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Abstract. In this manuscript, we have established conditions for the existence and uniqueness of mild and classical solutions
to the fractional order Cauchy problem by including and without including impulses over the completed norm linear space
(Banach space). Conditions are established using the concept of generators and the generalised Banach fixed point theorem,
which are weaker conditions than the previously derived conditions. We have also established the conditions under which a
mild solution to the problem gives rise to a classical solution to the given problem. Finally, illustrations of the existence and
uniqueness of the solution are provided to validate our derived results.
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1. Introduction

The various problems in physics, engineering, and biological sciences that have abrupt changes for a small
amount of time are well explained in terms of impulses. Therefore, problems like removal of insertion of biomass,
populations of species with abrupt changes, abrupt harvesting, and various problems containing abrupt changes
are modelled into impulsive differential equations[3, 9, 13, 19, 23–25, 28, 34]. Many researchers have studied
the qualitative properties like existence, uniqueness, and asymptotic behaviour of impulsive differential equations
using various techniques. These studies are found in the articles cited [1, 2, 15, 26, 35, 37] and reference their in.
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Fractional Cauchy problem with impulses

On the other hand, due to the inherited property of the fractional derivative operator [6, 8], many nonlinear
complicated problems, such as seepage flow in porous media, anomalous diffusion, wave and transport, and
many other problems, are now being remodelled into fractional differential equations [12, 14, 16–18, 27, 30,
31, 33, 38]. Fractional calculus developed become one of the most well-liked areas of applied mathematics as
a result of the numerous uses of fractional differential equations. This draws a lot of academics interested in
differential equations and fractional calculus. Numerous scholars, including [10, 11, 22, 36], have examined the
qualitative properties, such as existence and uniqueness of mild solutions to fractional equations using diverse
methodologies. Researchers have looked into the existence and originality of impulsive fractional differential
equations. Benchohra and Slimani[5] investigated the presence and distinctiveness of a mild solution to impulsive
differential equations in one dimension. To find adequate criteria for the existence and uniqueness of the mild
solution, they employed the fixed point theorems of Banach, Schaefer, and Leray-Schauder. With the use of
Banach contraction principle and semigroup theory, Mohphu [29] researched the existence and uniqueness of
mild solutions. By assuming the sectroial property of the linear operator A, Ravichandran and Arjunan [32]
investigated the existence and uniqueness of the classical and mild solutions of impulsive fractional integro-
differential equations on Banach space. Balachandra et al. By omitting the semigroup property from Mohphu’s
work, al. [4] examined the existence and uniqueness of mild solutions to impulsive fractional integro-differential
equations on a Banach space. The classical solution of a fractional order differential equation of the Caputo type
is described by Kataria and Patel [20], who also examine the congruence between the classical and mild solutions
of more extended impulsive fractional equations on a Banach space.

Krasnoselskii’s fixed point was utilised by Borah and Bora [7] and Kataria et al. [21] to demonstrate the
necessary conditions for the existence of mild solutions for the non-local fractional differential equations with
non-instantaneous impulses.

In this paper, we develop necessary criteria for mild solution and classical solution of the impulsive fractional
evolution problem,

cDαu(t) = Au(t) + F (t, u(t)) t ̸= tk, k = 1, 2, · · · , p
∆u(tk) = Ik(u(tk)), t = tk, k = 1, 2, · · · , p
u(t0) = u0

(1.1)

over the interval [0, T0] on a Banach space U . Here, cDα denotes Caputo fractional differential operator of order
0 < α ≤ 1, A : U → U is linear operator and f : [0, T0]× U → is nonlinear function. Ik : U → U are impulse
operator at time t = tk, fro k = 1, 2, · · · , p and their existence and uniqueness. We also developed conditions
underwhich classical solution and mild solution of (1.1) are coincide.

The outline of the article is as follows: In section-2, we discussed some preliminaries from fractional calculus
followed by motivation to study in section-3. Section-4 and section-5 discusses the existence and uniqueness
results of fractional evolution equation without and with impulses followed by conclusion in section-6.

2. Prelimnaries

In this section we introduce notations, definitions, assumptions preliminary facts which are used throughout
this paper.

Definition 2.1. ([22, 30]) The Riemann-Liouville fractional integral operator of α > 0, of function f ∈ L1(R+)

is defined as

Iαt0+f(t) =
1

Γ(α)

∫ t

t0

(t− s)α−1f(s)ds,

provided the integral on right side exist. Where Γ(·) is gamma function.

Definition 2.2. ([22, 30]) The Caputo fractional derivative of order α > 0, n− 1 < α < n, n ∈ N, is defined as

cDα
t0+f(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1 d
nf(s)

dsn
ds,
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provided the integral on the right exist and n = [α] + 1.

Definition 2.3. One and two parameter Mittag-Lefflar function is defined as:

Eα(z) =

∞∑
n=0

zn

Γ(αn+ 1)
, Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)

for all α, β > 0 and z ∈ C respectively.

Definition 2.4. [37] Let X be Banach space. Then the set

PC([t0, T ], X) =

{
u : [t0, T ] → X;u is continuous at t ̸= tk, left continuous at t =

tk, right limit at t = tk exist for all k = 1, 2, · · · , p
}

.

This set PC([t0, T ], X) is Banach space under the norm defined by ||u||PC = sup
{
||u(t)||; t ∈ [t0, T ]

}
.

3. Motivation

This section is devoted to motivation behind studying the existence and uniqueness of solution for the Caputo
Cauchy problem. Consider the non-homogeneous diffusion equation without impulses

cDαu(t, x) = uxx(t, x) + F (t, x),

u(t, 0) = u(t, π) = 0,

u(0, x) = u0(x)

(3.1)

over the rectangle [0, T0] × [0, π]. The solution of this equation (3.1) using the Laplace transform and Fourier
series at any time t ∈ [0, T0] is given by

u(t, x) = Tα(t)u0(x) +

∫ t

0

(t− s)α−1Tα,α(t− s)F (s, x)ds (3.2)

where, the families of operators Tα(t), Tα,β(t) : U → U for all t ∈ [0, T0] are defined as

Tα(t)z =

∞∑
n=1

Eα(−n2tα) < z, ϕn > ϕn

and

Tα,β(t)z =

∞∑
n=1

Eα,β(−n2tα) < z, ϕn > ϕn

in the space
U =

{
z : [0, π] → R : z′′ exists and z(0) = z(π) = 0

}
the functions Eα(·) and Eα,β(·) are Mittag-Leffler functions of one and two parameter family respectively and
ϕn(x) are orthonormal Fourier basis corresponding to eigenvalues.

In view of the equation (3.2) we can define mild solution of semi-linear diffusion equation

cDαu(t, x) = uxx(t, x) + F (t, u),

u(t, 0) = u(t, π) = 0,

u(0, x) = u0(x)

(3.3)

68



Fractional Cauchy problem with impulses

as a function u satisfy the equation

u(t, x) = Tα(t)u0(x) +

∫ t

0

(t− s)α−1Tα,α(t− s)F (s, u)ds (3.4)

where, the families of operators Tα(t), Tα,β(t) are defined above.
Observe that the operator A in equation (3.3) is neither bounded nor semigroup property but solutions of

equation (3.3) exist under certain conditions (derived in the Section -4). From this we can say that the function u

is the mild solution of diffusion equation (3.3) if u satisfies the integral equation (3.4). Using this concept we can
easily study the various qualitative properties like existence and uniqueness of solution, various types of stability
and controllability of the Caputo fractional evolution system (1.1) with and without impulses. This motivates to
study existence and uniqueness of solutions of Caputo fractional evolution equation (1.1).

4. Mild and classical solutions without impulses

In this section, we are going to discuss existence and uniqueness of classical and mild solutions of the
fractional order evolution equation (1.1) without impulses by using the concept of generators, motivated from
the previous section.
Consider the fractional order evolution equation without impulses over the interval [0, T0] of the form:

cDαu(t) = Au(t) + F (t, u(t)),

u(0) = u0

(4.1)

in the general Banach space U , where A : U → U is linear operator, cDα is fractional differential operator of
Caputo type for 0 < α ≤ 1 and F : [0, T0]× U → U is nonlinear function.
We define the operators which is generated by the linear operator A.

Definition 4.1. The families of operators Tα(t), Tα,β(t) : U → U , t ≥ 0 are generated by a linear operator
A : U → U satisfies the following properties:

(1) Tα(0) = I and Tα,β(0) = I where, I is identity operator

(2) T (t) satisfies the linear fractional equation cDαu(t) = A(t)u(t) in Banach space U

(3) limβ→1 Tα,β(t) = Tβ(t)

Example 4.2. The operators Tα(t), Tα,β(t) : U → U for all t ∈ [0, T ] are defined as

Tα(t)z =

∞∑
n=1

Eα(−n2tα) < z, ϕn > ϕn

and

Tα,β(t)z =

∞∑
n=1

Eα,β(−n2tα) < z, ϕn > ϕn

defined on the space
U =

{
z : [0, π] → R : z′′ exists and z(0) = z(π) = 0

}
are generated by the linear operator A = ∂2

∂x2 satisfies the above properties.

With the operators Tα(·) and Tα,β ,the mild and classical solutions of Caputo fractional evolution equation
(4.1) is defined as follows
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Definition 4.3. The function u ∈ U is called mild solution of Caputo fractional order (0 < α ≤ 1) evolution
equations (4.1) over the interval [0, T0] if u satisfies the equation of the form:

u(t) = Tα(t)u0 +

∫ t

0

(t− s)α−1Tα,α(t− s)F (s, u)ds (4.2)

where, T (t) and Tα(t) are generated by the linear operator A.

Definition 4.4. The solution u ∈ U is classical solution of semi-linear fractional order evolution equation (4.1)
of α order Caputo fractional derivative with respect to t exists and continuous.

Theorem 4.5. The fractional order Caputo fractional evolution equation (4.1) has a unique mild solution over
the interval [0, T0] if following properties are satisfied.

(1) The families of operators Tα(t) and Tα,β(t) generated by the operator A(t) are continuous and bounded
over [0, T0]. That is, there exist positive constants M and Mα such that ||Tα(t)|| ≤ M and ||Tα,β(t)|| ≤
Mα for all t ∈ [0, T0].

(2) The nonlinear function F is continuous with respect to t and there exist r0 such that F Lipchitz continuous
with respect to u in Br0 = {u ∈ U ; ||u|| ≤ r0}. That is, there exist positive constant L such that
||F (t, u)− F (t, v)|| ≤ L||u− v|| for all t ∈ [0, T0] and u ∈ Br0 .

Proof. Define the operator F : U → U as:

Fu(t) = Tα(t)u0 +

∫ t

0

(t− s)α−1Tα,α(t− s)F (s, u)ds.

To show (4.1) has unique mild solution it is sufficient to show F (m) is contraction for some m ∈ N.
For any u, v ∈ Br0 and n ∈ N, we have

||F (n)u(t)−F (n)v(t)||

≤ MαL

∫ t

0

(t− s)α−1||F (n−1)u(s)−F (n−1)v(s)||ds

≤ M2
αL

2

∫ t

0

∫ s1

0

(t− s1)
α−1(s1 − s)α−1||F (n−2)u(s)−F (n−2)v(s)||dsds1

Continuing this process to get

||F (n)u(t)−F (n)v(t)||

≤ Mn
αL

α

∫ t

0

∫ s1

0

· · ·
∫ sn−1

0

(t− s1)
α−1(s1 − s)α−1 · · · (sn−1 − s)α−1||u(s)− v(s)||dsdsn−1 · · · ds1

≤ Mn
αL

n

∫ T0

0

∫ T0

0

· · ·
∫ T0

0

(T0 − s1)
α−1(T0 − s2)

α−1 · · · (T0 − s)alpha−1||u− v||dsdsn−1 · · · ds1

≤ Mn
αL

n

∫ T0

0

(T0 − s)n(α−1) (T0 − s)n

(n− 1)!
||u− v||ds

≤ (MαL)
nTnα

0

n!α
||u− v||

Therefore, for any fixed T0 and sufficiently large integer n say m the operator F (m) is contraction therefore by
generalized Banach fixed point theorem F has unique fixed point. Hence, (4.1) has unique mild solution given
by (4.2). ■
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Example 4.6. The operators Tα(t) and Tα,β(t) generated for the equation (3.4) are continuous and bounded.
Hence, there exist positive constants M and Mα such that ||Tα(t)|| ≤ M and ||Tα,β(t)|| ≤ Mα. Therefore,
the equation (3.3) has unique mild solution given by (3.4) since F is continuous with respect to t and Lipchitz
continuous with respect to u in a given Banach space over the interval [0, T0].

Remark 4.7. We have the following observations from the theorem-4.5.

(1) Conditions derived in the Theorem-4.5 are more liberal than previously derived conditions by the author
for the similar system.

(2) The conditions obtained in Theorem-4.5 are sufficient but not necessary.

Now we consider a system in which the initial time is taken t = t0 instead of t = 0. Thus the theorem-4.5
can be extended as follows:

Corollary 4.8. The fractional evolution equation

cDαu(t) = Au(t) + F (t, u(t)),

u(t0) = u0

(4.3)

has unique mild solution over interval [t0, T0] given by

u(t) = Tα(t− t0)u0 +

∫ t

t0

(t− s)α−1Tα,α(t− s)F (s, u)ds (4.4)

if following conditions are satisfied:

(1) The families of operators Tα(t) and Tα,β(t) generated by the operator A are continuous and bounded over
[t0, T0]. That is, there exist positive constants M and Mα such that ||Tα(t)|| ≤ M and ||Tα,β(t)|| ≤ Mα

for all t ∈ [t0, T0]

(2) The nonlinear function F is continuous with respect to t and Lipchitz continuous with respect to u. That is,
there exist positive constant L such that ||F (t, u)−F (t, v)|| ≤ L||u−v|| for all t ∈ [t0, T0] for u, v ∈ Br0 .

Condition for the classical solution of the system (4.1) is given by the following theorem:

Theorem 4.9. The mild solution of (4.1) is the classical solution if

(1) u0 ∈ D(A) (Domain of A)

(2) The generators Tα(t) and Tα,β(t) are continuously differentiable for all t > 0.

(3) The function F is differentiable with respect to t and continuous with respect to u.

Proof. Let u(t) be the mild solution of (4.1). Therefore u(t) satisfies the corresponding integral equation (4.2).
Assuming conditions (1),(2) and (3) of the hypothesis, the fractional Caputo derivative of u(t) in equation (4.2)
exists and is continuous. Moreover for all t ∈ [0, T0] the function u(t) ∈ D(A). Hence the mild solution u(t)

defined by (4.2) is classical solution of the equation (4.1). This completes the proof of the theorem. ■

Similarly one have the classical solution for the system (4.4).

Corollary 4.10. The mild solution given by (4.4) of (4.3) is the classical solution if

(1) u0 ∈ D(A) (Domain of A)

(2) The generators Tα(t) and Tα,β(t) are continuously differentiable for all t ∈ [t0, T0]
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(3) The function F is differentiable with respect to t and continuous with respect to u.

The following theorems gives the uniqueness of the classical solution of both the systems.

Theorem 4.11. Equation (4.1) has unique classical solution over the interval [0, T0] if

(1) u0 ∈ D(A) (Domain of A).

(2) The generators Tα(t) and Tα,β(t) of the linear operator A are continuously differentiable and bounded
over the interval [0, T0].

(3) The function F is differentiable with respect to t and Lipchitz continuous with respect to u in Br0 .

Proof. Using the condition (2) the generators are continuously differentiable and bounded over [0, T0] so, they are
continuous and bounded over [0, T0]. This means there exist positive constants M and Mα such that ||Tα(t)|| ≤
M and ||Tα,β(t)|| ≤ Mα and condition (3) the function F is continuous with respect t and Lipchitz continuous
with respect to u and applying theorem-4.5 the equation (4.1) and has unique mild solution given by (4.2).
Assuming (1), (2) and (3) this mild solution becomes classical solution of the equation (4.1). Since mild solution
is unique, the classical solution is also unique. ■

Corollary 4.12. Equation (4.3) has unique classical solution over the interval [t0, T0] if

(1) u0 ∈ D(A) (Domain of A).

(2) The generators Tα(t) and Tα,β(t) of the linear operator A are continuously differentiable and bounded
over the interval [t0, T0].

(3) The function F is differentiable with respect to t and Lipchitz continuous with respect to u in Br0 .

Example 4.13. Consider the fractional order equation

cDαw(t, x) + w
∂w

∂x
(t, x) +

∂2w

∂x2
(t, x) = f(t, w(t, x)) (4.5)

on the domain [0, T0] boundary conditions

w(t, 0) = w(t, 2π) = 0 (4.6)

with initial condition w(0, x) = w0. The domain of the operator Aw = −∂2w
∂x2 is D(A) =

{
z ∈ L2[0, 2π] :

z′′ continuous and satisfies boundary conditions
}

. Then the mild solution in the interval [0, T0] of the
equation (4.5) with conditions (4.6) is given by

w(t, x) = Tα(t)w0 +

∫ t

0

(t− s)α−1Tα,α(t− s)
{1
2

∂w2

∂x
+ f(s, w)

}
ds (4.7)

where,

Tα(t)z =

∞∑
n=1

Eα(−n2tα) < z, ϕn > ϕn

and

Tα,β(t)z =

∞∑
n=1

Eα,β(−n2tα) < z, ϕn > ϕn

are the generators of the linear operator A. ϕn(x) are orthogonal Fourier basis functions in L2[0, 2π].
We have following observation:
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(1) The generators Tα(t) and Tα,β(t) are defined in equation (4.7) are continuously differentiable with respect
to t. Therefore there exists positive constants M and Mα such that ||Tα(t)|| ≤ M and ||Tα,β(t)|| ≤ Mα

respectively.

(2) The first non linear term in (4.5) 1
2
∂w2

∂x is composition of two continuous operators Pw = 1
2
∂w
∂x and

Qw = w2 which are continuous with respect to t and Lipchitz continuous with respect to w in finite closed
ball Br0 as the operator P is linear and the partial derivative of Q with respect to w exist for every w.
Moreover P and Q are differentiable with respect to arguments t and w.

Therefore equation (4.5) has unique mild solution given by (4.7) if the second term f(t, w) is continous with
respect to t and Lipchitz continous with respect to w The mild solution (4.7) is unique classical solution of (4.5)
if f(t, w) is differentiable and w0 ∈ D(A).

5. Mild and classical solutions with impulses

In this section we are going to derive set of sufficient conditions for the existence and uniqueness of classical
as well mild solution of impulsive fractional evolution equation (1.1). We are also deriving the conditions in
which the classical and mild solutions are coincides.

Definition 5.1. Classical Solution[20]
A solution u(t) is a classical solution of the equation (1.1) for 0 < α < 1 if u(t) ∈ PC([0, T0],U) ∩ Cα(J ′,U)
where, J ′ = [0, T0] − {t1, t2, · · · , tp} and Cα(J ′,U) =

{
u : J ′ → U :c Dαu(t) exist and continuous at each

t ∈ J ′}, u(t) ∈ D(A) (Domain of A) for t ∈ J ′ and satisfies (1.1) on [0, T0].

Definition 5.2. Mild Solution
A function u(t) ∈ PC([0, T0],U) is a mild solution of the equation (1.1) if it satisfies

u(t) =


Tα(t− ti)

(∏1
k=i Tα(tk − tk−1)

)
u0 + Tα(t− ti)

∑i
j=1

(∏2
k=j Tα(tk − tk−1

)∫ tj
tj−1

(tj − s)α−1Tα,α(tj − s)F (s, u(s))ds+
∫ t

ti
(t− s)α−1Tα,α(t− s)F (s, u(s))ds

+Tα(t− ti)
∑i

j=1

(∏3
k=i Tα(tk − tk−1)

)
Iku(tk)

(5.1)

for each t ∈ [ti, ti+1).

Here, the families of operators T (t) and Tα(t) are generated by the linear operator A.

Theorem 5.3. The fractional order semi-linear impulsive evolution equation (1.1) has unique mild solution over
the interval [0, T0] if following properties are satisfied.

(1) The families of operators Tα(t) and Tα,β(t) generated by the operator A are continuous and bounded over
[0, T0]. That is there exist positive constants M and Mα such that ||Tα(t)|| ≤ M and ||Tα,β(t)|| ≤ Mα

for all t ∈ [0, T0].

(2) The nonlinear function F is continuous with respect to t and Lipchitz continuous with respect to u in Br0 .
That is there exist positive constant L such that ||F (t, u) − F (t, v)|| ≤ L||u − v|| for all t ∈ [0, T0] and
u, v ∈ Br0 .

(3) Impulses Ik at t = tk for k = 1, 2, · · · , k are continuous and bounded.

Proof. Over the interval [0, t1] the equation (1.1) becomes,

cDαu(t) = Au(t) + F (t, u(t)),

u(t0) = u0

(5.2)
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Assuming conditions (1) and (2) of the hypotheses and using theorem-4.5 the equation (5.2) has unique mild
solution over the interval [0, t1) given by

u(t) = Tα(t− t0)u0 +

∫ t

t0

(t− s)α−1Tα,α(t− s)F (s, u)ds. (5.3)

At t = t1 the mild solution u(t−1 ) becomes:

u(t−1 ) = Tα(t1 − t0)u0 +

∫ t1

t0

(t1 − s)α−1Tα,α(t1 − s)F (s, u)ds.

Over the interval [t1, t2) the equation (1.1) becomes:

cDαu(t) = Au(t) + F (t, u(t)),

u(t+1 ) = u1 = u(t−1 ) + I1u(t1)
(5.4)

Here, impulse operator I1 is continuous and bounded. Assuming conditions (1) and (2) and applying corollary
4.8, the equation (5.4) has unique mild solution over the interval [t1, t2) given by

u(t) = Tα(t− t1)u1 +

∫ t

t1

(t− s)α−1Tα,α(t− s)F (s, u)ds. (5.5)

Continuing in this way the equation (1.1) over the interval [ti, ti+1) becomes

cDαu(t) = Au(t) + F (t, u(t)),

u(t+i ) = ui = u(t−i ) + Iiu(ti).
(5.6)

Assuming condition (1) and (2) of the hypotheses and applying corollary-4.8 the equation (5.6) has unique mild
solution over the interval [ti, ti+1) given by

u(t) = Tα(t− ti)ui +

∫ t

ti

(t− s)α−1Tα,α(t− s)F (s, u)ds. (5.7)

Finally over the interval [tp, T0] the equation (1.1) becomes:

cDαu(t) = Au(t) + F (t, u(t)),

u(t+p ) = u1 = u(t−p ) + Ipu(tp).
(5.8)

Assuming condition (1) and (2) of the hypotheses and applying corollary-4.8 the equation (5.8) has unique mild
solution over the interval [tp, T0] given by

u(t) = Tα(t− tp)up +

∫ t

tp

(t− s)α−1Tα,α(t− s)F (s, u)ds. (5.9)

Therefore for any t ∈ [ti, ti+1) for i = 1, 2, · · · , p the equation (1.1) has unique mild solution given by

u(t) = Tα(t− ti)ui +

∫ t

ti

(t− s)α−1Tα,α(t− s)F (s, u)ds

= Tα(t− ti)[u(t
−
i ) + Iiu(ti)] +

∫ t

ti

(t− s)α−1Tα,α(t− s)F (s, u)ds

74



Fractional Cauchy problem with impulses

Substituting the values of uk’s for k = 1, 2, · · · , i we obtained,

u(t) = Tα(t− ti)
( 1∏
k=i

Tα(tk − tk−1)
)
u0 + Tα(t− ti)

i∑
j=1

( 2∏
k=j

Tα(tk − tk−1

)
∫ tj

tj−1

(tj − s)α−1Tα,α(tj − s)F (s, u(s))ds

+

∫ t

ti

(t− s)α−1Tα,α(t− s)F (s, u(s))ds+ Tα(t− ti)

i∑
j=1

( 3∏
k=i

Tα(tk − tk−1)
)
Iku(tk).

We complete the proof by showing u(t) ∈ PC([0, T0],U) for all t ∈ [0, T0].
If t ∈ [0, T0] for all j = 1, 2, · · · , p then t ∈ [ti, ti+1) for atleast one i. Assuming conditions (1), (2) and (3)
we get the continuity of u at t ̸= ti and left continuous at t = ti and right limit exist at t = ti. Therefore
u(t) ∈ PC([0, T0],U). Hence, equation (1.1) has unique mild solution in PC([0, T0],U). ■

Theorem 5.4. The mild solution (5.1) of (1.1) is the classical solution if
(1) The generators Tα(t) and Tα,β(t) are continuously differentiable for all t > 0.
(2) The function F is diffrentiable with respect to t and continuous with respect to u.
(3) Impulses Ik at t = tk are for k = 1, 2, · · · , k differentiable and bounded.
(4) u0 and Iku(tk) are in D(A) (Domain of A).

Proof. Over the interval [0, t1) the equation (1.1) becomes (5.2) which is evolution equation without impulses.
Applying theorem-4.9 the mild solution (5.3) becomes classical solution of (1.1) over the interval [0, t1) by
assuming the conditions (1), (2) and (4).
In the interval [t1, t2) the equation (1.1) becomes (5.3) and I1 is differentiable and bounded with I1u(t1) ∈ D(A)

therefore, u1 ∈ D(A). Again assuming the conditions (1), (2) and (4) and using corollary- 4.10 the mild solution
(5.5) becomes a classical solution of (1.1) over the interval [t1, t2).
Continuing in same manner the mild solution (5.7) of equation (1.1) over the interval [ti, ti+1) becomes classical
solution of (1.1).
Finally, the mild solution (5.9) of the equation (1.1) becomes classical solution of equation (1.1) over the interval
[tp, T0] proceeding in similar manner.
Hence the mild solution (5.1) of equation (1.1) becomes classical solution of (1.1) over the whole interval [0, T0].
This completes the proof. ■

Now we discuss the uniqueness of classical solution of impulsive evolution equation (1.1).

Theorem 5.5. Classical solution of (1.1) is unique if

(1) The generators Tα(t) and Tα,β(t) are continuously differentiable for all t > 0.

(2) The function F is differentiable with respect to t and Lipschitz continuous with respect to u on Br0 .

(3) Impulses Ik at t = tk are for k = 1, 2, · · · , k differentiable and bounded.

(4) u0 and Iku(tk) are in D(A) (Domain of A).

Proof. Under the assumption (1), (2), (3) and (4) the mild solution (5.1) of equation (1.1) becomes a classical
solution. Lipchitz continuity of F with respect to u leads to uniqueness of mild solution. Since mild solution of
(1.1) is unique therefore classical solution of (1.1) is unique. ■
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Example 5.6. Consider the semi-linear fractional order impulsive heat equation

cDα
t u(t, x) =

∂2u(t, x)

∂x2
+ u

∂u

∂x
(t, x), t ̸= t1, t2 · · · , tp

u(t, 0) = u(t, π) = 0

u(0, t) = u0 = x(π − x)

∆u(tk) = Ik(tk) = aku(t
−
k ), t = tk, (ak’s are constants) k = 1, 2, · · · , p

(5.10)

over the interval [0, T0]. Here tk’s are time points where impulses are applied.
We have following observations:

(1) The operator A = ∂2

∂x2 over the domain D(A) =
{
z : [0, π] → R : z′′ exists and z(0) = z(π) = 0

}
generates the continuously differentiable and bounded families of operators Tα(t) and Tα,β(t) defined by

T (t)z =

∞∑
n=1

Eα(−n2tα) < z, ϕn > ϕn

and

Tα,β(t)z =

∞∑
n=1

Eα,β(−n2tα) < z, ϕn > ϕn

respectively.

(2) The nonlinear function F (t, u) = u∂u
∂x = ∂

∂xu
2 is differentiable with respect to t and Lipchitz continuous

with respect to u on Br0 .

(3) Impulses Iku(tk) = aku(t
−
k ) are differentiable such that Iku(tk) ∈ D(A).

(4) u0 ∈ D(A).

Therefore by Theorem 5.3, 5.4 and 5.5 the equation (5.10) has unique mild solution given by

u(t) = Tα(t− ti)
( 1∏
k=i

Tα(tk − tk−1)
)
u0

+ Tα(t− ti)

i∑
j=1

( 2∏
k=j

Tα(tk − tk−1

) ∫ tj

tj−1

(tj − s)α−1Tα,α(tj − s)
∂

∂x
u2ds

+

∫ t

ti

(t− s)α−1Tα,α(t− s)
∂

∂x
u2ds+ Tα(t− ti)

i∑
j=1

( 3∏
k=i

Tα(tk − tk−1)
)
aku(tk)

(5.11)

for all t ∈ [0, T0]. Moreover this mild solution (5.11) becomes classical solution of (5.10). Since mild solution is
unique therefore classical solution is unique.

6. Conclusion

The fractional semi-linear evolution equation over general Banach space without and with impulses has a set
of mild and classical solutions, which are deduced in this article. We developed the novel notion of generators
and derived the adequate requirements—which are more lax criteria and apply to a broader class of fractional
evolution equations using the generalised Banach fixed point theorem.
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