is provided in
Section 5 to illustrate the theoretical outcomes.

2. Preliminaries

In this section, we briefly review some basic definitions and notations that will be used in the subsequent
sections.

2.1. Brownian motion

Let (X, ∥·∥ , ⟨·, ·⟩) and (Y, ∥∥Y , ⟨·, ·⟩Y) be two real separable Hilbert spaces, {ηk}∞k=1 denote a complete
orthonormal basis of Y and {w(t) : t ≥ 0} be a cylindrical Y−value Q−Wiener process in which Q is a finite
nuclear covariance operator. Denote Tr(Q) =

∑∞
k=1 γk, which satisfies Qηk = γkηk, (γk ≥ 0, k = 1, 2, . . .).

Set

w(t) =

∞∑
k=1

√
γkβk(t)ηk, t ≥ 0,

where {βk(t)}∞k=1 is a sequence of real-values independant one-dimensional standards Brownian motions over a
complete probability space (Ω,F ,P) .
It is assumed that Ft = σ{w(s) : 0 ≤ s ≤ t} is the σ− algebra generated by w and Ft = {Ft}t≥0. Let
ψ ∈ L (Y,X) and define

∥ψ∥2Q = Tr (ψQψ∗) =

∞∑
k=1

∥√γkψηk∥2,

where ψ∗ is the adjoint of the operator ψ, and L (Y,X) denotes the space of all bounded linear operators from
K into H endowed with the same norm ∥ · ∥. if ∥ψ∥2Q < ∞, the ψ is called a Q−Hilbert- Schmidt operator.
The completion LQ (Y,X) of L (Y,X) with respect to the topology induced by the norm ∥ · ∥Q, is a Hilbert
space with the above norm topology, where ∥ψ∥Q = ⟨ψ,ψ⟩ 1

2 . The collection of all strongly measurable, square-
integrable, X− valued random variables, denoted by L2 (Ω,X) , is a Banach space equipped with the norm

∥z∥L2 =
(
E∥z∥2

) 1
2 , where the expectation E is defined by Ez =

∫
Ω
z(w)dP.

Let C (J,L2 (Ω,X)) be the Banach space of all continuous maps from J into L2 (Ω,X) satisfying the condition
sup0≤t≤a E∥z(t)∥2 <∞. An important subspace L0

2 (Ω,X) of L2 (Ω,X) is given by

L0
2 (Ω,X) = {z ∈ L2 (Ω,X) : z isF0-measurable}.

For more details, we refer the reader to Da Patro and Zabczyk, LesZek Gawarecki and Vidyadhar Mandrekar
[19].

2.2. Integrodifferential equations in Banach spaces

Here we recall some knowledge on partial integrodifferential equations and the related resolvent operators. Let
H be the Banach space D(A) equipped with the graph norm defined by

∥θ∥H := ∥Aθ∥+ ∥θ∥ for θ ∈ H.
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We denote by C(R+,D), the space of all functions from R+ into D which are continuous. Let us consider the
following system:  θ′(t) = Aθ(t) +

∫ t

0

Γ(t− s)θ(s)ds for t ∈ [0, a],

θ(0) = θ0 ∈ D,
(2.1)

where A and Γ(t) are closed linear operators on a Banach space D.

Definition 2.1 ([22]). A resolvent operator for Eq. (2.1) is a bounded linear operator valued function R(t) ∈
L(D) for t ∈ [0, a], having the following properties :

(i) R(0) = I (the identity map of D) and ∥R(t)∥ ≤ Neβt for some constants N > 0 and β ∈ R.

(ii) For each θ ∈ D, R(t)θ is strongly continuous for t ∈ [0, a].

(iii) For θ ∈ H, R(·)θ ∈ C1(R+;D) ∩ C(R+;H) and

R′(t)θ = AR(t)θ +

∫ t

0

Γ(t− s)R(s)θds

= R(t)Aθ +

∫ t

0

R(t− s)Γ(s)θds, for t ∈ [0, a].

In what follows, we make the following assumptions.

(R1) The operator A is the infinitesimal generator of a strongly continuous semigroup (T(t))t≥0 on D.

(R2) (Γ(t))t≥0 is is a family of linear operators on D such that Γ(t) is continuous when regarded as a linear map
from H into D for almost all t ≥ 0. For any θ ∈ D, the map t 7→ Γ(t)θ is bounded, differentiable and the
derivative t 7→ Γ′(t)θ is bounded and uniformly continuous for t ≥ 0.

Theorem 2.2. [22] Assume that (R1)-(R2) hold. Then there exists a unique resolvent operator to the Cauchy
problem (2.1).

We have the following useful results.

Lemma 2.3. [11] Let the assumptions (R1) and (R2) be satisfied. Then, there exists a constant ∆ = ∆(a) such
that

∥R(t+ ϵ)−R(ϵ)R(t)∥L(D) ≤ ∆ϵ, ∀ 0 < ϵ ≤ t ≤ a.

Theorem 2.4 (Theorem 6, [17]). Let A be the infinitesimal generator of a C0-semigroup (T (t))t≥0 and let
(Γ(t))t≥0 satisfy (R2). Then the resolvent operator (R(t))t≥0 for Eq. (2.1) is compact for t > 0 if and only if
(T (t))t≥0 is compact for t > 0.

In the sequel, we recall some results on the existence of solutions for the following integro-differential
equation:  θ′(t) = Aθ(t) +

∫ t

0

Γ(t− s)θ(s)ds+ l(t) for t ∈ [0, a],

θ(0) = θ0 ∈ D.
(2.2)

where l is a continuou function.

Definition 2.5. [23] A continuous function θ : [0,+∞) → D is said to be a strict solution of Eq. (2.2) if

1. θ ∈ C1([0,+∞),D) ∩ C([0,+∞),H),

2. θ satisfies Eq. (2.2) for t ≥ 0.
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Theorem 2.6. [23] Assume that (R1) and (R2) hold. If θ is a strict solution of Eq. (2.2), then the following
variation of constant formula holds

θ(t) = R(t)θ0 +

∫ t

0

R(t− s)l(s)ds for t ≥ 0. (2.3)

Accordingly, we can establish the following definition.

Definition 2.7. [23] A function θ : [0,∞) −→ D is said a mild solution of Eq. (2.2) for θ0 ∈ D, if θ satisfies the
variation of constants formula (2.3).

In what follows, we say a function z : [b, c] −→ X is a normalized piecewise continuous function on [b, c]

if z is piecewise continuous and left continuous on (b, c]. We denote by PC([b, c],X) the space formed by the
normalized piecewise continuous, Ft-adapted measurable process from [b, c] into X. Particularly, we introduce
the space PC formed by all Ft-adapted measurable, X valued stochastic process {z(t) : t ∈ [0, a]} such that z is
continuous at t ̸= ti, z(t

−
i ) = z(ti) and z(t+i ) exists, for i = 1, 2, · · · ,m. Then (PC, ∥ · ∥PC) is a Banach space

with norm given by

∥z∥PC = sup
s∈J

(
E∥z(s)∥2

) 1
2 .

For z ∈ PC, we denote z̃i, i = 1, 2, . . . ,m, the function z̃i ∈ C
(
[ti, ti+1];L2 (Ω,X)

)
given by

z̃i(t) =

{
z(t), for t ∈ (ti, ti+1],

z(t+i ), if t = ti.

Moreover, for E ⊆ PC, we denote by Ẽi, i = 0, 1, 2, . . . ,m, the set Ẽi = {z̃i : z ∈ E}.

Lemma 2.8 ([26], [28]). .
A set E ⊆ PC, is relatively compact in PC, if and only if the set Ẽi is relatively compact inC ([ti, ti+1];L2(Ω,X))
for every i = 0, 1, . . . ,m.

In order to deal with the infinite delay, we will consider the phase space B which was described by Hale and
Kato in [25]. More precisely, B will be a seminormed linear space of F0−measurable functions defined from
(−∞, 0] into X, and satisfying the following axioms:
A: If z : (−∞, ρ + a] −→ X, a > 0 is such that zρ ∈ B and x|[ρ,ρ+a] ∈ PC ([ρ, ρ+ a],X) , then, for every
t ∈ [ρ, ρ+ a), : the following conditions hold:

(i) zt ∈ B,

(ii) E∥z(t)∥ ≤ H∥zt∥B,

(iii) ∥zt∥B ≤ K1(t− ρ) sup
ρ≤s≤t

E∥z(s)∥+K2(t− ρ)∥zρ∥B,

where H > 0 is a constant, K1(·),K2(·) : [0,+∞) −→ [1,+∞),K1(·) is continuous, K2(·) is locally
bounded, and H,K1(·),K2(·) are independent of z(·).

B: The space B is complete.
The following results will be required in computation.

Lemma 2.9. [45]. Let z : (−∞, a] −→ X be can an F0-adapted process z0 = φ(t) ∈ L0
2 (Ω,B) and z|J ∈

PC (J,X) , then
∥zs∥B ≤ K̃2∥φ∥B + K̃1 sup

0≤s≤a
E∥x(s)∥,

where K̃1 = sup
t∈J

K1(t) and K̃2 = sup
t∈J

K2(t).
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In order to handle the delay function σ, the next result is a very useful.

Lemma 2.10. [27] Let z : (−∞, a] −→ X be a function such that z0 = φ, and z|J ∈ PC. Then

∥zs∥B ≤ (K̃2 + Jφ
0 )∥φ∥B + K̃1 supE{∥z(θ)∥ : θ ∈ [0,max{0, s}]}, s ∈ Z(σ−) ∪ J,

where Jφ
0 = sup{Jφ(t) : t ∈ Z(σ−)}.

Now, we give two important fixed point theorems and Burkholder- Davis-Gundy’s inequality which are used
in the proof of the main results.

Lemma 2.11. [38]. Let Ψ be a condensing operator on a Banach space H , i.e., Ψ is continuous and takes
bounded sets into bounded sets, and ν(Ψ(C)) ≤ (C) for every bounded set C of H with ν(C) > 0, where ν(·)
denotes the Kuratowskii measure of noncompactness. If Ψ(F ) ⊂ F for a convex, closed and bounded set F of
H, then Ψ has a fixed point in H.

Lemma 2.12. [8] . Let Ψ1 and Ψ2 be two operators of a Banach space H such that

(a) Ψ1 is a contraction, and

(b) Ψ2 is completely continuous.

Then, either

(i) the operator equation Ψ1z +Ψ2z = z has a solution, or

(ii) the set M = {z ∈ H : αΨ1(
z
α ) + αΨ2(z) = z} is unbounded for α ∈ (0, 1).

Lemma 2.13. [10] For any p ≥ 1 and for arbitrary LQ(Y,X)-valued predictable process Ψ(·),

sup
s∈[0,t]

E
∥∥∥∫ s

0

Ψ(r)dw(r)
∥∥∥2p
X

≤ (p(2p− 1))p
(∫ t

0

(E∥Ψ(s)∥2pQ )
1
p

)p

. (2.4)

We now end this part by stating the definition of mild solution for Eq. (1.1).

Definition 2.14. An Ft−adapted stochastic process z : (−∞, a] −→ X is said to be a mild solution of Eq. (1.1) if
z0 = φ ∈ B, zσ(s, zs) ∈ B satisfying z0 ∈ L0

2(Ω,X), z|J ∈ PC. The function R(t− s)g(s, zs,
∫ s

0
h(s, τ, zτ )dτ)

is integrable for each s ∈ [0, a] and the following conditions hold:

(i) {zt : t ∈ J} is B−valued and the restriction of z(·) to the interval (ti, ti+1], i = 1, 2, . . . ,m is continuous
;

(ii) ∆z(ti) = Ii(zti), i = 1, 2, . . . ,m;

(iii) for each t ∈ J, z(t) satisfies the following integral equation

z(t) = R(t)φ(0) +

∫ t

0

R(t− s)g(s, zs,

∫ s

0

h(s, τ, zτ )dτ)ds

+

∫ t

0

R(t− s)ξ(s, zσ(s,zs))dw(s) +
∑

0<ti<t

R(t− ti)Ii(zti).
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3. Existence results

This section is devoted to the study of existence of mild solutions for Eq. (1.1). Throughout this work, we
assume that σ : J×B −→ (−∞, a] is continuous andM = supt∈J ∥R(t)∥. In the following, we firstly introduce
the subsequent hypotheses:

(A1) Let Z(σ−) = {σ(s, φ) ≤ 0, σ(s, φ) : (s, φ) ∈ J × B}. The function t −→ φt is well defined from
Z(σ−) into B and there exists a continuous and bounded function Jφ : Z(σ−) −→ (0,∞) such that
∥φt∥B ≤ Jφ(t)∥φ∥B for every t ∈ Z(σ−).

(A2) The resolvent operator
(
R(t)

)
t≥0

is compact for t > 0.

(A3) The function ξ : J × B −→ LQ(Y,X) satisfies the following properties:

(i) The function ξ(·, z) : J −→ LQ(Y,X) is strongly measurable for every z ∈ B,
(ii) The function ξ(t, ·) : B −→ LQ(Y,X) is continuous on Z(σ−) ∪ J,
(iii) There exist an integrable function l : J −→ [0,∞) and a non-decreasing function

µl ∈ C([0,∞); (0,∞)) such that, for every (t, z) ∈ J × B,

E∥ξ(t, z)∥2 ≤ l(t)µl(∥z∥2B), lim
δ−→∞

inf
µl(δ)

δ
= Θ <∞.

(A4) There exist constants d1 > 0 and d∗1 > 0 for all φ,ψ ∈ B, t, s ∈ J, such that

E
∥∥∥∥∫ t

0

[h(t, s, φ)− h(t, s, ψ)]ds

∥∥∥∥2 ≤ d1∥φ− ψ∥2

and d∗1 = a sup0≤s≤t≤a E∥h(t, s, 0)∥2.

(A5) The function g : J × B × X −→ X is continuous and there exist constants d2 > 0 and d∗2 > 0 for all
t ∈ J, φ1, φ2 ∈ B, z1, z2 ∈ X such that

E∥g(t, φ1, z1)− g(t, φ2, z2)∥2 ≤ d2
(
∥φ1 − φ2∥2B + E∥z1 − z2∥2X

)
and d∗2 = supt∈J E∥g(t, 0, 0)∥2.

(A6) The maps Ii, are completely continuous and there exist positive constant λi, i = 1, 2, . . . ,m, such that
E∥Ii(z)∥2 ≤ λi∥z∥2B for all z ∈ B.

Remark 3.1. Let φ ∈ B and t ≤ 0. The notation φt represents the function defined by φt(θ) = φ(t + θ).

Consequently, if the function z(·) in the Axiom A is such that z0 = φ, then zt = φt. We observe that φt is well
defined for t < 0, since the domain of φ is (−∞, 0].

Theorem 3.2. Assume that (R1)-(R2), (A1)− (A6) are satisfied and z0 ∈ L0
2(Ω,X), φ ∈ X. If

T0 = 1− 4

(
4M2a2d2K̃

2
1 + 8d2d1M

2a2K̃2
1 + 2M2mK̃2

1

m∑
i=1

λi

)
> 0, (3.1)

and
8K̃2

1M
2Tr(Q)

T0

∫ a

0

l(s)ds ≤
∫ ∞

T∗

ds

µl(s)
,

where

T ∗ = C +
8K̃2

1

T0

[
]M2Hd2∥φ∥2B + 2M2a2 (d2C + 2d2d1C + 2d2d

∗
1 + d∗2) +M2m

m∑
i=1

λiC

]
with C = 2(K̃2 + Jφ

0 )
2∥φ∥2B, then there exists a mild solution of Eq (1.1).
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Proof. Let F = {z ∈ PC : z(0) = φ(0)} be a space endowed with the uniform convergence topology. We define
the operator Ψ : F −→ F by

(Ψz)(t) =



0, t ∈ (−∞, 0]

R(t)φ(0) +

∫ t

0

R(t− s)g(s, z̃s,

∫ s

0

h(s, τ, z̃τ )dτ)ds

+

∫ t

0

R(t− s)ξ(s, zσ(s,z̃s))dw(s) +
∑

0<ti<t

R(t− ti)Ii(z̃ti), t ∈ J,

where z̃ : (−∞, a] −→ X is such that z̃0 = φ and z̃ = z on J. In view of hypotheses (A2),(A4) and (A5), we
have the following inequality

E
∥∥∥∥∫ t

0

R(t− s)g(s, z̃s,

∫ s

0

h(s, τ, z̃τ )dτ)ds

∥∥∥∥2
≤ 2M2a

∫ t

0

(
d2[∥z̃s∥2B + 2d1∥z̃s∥2B + 2d∗1] + d∗2

)
ds.

Then from the Bochner theorem [33], it follows that R(t − s)g(s, z̃s,
∫ s

0
h(s, τ, z̃τ )dτ) is integrable on [0, t),

which allows us to conclude that Ψ is a well-defined operator from F into F. We prove that Ψ has a fixed point,
which is a mild solution of the Eq.(1.1). Now, we decompose Ψ as Ψ1 +Ψ2, where

(Ψ1z)(t) = R(t)φ(0) +

∫ t

0

R(t− s)g(s, z̃s,

∫ s

0

h(s, τ, z̃τ )dτ)ds

(Ψ2z)(t) =

∫ t

0

R(t− s)ξ(s, zσ(s,z̃s))dw(s) +
∑

0<ti<t

R(t− ti)Ii(z̃ti), t ∈ J.

Firstly, we show that Ψ1 is a contraction. Next, we prove that Ψ2 is a completely continuous. In order to apply
Lemma 2.12 we give the proof in several steps.

Step 1: We will show the set S = {z ∈ F : ϵΨ1(
z
ϵ )+ϵΨ2(z) = z} is bounded on J for some ϵ ∈ (0, 1). Consider

the following nonlinear operator equation

z(t) = ϵΨz(t), 0 < ϵ < 1, (3.2)

where the operator Ψ has already been defined. Next we give a priori estimate for the solutions of the above
equation. Let z ∈ F be a possible solution of z(t) = ϵΨz(t) for some 0 < ϵ < 1, we have

z(t) = ϵR(t)φ(0) + ϵ

∫ t

0

R(t− s)g(s, z̃s,

∫ s

0

h(s, τ, z̃τ )dτ)ds

+ ϵ

∫ t

0

R(t− s)ξ(s, zσ(s,z̃s))dw(s) + ϵ
∑

0<ti<t

R(t− ti)Ii(z̃ti), t ∈ J. (3.3)

50



Existence and controllability of impulsive stochastic integro-differential equations with state-dependent delay

Using (3.3), hypotheses (A2)− (A6), Hölder and Burkholder-Davis-Gundy’s inequalities, we have

E∥z(t)∥2 (3.4)

≤ 4E∥ϵR(t)φ(0∥2 + 4E∥ϵ
∫ t

0

R(t− s)g(s, z̃s,

∫ s

0

h(s, τ, z̃τ )dτ)ds∥2

+ 4∥ϵ
∫ t

0

R(t− s)ξ(s, zσ(s,z̃s))dw(s)∥
2 + 4∥ϵ

∑
0<ti<t

R(t− ti)Ii(z̃ti)∥2

≤ 4M2H2∥φ∥2B + 8M2a

∫ t

0

{
d2

(
2(K̃2 + Jφ

0 )
2∥φ∥2B + 2K̃2

1 sup
0≤t≤a

E∥z(t)∥2

+ 2d1

[
2(K̃2 + Jφ

0 )
2∥φ∥2B + 2K̃2

1 sup
0≤t≤a

E∥z(t)∥2
]
+ 2d∗1

)
+ d∗2

}
ds

+ 4M2Tr(Q)

∫ t

0

l(s)µl

[
2(K̃2 + Jφ

0 )
2∥φ∥2B + 2K̃2

1 sup
0≤τ≤a

E∥z(τ)∥2
]
ds

+ 4M2m

m∑
i=1

λi

[
2(K̃2 + Jφ

0 )
2∥φ∥2B + 2K̃2

1 sup
0≤t≤a

E∥z(t)∥2
]

≤ 4M2H2∥φ∥2B + 8M2a2

[
d2

(
2(K̃2 + Jφ

0 )
2∥φ∥2B + 2K̃2

1 sup
0≤t≤a

E∥z(t)∥2

+ 2d1

[
2(K̃2 + Jφ

0 )
2∥φ∥2B + 2K̃2

1 sup
0≤t≤a

E∥z(t)∥2
]
+ 2d∗1

)
+ d∗2

]

+ 4M2Tr(Q)

∫ t

0

l(s)µl

[
2(K̃2 + Jφ

0 )
2∥φ∥2B + 2K̃2

1 sup
0≤s≤a

E∥z(s)∥2
]
ds

+ 4M2m

m∑
i=1

λi

[
2(K̃2 + Jφ

0 )
2∥φ∥2B + 2K̃2

1 sup
0≤t≤a

E∥z(t)∥2
]
. (3.5)

Let ϑ(s) = sup0≤s≤a E∥z(s)∥2 and C = 2(K̃2 + Jφ
0 )

2∥φ∥2B. From (3.4), we have

ϑ(t)

≤ 4

{
M2H2∥φ∥2B + 2M2a2

{
d2

[
C + 2K̃2

1ϑ(t) + 2d1

[
C + 2K̃2

1ϑ(t)
]
+ 2d∗1

]
+ d∗2

}

+M2Tr(Q)

∫ t

0

l(s)µl

[
C + 2K̃2

1ϑ(s)
]
ds+M2m

m∑
i=1

λi

[
C + 2K̃2

1ϑ(t)
]}

≤ 4

{
M2H2∥φ∥2B + 2M2a2 [d2C + 2d2d1C + 2d2d

∗
1 + d∗2]

+M2Tr(Q)

∫ t

0

l(s)µl

[
C + 2K̃2

1ϑ(s)
]
ds+M2m

m∑
i=1

λiC

+ ϑ(t)

[
4M2a2d2K̃

2
1 + 8d2d1M

2a2K̃2
1 + 2M2mK̃2

1

m∑
i=1

λi

]}
.
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It follows that

ϑ(t) ≤ 4

T0

{
M2H2∥φ∥2B + 2M2a2 [d2C + 2d2d1C + 2d2d

∗
1 + d∗2]

+M2Tr(Q)

∫ t

0

l(s)µl

[
C + 2K̃2

1ϑ(s)
]
ds+M2m

m∑
i=1

λiC

}
.

Let ω(t) = C + 2K̃2
1ϑ(t). Since σ(s; z̃s) ≤ s for every s ∈ [0, a], we have

ω(t) ≤ T ∗ +
8K̃2

1M
2Tr(Q)

T0

∫ t

0

l(s)µl(ω(s))ds.

Denoting by ν(t) the right-hand side of the last inequality, we find that

ν
′
(t) ≤ 8K̃2

1M
2Tr(Q)

T0
l(t)µl(ν(t))

and ∫ ν(t)

T∗

ds

µl(s)
≤ 8K̃2

1M
2Tr(Q)

T0

∫ a

0

l(s)ds ≤
∫ ∞

T∗

ds

µl(s)
.

Consequently, we see that ν(t) is bounded, which proves that z is bounded in F for any z ∈ S. Hence S is
bounded on J for ϵ ∈ (0, 1).

Step 2: Ψ1 is a contraction operator on F.
Let t ∈ J and z, y ∈ F. Then, by assumptions (A2),(A4) and (A5) and Lemma 2.10 , we have

E∥(Ψ1z)(t)− (Ψ1y)∥2

≤ E
∥∥∥∥∫ t

0

R(t− s)
[
g

(
s, z̃s,

∫ s

0

h(s, τ, z̃τ )dτ

)
− g

(
s, ỹs,

∫ s

0

h(s, τ, ỹτ )dτ

)]
ds

∥∥∥∥2
≤M2a

∫ t

0

E
∥∥∥∥g(s, z̃s,∫ s

0

h(s, τ, z̃τ )dτ

)
− g

(
s, ỹs,

∫ s

0

h(s, τ, ỹτ )dτ

)∥∥∥∥2 ds
≤M2a2(d2 + d1d2)∥z̃s − ỹs∥2B
≤M2a2(d2 + d1d2)K̃

2
1 sup
0≤s≤a

∥z̃(s)− ỹ(s)∥2

≤M2a2(d2 + d1d2)K̃
2
1∥z̃ − ỹ∥PC

= L0∥x− y∥2PC ,

where L0 =M2a2(d2 + d1d2)K̃
2
1 . By (3.1), we see that L0 < 1. As a consequence Ψ1 is a contraction operator

on F.
Step 3: Ψ2 is a completely continuous operator on F. We will do it into several steps.

(a) Ψ2 : F −→ F is continuous.
Let {zn}∞n=0 ⊆ F, with zn −→ z in F. Then, there is a number q > 0 such that E∥zn∥2 ≤ q for all n and
a.e. t ∈ J, so zn ∈ Bq(0,F) = {z ∈ F : E∥z∥2 ≤ q} and z ∈ Bq(0,F). From Axiom A, it is not hard to
see that (z̃n)s −→ z̃s uniformly for s ∈ (−∞, a] as n −→ ∞. By hypotheses (A1) and (A3), we obtain

ξ(s, z̃nσ(s,(z̃n)s)
) −→ ξ(s, z̃σ(s,z̃s)) as n −→ ∞

for each s ∈ [0, t], and
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E
∥∥∥ξ(s, z̃nσ(s,(z̃n)s)

)− ξ(s, z̃σ(s,z̃s))
∥∥∥2 ≤ 2l(t)µl[2(K̃2 + Jφ

0 )
2∥φ∥2B + 2K̃2

1q].

Then, by the dominated convergence theorem and the continuity of Ii, i = 1, 2, . . . ,m, we get

∥Ψ2z
n −Ψ2z∥2PC

≤ 2E
∥∥∥∥∫ t

0

R(t− s)
[
ξ(s, z̃nσ(s,(z̃n)s)

)− ξ(s, z̃σ(s,z̃s))
]
dw(s)

∥∥∥∥2
+ 2E

∥∥∥∥∥ ∑
0<ti<t

R(t− ti)[Ii(z̃
n
ti)− Ii(z̃ti)]

∥∥∥∥∥
2

≤ 2M2Tr(Q)

∫ t

0

E
∥∥∥ξ(s, z̃nσ(s,(z̃n)s)

)− ξ(s, z̃σ(s,z̃s))
∥∥∥2

+ 2M2m

m∑
i=1

E
∥∥Ii(z̃nti)− Ii(z̃ti)

∥∥2 → 0 as n→ ∞.

Consequently, we get

lim
n→∞

∥Ψ2z
n −Ψ2z∥2PC = 0,

and this proves that Ψ2 is continuous.

(b) Ψ2 maps bounded sets into bounded sets in F.
For each q > 0, let Bq(0,F) = {z ∈ F : E∥z∥2 ≤ q}. Then, Bq(0,F) is a bounded closed convex subset
of F. In fact, it suffices to show that there is a positive constant N0 such that E∥Ψ2x∥2 ≤ N0 for each
z ∈ Bq(0,F).
We set q∗ = 2(K̃2 + Jφ

0 )
2∥φ∥2B + 2K̃2

1q. From Lemma 2.10, (A3) and (A6), we have

E∥(Ψ2z)(t)∥2

≤ 2E
∥∥∥∥∫ t

0

R(t− s)ξ(s, z̃σ(s,z̃s))dw(s)

∥∥∥∥2 + 2E

∥∥∥∥∥ ∑
0<ti<t

R(t− ti)Ii(z̃ti)

∥∥∥∥∥
2

≤ 2M2Tr(Q)

∫ a

0

E∥ξ(s, z̃σ(s,z̃s))∥ds+ 2M2m

m∑
i=0

E∥Ii(z̃ti)∥2

≤ 2M2Tr(Q)

∫ a

0

l(s)µl(q
∗)ds+ 2M2m

m∑
i=1

λiq
∗

≤ N0,

which gives that, for each z ∈ Bq(0,F), E∥Ψ2z∥2 ≤ N0.

Now it remains to show that Ψ2(Bq(0,F)) is equicontinuous and Ψ2(Bq(0,F))(t) is precompact in F. For
this purpose, we decompose Ψ2 as Υ1 + Υ2, where Υ1 and Υ2 are the operators on Bq(0,F) defined,
respectively, by

(Υ1z)(t) =

∫ t

0

R(t− s)ξ(s, z̃σ(s,z̃s))dw(s)

and

(Υ2z)(t) =
∑

0<ti<t

R(t− ti)Ii(z̃ti).
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(c) First, we show that Υ1(Bq(0,F)) is equicontinuous and Υ1(Bq(0,F))(t) is relatively compact in F.
Let 0 < t1 < t2 ≤ a, for each z ∈ Bq(0,F). Using (A2) and (A3), we obtain

E∥(Υ1z)(t2)− (Υ1z)(t1)∥2

= E
∥∥∥∥∫ t2

0

R(t2 − s)ξ(s, z̃σ(s,z̃s))dw(s)−
∫ t1

0

R(t1 − s)ξ(s, z̃σ(s,z̃s))dw(s)

∥∥∥∥2
≤ 2E

∥∥∥∥∫ t1

0

[
R(t2 − s)−R(t1 − s)

]
ξ(s, z̃σ(s,z̃s))dw(s)

∥∥∥∥2
+ 2E

∥∥∥∥∫ t2

t1

R(t2 − s)ξ(s, z̃σ(s,z̃s))dw(s)

∥∥∥∥2
≤ 2Tr(Q)

∫ t1

0

l(s)µl(q
∗)∥R(t2 − s)−R(t1 − s)∥2ds

+ 2Tr(Q)

∫ t2

t1

l(s)µl(q
∗)∥R(t2 − s)∥2ds

≤ 2Tr(Q)µl(q
∗)

∫ a

0

l(s)∥R(t2 − s)−R(t1 − s)∥2ds

+ 2Tr(Q)M2µl(q
∗)

∫ t2

t1

l(s)ds.

Since R(t) is continuous in the uniform operator topology, it follows that the right-hand side of the above
inequality tends to zero and hence E∥(Υ1z)(t2) − (Υ1z)(t1)∥2 converges to zero independent of z ∈
Bq(0,F ) as t2 − t1 −→ 0. Thus the set {Υ1z : z ∈ Bq(0,F)} is equicontinuous. The equicontinuity for
the other cases t1 < t2 < 0 or t1 ≤ 0 ≤ t2 ≤ a are very simple.

Next, we show the precompactness of Υ1(Bq(0,F))(t) in F. By the virtue of the compactness of the
resolvent operator R(t) for t > 0 and the continuity of ξ, we see that the set

{R(t− s)ξ(s, θ) : s ∈ [0, a], ∥θ∥2B ≤ q∗}

is relatively compact in X. Then, applying the mean value theorem for the Bochner integral, we get

(Υ1z)(t) ∈ tconv({R(t− s)ξ(s, θ) : s ∈ [0, a], ∥θ∥2B ≤ q∗}),

which implies that {(Υ1z)(t) : z ∈ Bq(0,F)} is relatively compact in F.

(d) Υ2 is completely continuous.

We prove that Υ2 is completely continuous. We can conclude that Υ2 is continuous based on the proof in
Step 3 (a). From the definition of Υ2, for q > 0, t ∈ [ti, ti+1], i = 1, 2, . . . ,m, and z ∈ Bq(0,F), we find
that

Υ2z(t) ∈


∑i

j=1R(t− tj)Ij(Bq∗(0,X)), t ∈ (ti, ti+1),∑i
j=1R(ti+1 − tj)Ij(Bq∗(0,X)) if t = ti+1,∑i−1
j=1R(ti − tj)Ij(Bq∗(0,X)) + Ii(Bq∗(0,X)) if t = ti,

where q∗ = 2(K̃2+J
φ
0 )

2∥φ∥2B+2K̃2
1q,which proves that [Υ2(Bq)]i(t) is relatively compact in F, for every

t ∈ [ti, ti+1], since the maps Ii are completely continuous for all i = 1, 2, . . . ,m. Moreover, using the
compactness of the operators Ii and the assumption (A2), we can prove that [Υ2(Bq)]i is equicontinuous
at t, for every t ∈ [ti, ti+1]. According to Lemma 2.8, we know that Υ2 is completely continuous. As a
result Ψ2 is completely continuous. Hence, by Krasnoselskii-Schaefer fixed point theorem, we realize that
Ψ has a fixed point on F, which is a mild solution of Eq. (1.1). This completes the proof.
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■

Instead of the assumption (A6) discussed in Theorem 3.2, assume that the maps Ii satisfy some Lipschitz
conditions. In this instance, we can also prove the existence of mild solutions. In addition, let us introduce the
following condition:

(A7) The maps Ii are completely continuous and there are positive constants bi, ci such that

E∥Ii(z)− Ii(y)∥2 ≤ bi∥z − y∥2B,

and ci = supt∈J E∥Ii(0)∥2, for z, y ∈ B, i = 1, 2, . . . ,m.

Theorem 3.3. Assume that (R1)-(R2),(A1)-(A5) and (A7) hold and z0 ∈ L0
2(Ω,X). Then there exists a mild

solution of Eq. (1.1) provided that

8M2K̃2
1

(
2a2d2 + 4a2d2d1 + 2m

m∑
i=1

bi + Tr(Q)Θ

∫ a

0

l(s)ds

)
< 1. (3.6)

Proof. Let Ψ be the map defined as in the proof of Theorem 3.2. For better readability, we split the proof into
two steps.

Step 1: Ψ(Bq(0,F)) ⊆ Bq(0,F) for some r > 0.

We affirm that there exist a positive constant r > 0 such that Ψ(Bq(0,F)) ⊆ Bq(0,F). We proceed by
contradiction. Suppose that it is not true. Then for each r > 0, there exists a function zq(tq) ∈ Bq(0,F) such
that Ψ(zq) /∈ Bq(0,F), i.e., q < E∥(Ψzq)(tq)∥2 for some tq ∈ J. Thus, from the assumptions we have

q < E∥(Ψzq)(tq)∥2

≤ 4E∥R(tq)φ(0)∥2 + 4E

∥∥∥∥∥
∫ tq

0

R(tq − s)g(s, z̃qs ,

∫ tq

0

h(s, τ, z̃qτ )dτ)ds

∥∥∥∥∥
2

+ 4E

∥∥∥∥∥
∫ tq

0

R(tq − s)ξ(s, z̃q
σ(s,z̃q

s)
)dw(s)

∥∥∥∥∥
2

+ 4E

∥∥∥∥∥ ∑
0<ti<t

R(tq − s)Ii(z̃
q
ti)

∥∥∥∥∥
2

≤ 4M2H2∥φ∥2 + 8M2a

∫ tq

0

{
d2
[
∥z̃qs∥2B + 2d1(∥z̃qs∥2B) + 2d∗1

]
+ d∗2

}
+ 4M2Tr(Q)

∫ tq

0

E∥ξ(s, z̃q
σ(s,z̃q

s)
)∥2ds+ 4M2m

m∑
i=1

E∥Ii(z̃qti)∥
2

≤ 4M2H2∥φ∥2 + 8M2a2
{
d2
[
(C + 2K̃2

1q) + 2d1(C + 2K̃2
1q) + 2d∗1

]
+ d∗2

}
+ 4M2Tr(Q)

∫ a

0

l(s)µl(C + 2K̃2
1q)ds+ 4M2m

m∑
i=1

{
2bi(C + 2K̃2

1q) + 2ci
}

where C = 2(K̃2 + Jφ
0 )

2∥φ∥2. Dividing both sides by q and taking the limit as q → ∞, we obtain

1 ≤ 8M2K̃2
1

(
2a2d2 + 4a2d2d1 + 2m

m∑
i=1

bi + Tr(Q)Θ

∫ a

0

l(s)ds

)
which contradicts (3.6). Hence, for some positive number q, we have Ψ(Bq(0,F)) ⊆ Bq(0,F).
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Step 2: Ψ is a condensing map. Let Ψ = Ψ1 +Ψ2, where

(Ψ1x)(t) = R(t)φ(0) +

∫ t

0

R(t− s)g(s, z̃s,

∫ s

0

h(s, τ, z̃τ )dτ)ds+
∑

0<ti<t

R(t− ti)Ii(z̃ti)

(Ψ2z)(t) =

∫ t

0

R(t− s)ξ(s, z̃σ(s,z̃s))dw(s), t ∈ J.

From the proof of Theorem 3.2, Ψ2 is completely continuous on Bq(0,F). Next, we have to show that Ψ1 is a
contraction map. Let z, y ∈ Bq(0,F). Then, using hypotheses (A2), (A4), (A5) and (A7) we get

E∥(Ψ1z)(t)− (Ψ1y)(t)∥2

≤ E
∥∥∥∥∫ t

0

R(t− s)
[
g(s, z̃s,

∫ s

0

h(s, τ, z̃τ )dτ)− g(s, ỹs,

∫ s

0

h(s, τ, ỹτ )dτ)
]
ds

+
∑

0<ti<t

R(t− ti)
[
Ii(z̃ti)− Ii(ỹti)

]∥∥∥∥2
≤ 2M2a2 (d2 + d1d2) K̃

2
1 sup
0≤s≤a

E∥z̃(s)− ỹ(s)∥2

+ 2M2m

m∑
i=1

biK̃
2
1 sup
0≤s≤a

E∥z̃(s)− ỹ(s)∥2.

It follows that

∥Ψ1z −Ψ1y∥2PC ≤ 2K̃2
1

[
M2a2(d2 + d1d2) +mM2

m∑
i=1

bi

]
∥z − y∥PC

= κ∥z − y∥PC ,

where κ = 2K̃2
1

[
M2a2(d2 + d1d2) +mM2

m∑
i=1

bi

]
. By (3.6), we deduce that κ < 1, which yields that Ψ1 is a

contraction map. Considering Sadovskii’s fixed point theorem, we conclude that there exists a fixed point for Ψ
on Bq(0,F), which is a mild solution for Eq. (1.1). ■

4. Controllability results

In this section, we examine the controllability of the following impulsive stochastic integro-differential
equation with state-dependent delay:

dz(t) =
[
Az(t) +

∫ t

0

Γ(t− s)z(s)ds+Bϑ(t) + g

(
t, zt,

∫ t

0

h(t, s, zs)ds

)]
dt

+ξ(t, zσ(t,zt))dw(t), t ∈ J = [0, a], t ̸= ti,

∆z(ti) = Ii(zti), i = 1, . . . ,m,

z0 = φ ∈ B,

(4.1)

where g, h,A, ξ, Ii, are the same as in the Eq. (1.1). The control function ϑ(·) takes its values in L2(J,U) of
admissible control functions for a separable Hilbert space U , and B is a bounded linear operator from U into X.
First, we give the definitions of mild solution and controllability for the system (4.1).

Definition 4.1. A Ft−adapted stochastic process z : (−∞, a] −→ X is called a mild solution of the system (4.1)
if z0 = φ ∈ B, zσ(s,zs) ∈ B satisfying z0 ∈ L0

2(Ω,X), z|J ∈ PC. The function R(t− s)g(s, zs,
∫ s

0
h(s, τ, zτ )dτ)

is integrable for each s ∈ [0, a] and the following conditions hold:
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(i) {zt : t ∈ J} is B−valued and the restriction of z(·) to the interval (ti, ti+1], i = 1, 2, . . . ,m is continuous
;

(ii) ∆z(ti) = Ii(zti), i = 1, 2, . . . ,m;

(iii) for each t ∈ J, z(t) satisfies the following integral equation

z(t) = R(t)φ(0) +

∫ t

0

R(t− s)g(s, zs,

∫ s

0

h(s, τ, zτ )dτ)ds+

∫ t

0

R(t− s)Bϑ(s)ds

+

∫ t

0

R(t− s)ξ(s, zσ(s,zs))dw(s) +
∑

0<ti<t

R(t− ti)Ii(zti).

Definition 4.2. The system (4.1) is said to be controllable on the interval J, if for every initial function z0 =

φ ∈ B, there exists a stochastic control ϑ ∈ L2(J,U) that is adapted to the filtration {F}t≥0 such that the mild
solution of the system (4.1) satisfies z(a) = z1.

We aim to transfer system (4.1) from z(0) to z(a) = z1. To achieve that purpose, we must assume:

(A8) The linear operator W : L2(J,U) −→ X, defined by

Wϑ =

∫ a

0

R(t− s)Bϑ(s)ds,

has a bounded invertible operator W−1 which takes values in L2(J,U)/ kerW and there exist positive
constants M1,M2 such that ∥B∥2 ≤M1 and ∥W−1∥2 ≤M2.

(A9) The function ξ : J × B −→ LQ(Y,X) is continuous and there exists constant
Mξ > 0, M̃ξ > 0 for z, y ∈ B such that

E∥ξ(t, z)− ξ(t, y)∥2 ≤Mξ∥z − y∥2B
and M̃ξ = supt∈J E∥ξ(t, 0)∥2.

Theorem 4.3. Assume that (R1) − (R2), (A4) − (A5) and (A7) − (A9) hold and z0 ∈ L0
2(Ω,X). Then the

system (4.1) is controllable provided that

5GK̃2
1

(
1 + 5M2M1M2a

2
)
≤ 1 (4.2)

where G = 4M2a2d2 + 8d1d2M
2a2 + 4M2aTr(Q)Mξ + 4M2m

m∑
i=1

bi and M = sup
0≤t≤a

∥R(t)∥.

Proof. Define the control process with terminal state z1 = z(a).

ϑaz(t) = W−1

{
z1 −R(a)φ(0)−

∫ a

0

R(a− s)g(s, z̃s,

∫ s

0

h(s, τ, z̃τ )dτ)ds

−
∫ a

0

R(a− s)ξ(s, z̃σ(s,z̃s))dw(s)−
m∑
i=1

R(a− ti)Ii(z̃ti)

}
(t).

Using this control, we define the operator Ξ : F −→ F by

(Ξz)(t) = R(t)φ(0) +

∫ t

0

R(t− s)g(s, z̃s,

∫ s

0

h(s, τ, z̃τ )dτ)ds

+

∫ t

0

R(t− s)Bϑaz(s)ds+

∫ t

0

R(t− s)ξ(s, z̃σ(s,z̃s))dw(s)

+
∑

0<ti<t

R(t− ti)Ii(z̃ti).
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where z̃ : (−∞, a] −→ X is such that z̃0 = φ and z̃ = z on J. From the assumptions, we know that the map Ξ
is well defined and continuous.

Now, we prove that the operator Ξ has a fixed point in F, which is a mild system solution (4.1). Observe that
(Ξz)(a) = z1. This means that the control ϑaz steers the system from φ to z1 in finite time a, implying that the
system (4.1) is controllable.

Let q∗ = 2(K̃2 + Jφ
0 )

2∥φ∥2B +2K̃2
1q for each q > 0. For any z ∈ Bq(0,F) and q > 0, from the assumptions

(A4)− (A5) and (A7)− (A9), we have

E∥ϑaz(t)∥2

≤ 5E∥W−1∥
{
E∥z1∥2 + E∥R(t)φ(0)∥2

+ E
∥∥∫ a

0

R(a− s)g(s, z̃s,

∫ s

0

h(s, τ, z̃τ )dτ)ds
∥∥2

+
∥∥∫ a

0

R(a− s)ξ(s, z̃σ(s,z̃s))dw(s)
∥∥2 + E

∥∥ ∑
0<ti<t

R(a− ti)Ii(z̃ti)
∥∥2}

≤ 5M2

{
E∥z1∥2 +M2H2∥φ∥2B + 2M2a2 (d2q

∗ + 2d1d2q
∗ + 2d∗1d2 + d∗2)

+M2aTr(Q)
(
2Mξq

∗ + 2M̃ξ

)
+M2m

m∑
i=1

(2biq
∗ + 2ci)

}
= Ω.

Furthermore, for any z, y ∈ Bq(0,F), we obtain

E∥ϑaz(t)− ϑay(t)∥2

≤ 3K̃2
1M2

{
M2a2(d2 + d1d2) +M2aTr(Q)Mξ +M2m

m∑
i=1

bi

}
∥z − y∥2PC .

For the sake of convenience, we break the proof into two steps.

Step 1: We show that Ξ maps Bq(0,F) into itself.
It is enough to show that there exists a positive constant q > 0 such that Ξ(Bq(0,F)) ⊆ Bq(0,F). Suppose that
this assertion is false. Then for each > 0, there exists a function zq(tq) ∈ Bq(0,F), such that Ξ(zq) /∈ Bq(0,F),
that is q < E∥(Ξzq)(tq)∥2 for some tq ∈ J. Thus, using hypotheses (A4)− (A5) and (A7)− (A9) , we obtain

q < E∥(Ξzq)(tq)∥2

≤ 5M2H2∥φ∥2B + 10M2a2 (d2q
∗ + 2d1d2q

∗ + 2d∗1d2 + d∗2)

+ 5M2a2M1Ω+ 10M2aTr(Q)
(
Mξq

∗ +M∗
ξ

)
+ 10M2m

m∑
i=1

(biq
∗ + ci) .

Dividing both sides by q and taking the limit as q → ∞, we get

1 < 5GK̃2
1

(
1 + 5M2M1a

2M2

)
,

where G = 4M2a2d2 + 8M2a2d2d1 + 4M2aTr(Q)Mξ + 4M2m

m∑
i=1

bi, which is contrary to (4.2). Hence, for

some positive number q, we have Ξ(Bq(0,F)) ⊆ Bq(0,F).
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Step 2: We prove that Ξ is a contraction operator. Let z, y ∈ Bq(0,F), we obtain

E∥(Ξz)(t)− (Ξy)(t)∥2

≤ 4M2a2 (d2 + d1d2) ∥z − y∥2B + 4M2aTr(Q)Mξ∥z − y∥2B

+ 4M2m

m∑
i=1

bi∥z − y∥2B

+ 12M2M1M2a
2
{
M2a2(d2 + d1d2) +M2aTr(Q)Mξ

+M2m

m∑
i=1

bi
}
∥z − y∥2B

≤ 4M2a2K̃2
1 (d2 + d1d2) ∥z − y∥2PC + 4M2aTr(Q)K̃2

1Mξ∥z − y∥2PC

+ 4M2mK̃2
1

m∑
i=1

bi∥z − y∥2PC

+ 12M2M1M2a
2K̃2

1

{
M2a2(d2 + d1d2) +M2aTr(Q)Mξ

+M2m

m∑
i=1

bi
}
∥z − y∥2PC

= 4G′K̃2
1

(
1 + 3M1M

2a2M2

)
∥z − y∥2PC

where G
′

= M2a2(d2 + d1d2) + M2aTr(Q)Mξ + M2m
∑m

i=1 bi. Thanks to (4.2), we see that
4G

′
K̃2

1

(
1 + 3M1M

2a2M2

)
< 1. Therefore Ξ is a contraction operator, and according to Banach’s fixed point

theorem it has a unique fixed point in F, which is a mild solution Eq. (4.1). Thus, Eq. (4.1) is controllable. This
completes the proof. ■

5. An example

To illustrate our obtained results, we consider the following impulsive stochastic integrodifferential equation
with state-dependent delay of the form

∂

∂t
y(t, x) =

∂2

∂x2
y(t, x) + f

(
t, y(t− τ, x),

∫ t

0

k(t, s, y(s− τ, x))ds

)
+

∫ t

0

u(t− s)
∂2

∂x2
y(s, x)ds

+

∫ t

−∞
v(t, x, s− t)N [y(s− σ1(t)σ2(∥y(t, x)∥), x)] dw(s),

0 ≤ x ≤ π, τ > 0, t ∈ J = [0, a],

y(t, 0) = y(t, π) = 0, t ∈ J,

y(θ, x) = φ(θ, x), θ ∈ (−∞, 0], 0 ≤ x ≤ π,

∆y(ti)(x) =

∫ ti

−∞
αi(ti − s)y(s, x)ds, i = 1, 2, . . . ,m, 0 ≤ x ≤ π,

(5.1)

where 0 < t1 < · · · < tm < a are prefixed numbers and u : [0,∞) −→ [0,∞) is bounded and C1-function such
that u

′
is bounded and uniformly continuous,

σ1 : [0,∞) −→ [0,∞), σ2 : [0,∞) −→ [0,∞) are continuous functions; a > 0; f, k, v,N ,

Ii, (i = 1, 2, . . . ,m), and φ are appropriate functions, which will be specified later.
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To study this system, we consider the space X = Y = L2([0, a],R) and define the operator A : D(A) ⊂
X −→ X as D(A) = H2([0, π]) ∩H1

0 ([0, π])

Aκ =
∂2

∂x2
κ.

Then, Aκ = −
∑∞

n=1 n
2⟨κ, sn⟩sn, κ ∈ D(A), where sn(x) =

√
2

π
sinnx, n = 1, 2, . . . is the orthogonal basis

of eigenvectors of A.
It is known that A is the infinitesimal generator of an analytic semigroup

(
T (t)

)
t≥0

on X, which is given by

T (t)z =

∞∑
n=1

e−n2t⟨z, sn⟩sn for all z ∈ X and every t ≥ 0.

Therefore (R1) holds. In addition, the semigroup
(
T (t)

)
t≥0

genered by A is compact for t > 0. Then
by Theorem 2.4, the corresponding resolvent operator is also compact. Hence, (A2) holds. Let φ(t)(x) =

φ(θ, x), (θ, x) ∈ (−∞, 0] × [0, π], y(t)(x) = y(t, x). Assume that q : (−∞, 0] −→ (0,∞) is a Lebesgue
integrable function with l =

∫ 0

−∞ q̃(t)dt <∞. For any a > 0, define

B =
{
ζ : (−∞, 0] −→ X| (E∥ζ(θ)∥2) 1

2 is a bounded and measurable function on [−b, 0]

and
∫ 0

−∞
q(s)(E∥ζ(s)∥2) 1

2 ds <∞
}
.

Now, we take q(t) = e2t, t < 0, then we get p =
∫ 0

−∞ q(t)dt = 1
2 and

∥ζ∥B =

∫ 0

−∞
q(s) sup

s≤θ≤0

(
E∥ζ(θ)∥2

) 1
2 ds.

It is easy to verify that (B, ∥·∥B) is a Banach space. In order to represent the system (5.1) to the abstract form (1.1),
we define the functions g : J × B × X −→ X, ξ : J × B −→ LQ(Y,X), σ : J × B −→ (−∞, 0], Ik : B −→ X
respectively by

g

(
t, ζ,

∫ t

0

h(t, s, ζ)ds

)
(x) = f

(
t, ζ(θ, x),

∫ t

0

k(t, s, ζ(θ, x)ds

)
=

∫ 0

−∞
γ(θ)ζ(θ)(x)dθ +

∫ t

0

∫ 0

−∞
β1(s)β2(τ)ζ(τ, x)dτds,

ξ(t, ζ)(x) =

∫ 0

−∞
v(t, x, θ)N (ζ(θ, x))dθ,

σ(θ, ζ) = θ − σ1(θ)σ2(∥ζ(0)∥),

Ii(ζ)(x) =

∫ 0

−∞
αi(−θ)ζ(θ, x)dθ, i = 1, 2, . . . ,m.

On the other hand, let Γ : D(A) ⊂ X → X be the operator defined by

Γ(t)x = u(t)Ax, for t ≥ 0 and x ∈ D(A).

Under these definition, system (5.1) is then rewriten in the following form
dz(t) =

[
Az(t) +

∫ t

0

Γ(t− s)z(s)ds+ g

(
t, zt,

∫ t

0

h(t, s, zs)ds

)]
dt

+ξ(t, zσ(t,zt))dw(t), t ∈ J = [0, a], t ̸= ti,

∆z(ti) = Ii(zti), i = 1, . . . ,m

z0 = φ ∈ B.

(5.2)
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Since u is bounded and C1-function such that u
′

is bounded and uniformly continuous, (R2) is fulfilled. Hence,
by Theorem 2.2, Eq. (2.1) has a unique resolvent operator

(
R(t)

)
t≥0

on X, which is also operator-norm
continuous for t ≥ 0 thanks to Theorem 2.4.

To establish the existence result for the mild solution of (5.1), we need the following conditions:

(i) The function γ(θ) ≥ 0 is continuous in (−∞, 0] satisfying

∫ 0

−∞
γ2(θ)dθ <∞, γg =

(∫ 0

−∞

(γ(s))2

q(s)
ds

) 1
2

<∞.

(ii) β1, β2 : R −→ R are continuous and

γ∗g =

(∫ 0

−∞

(β2(s))
2

q(s)
ds

) 1
2

<∞.

(iii) the functions αi ∈ C(R,R) and

ci =

(∫ 0

−∞

α2
i (−θ)
q(s)

dθ

) 1
2

<∞, i = 1, 2, . . . ,m,

(iv) The function v2(t, x, θ) ≤ 0 is continuous on J × [0, 2π]× (−∞, 0] and satisfies∫ 0

−∞
v(t, x, θ)dθ = δ(t, x) <∞.

(v) The function N (·) is continuous and satisfies 0 ≤ N (y(θ, x)) ≤ µl

(∫ 0

−∞ e2s∥y(s, ·)∥L2
ds
)

for (θ, x) ∈
(−∞, 0]× [0, 2π], where µl(·) is positive, continuous and nondecreasing in [0,∞).

Under the above assumptions, we obtain

∥Ii(ζ)∥L2
=

[ ∫ π

0

E
∥∥∫ 0

−∞
αi(−θ)ζ(θ, x)dθ

∥∥2dx] 1
2

=

[ ∫ π

0

E
∥∥ ∫ 0

−∞

αi(−θ)
q

1
2 (θ)

q
1
2 (θ)ζ(θ, x)dθ

∥∥2dx] 1
2

≤
[ ∫ π

0

( ∫ 0

−∞

α2
i (−θ)
q(θ)

dθ
)( ∫ 0

−∞
q(θ)E∥ζ(θ, x)∥2dθ

)
dx

] 1
2

=
( ∫ 0

−∞

α2
i (−θ)
q(θ)

dθ
) 1

2
[ ∫ π

0

∫ 0

−∞
q(θ)E∥ζ(θ, x)∥2dθdx

] 1
2

≤
( ∫ 0

−∞

α2
i (−θ)
q(θ)

dθ
) 1

2
[ ∫ 0

−∞
q(θ)

∫ π

0

E∥ζ(θ, x)∥2dxdθ
] 1

2

≤ ci
[ ∫ 0

−∞
q(θ) sup

s≤θ≤0
E∥ζ(θ)∥2dθ

] 1
2

≤ ci∥ζ∥B,
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∥g(t, ζ, w)∥L2

=

[ ∫ π

0

E
∥∥∫ 0

−∞
γ(θ)ζ(θ)(x)dθ +

∫ t

0

∫ 0

−∞
β1(s)β2(τ)ζ(τ, x)dτds

∥∥2dx] 1
2

≤
[ ∫ π

0

E
∥∥∫ 0

−∞
γ(θ)ζ(θ)(x)dθ

∥∥2dx] 1
2

+

[ ∫ π

0

E
∥∥∫ t

0

∫ 0

−∞
β1(s)β2(τ)ζ(τ, x)dτds

∥∥2dx] 1
2

≤ γg∥ζ∥B + a

[ ∫ 2π

0

( ∫ t

0

β2
1(s)ds

)(
E
∥∥∫ 0

−∞
β2(τ)ζ(τ, x)dτ

∥∥2)dx] 1
2

≤ γg∥ζ∥B + a
( ∫ t

0

β2
1(s)ds

) 1
2
[ ∫ π

0

E
∥∥ ∫ 0

−∞
β2(τ)ζ(τ, x)dτ

∥∥2dx] 1
2

≤ γg∥ζ∥B + a
( ∫ t

0

β2
1(s)ds

) 1
2 γ∗g∥ζ∥B

=
[
γg + a∥β1∥∞γ∗g

]
∥ζ∥B,

∥ξ(t, ζ)∥L2
=

[ ∫ π

0

E
∥∥∫ 0

−∞
v(t, x, θ)N (ζ(θ, x))dθ

∥∥2dx] 1
2

≤
[ ∫ π

0

E
∥∥∫ 0

−∞
v(t, x, θ)µl

(∫ 0

−∞
e2s∥ζ(s)(·)∥L2ds

)
dθ

∥∥2dx] 1
2

≤
[ ∫ π

0

( ∫ 0

−∞
v(t, x, θ)µl

(∫ 0

−∞
e2s sup ∥ζ(s)(·)∥L2ds

)
dθ

)2
dx

] 1
2

≤
[ ∫ π

0

( ∫ 0

−∞
v(t, x, θ)dθ

)2
dx

] 1
2

µl (∥ζ∥B)

=

[ ∫ π

0

δ2(t, x)dx

] 1
2

µl(∥ζ∥B)

= l(t)µl(∥ζ∥B),

where l(t) =
(∫ π

0

δ2(t, x)dx

) 1
2

. Therefore, g, Ii(i = 1, 2, · · · ,m) are bounded by

E∥g∥2X ≤ L2,E∥Ii∥2X ≤ c2i , where L2 = [γg +a∥β1∥∞γ∗g ]2. In addition, from the estimation of ξ(t, ζ), it is easy
to see that the function ξ satisfy the hypothesis (A3). Hence by Theorem 3.3, the system (5.1) has a mild solution
on J.

Conclusion

This article focuses on a new kind of state-dependent delay neutrality of impulsive stochastic
integrodifferential equations in a real separable Hilbert space. We obtained the existence and controllability of
mild solutions using the fixed point theorems and resolvent operator theory in the sense of Grimmer. We
provided an example to show the effectiveness of the main results.In addition, to obtain the immediate results
discussed in this paper, the Krasnoselskii–Schaefer fixed point theorem, the Sadovskii fixed point theorem, and
the Banach fixed point theorem were all successfully applied under a variety of distinct conditions. In upcoming
research, we will investigate the controllability and stability of solutions for impulsive stochastic
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integrodifferential systems that either have jumps in their dynamics or are driven by the Rosenblatt process. This
research will take place shortly.
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