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Abstract. We discuss the existence of solutions for second-order impulsive differential equation with nonlocal conditions
in Banach spaces. Our approach is based on the generalization of Schauder fixed point principle that is Darbo fixed point
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1. Introduction

In the present paper we consider the abstract second-order nonlinear impulsive differential equation with non
local condition 

x′′(t) = Ax(t) + f(t, x(t), x′(t)), t ∈ J = [0, T ], t ̸= ti, i = 0, ..., p

x(0) = x0 + g(x), x′(0) = x1

△(x(ti)) = Ii(x(ti)), i = 0, ..., p

△(x′(ti)) = Di(x(ti), x
′(ti)), i = 0, ..., p.

(1.1)

Where A is a linear operator from a Banach space E into itself, △x(ti) = x(t+i ) − x(t−i ), △x′(ti) = x′(t+i ) −
x′(t−i ), 0 < t1 < t2 < ... < tp < T are the instants of impulse effect, f : [0, T ] × E × E → E, Ii : E → E,
Di : E × E → E, x0, x1 ∈ E and g(x) is a function with values in E to be specified later.
For the basic theory on impulsive differential equations in infinite dimensional spaces, the reader is referred to
the literature [2, 3]. The impulsive differential equations has become an important area of investigation by many
authors because of their applications. For more details, we refer the reader to [3, 11, 15]. In [4], Peng and
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Xiang discuss the existence of optimal controls for a Lagrange problem of systems governed by the second-order
nonlinear impulsive differential equations in infinite dimensional spaces:

x′′(t) = Ax(t) + f(t, x(t), x′(t)) +B(t), t ∈ J = [0, T ], t ̸= ti, i = 0, ..., p

x(0) = x0, x
′(0) = x1

△(x(ti)) = Ii(x(ti), x
′(ti)), i = 0, ..., p

△(x′(ti)) = Di(x(ti), x
′(ti)), i = 0, ..., p.

They apply a direct approach to derive the maximum principle for the problem at hand. The authors [6] considered
the existence of mild solutions for a class of abstract impulsive second-order neutral functional differential
equations. In [10], the authors studied the abstract second-order nonlinear impulsive differential equation with
nonlocal condition 

x′′(t) = Ax(t) + f(t, x(t), x′(t)), x(b1(t)), x(b2(t)), ...,

x(bm(t)), x′(b1(t)), ..., x
′(bm(t))) t ∈ J = [0, T ],

x(0) = x0, x
′(0) + g(x) = x1

△(x(ti)) = Ii(x(ti), ), i = 0, ...,m

△(x′(ti)) = Di(x(ti), x
′(ti)), i = 0, ...,m.

In the present work, the existence of a mild solution for problem (1.1) is obtained by the cosine family theory,
measure of non-compactness and the the well known Schauder fixed point principle. Its generalization, called
the Darbo fixed point theorem. It should be pointed out that the restrictive condition on the impulsive term is
removed. The work is organized as follows: In Section two, we recall some definitions and facts about the cosine
family and facts concerning the Kuratowski measures of noncompactness in the Banach space PC([0, T ], E). In
Section three, we give the existence of mild solutions to the problem (1.1). In Section four we present an example
to illustrate our main result.

2. Preliminaries

We begin by giving some notation. Let E be a Banach space with the norm ∥ · ∥. We use θ to present the zero
element in E. For any constant T > 0, denote J = [0, T ]. Let C(J,E) and be the Banach space of all continuous
functions from J into E endowed with the supremum-norm ∥x∥C = supt∈J ∥x(t)∥ for every x ∈ C(J,E).
From the associate literature, we consider the following space of piecewise continuous functions,

PC(J,E) =
{
u : J → E : x is continuous for t ̸= tk,

left continuous at t = tk and x(t+k ) exists for k = 1, 2, . . . ,m
}
.

It easy to see that PC(J,E) is a Banach space endowed with the PC-norm

∥x∥PC = max
{
sup
t∈J

∥x(t+)∥, sup
t∈J

∥x(t−)∥
}
, x ∈ PC(J,E),

where x(t+) and x(t−) represent respectively the right and left limits of x(t) at t ∈ J . Similarly, PC1 will be
the space of the functions x(·) ∈ PC such that x()̇ is continuously differentiable on J , ti, i = 1, 2, . . . , n and the
derivatives

x′
r(t) = lim

s→0

x(t+ s)− x(t+)

s
, x′

l(t) = lim
s→0

x(t+ s)− x(t−)

s

are continuous on [0, T [ and ]0, T ], respectively. Next, for x ∈ PC1, we represent, by x′(t), the left derivative at
t ∈]0, T ] and, by x′(0), the right derivative at zero. It is easy to see that PC1, provided with the norm

∥x∥PC1 := max{∥x∥PC , ∥x′∥PC}
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is a Banach space. For each finite constant r > 0, let

Ωr = {u ∈ PC(J,E) : ∥u(t)∥ ≤ r, t ∈ J},

then Ωr is a bounded closed and convex set in PC(J,E).
Let L(E) be the Banach space of all linear and bounded operators on E. Since the semigroup T (t)(t ≥ 0)

generated by A is a C0-semigroup in E, denoting

M := sup
t∈J

∥T (t)∥L(E), (2.1)

then M ≥ 1 is a finite number.

Definition 2.1. A C0-semigroup T (t)(t ≥ 0) in E is said to be equicontinuous if T (t) is continuous by operator
norm for every t > 0.

Now we introduce some basic definitions and properties about Kuratowski measure of noncompactness that
will be used in the proof of our main results.

Definition 2.2. [1, 8] The Kuratowski measure of noncompactness α(·) defined on a bounded set S of Banach
space E is

α(S) := inf{δ > 0 : S = ∪m
i=1Si with diam(Si) ≤ δ for i = 1, 2, . . . ,m}.

The following properties about the Kuratowski measure of noncompactness are well known.

Lemma 2.3. [1, 8] Let E be a Banach space and S, U ⊂ E be bounded. The following properties are satisfied:

(i) α(S) = 0 if and only if S is compact, where S means the closure hull of S;

(ii) α(S) = α(S) = α(convS), where convS means the convex hull of S;

(iii) α(λS) = |λ|α(S) for any λ ∈ R;

(iv) S ⊂ U implies α(S) ≤ α(U);

(v) α(S ∪ U) = max{α(S), α(U)};

(vi) α(S + U) ≤ α(S) + α(U), where S + U = {x | x = y + z, y ∈ S, z ∈ U};

(vii) If the map Q : D(Q) ⊂ E → X is Lipschitz continuous with constant k, then α(Q(V )) ≤ kα(V ) for any
bounded subset V ⊂ D(Q), where X is another Banach space.

In this work, we denote by α(·), αc(·), αpc(·) and αpc1(·) the Kuratowski measure of noncompactness on the
bounded set of E, C(J,E), PC(J,E) and PC1(J,E), respectively.
In the following, let J0 = [0, t1], J1 = (t1, t2], ..., Jp−1 = (tp−1, tp] and Jp = (tp, 1], tp+1 = 1. For any
X ⊂ PC(J,E), we denote by X ′ = {x′ : x ∈ X} ⊂ PC(J,E) and by X(t) = {x(t) : x ∈ X} ⊂ E and by
X ′(t) = {x(t) : x ∈ X} ⊂ E for t ∈ J. To discuss the problem (1.1), we also need the following lemma [12].

Lemma 2.4. [12] If X ⊂ PC1(J,E) is bounded and the elements of X ′ are equicontinuous on each Jk, k =

0, 1, ..., p then

αpc1(X) = max{sup
t∈J

α(X(t)), sup
t∈J

α(X ′(t))} (2.2)

Obviously the following formulated theorem constitutes the well known Schauder fixed point principle. Its
generalization, called the Darbo fixed point theorem, is formulated below.
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Lemma 2.5. [8] Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E and let T : Ω →
Ω be a continuous mapping. Assume that there exists a constant k ∈ [0, 1) such that µ(T (X)) = kµ(X) for any
nonempty subset X of Ω, where µ is a measure of noncompactness defined in E. Then T has a fixed point in the
set Ω.

Lemma 2.6. [5, 16] Let E be a Banach space, and let X ⊂ E be bounded. Then there exists a countable set
X0 ⊂ X , such that α(X) ≤ 2α(X0).

Lemma 2.7. [13] Let E be a Banach space, and let X = {un : n = 0, 1, ...} ⊂ PC([0, T ], E) be a bounded
and countable set for constants −∞ < 0 < T < +∞. Then α(X(t)) is Lebesgue integral on [0, T ], and

α
({∫ T

0

un(t)dt : n ∈ N
})

≤ 2{
∫ T

0

α(un(t))dt : n = 0, 1, ...}.

Lemma 2.8. [1] Let E be a Banach space, and let X ⊂ C([0, T ], E) be bounded and equicontinuous. Then
α(X(t)) is continuous on [0, T ], and

αc(X) = max
t∈[0,T ]

α(X(t)).

Next, we shall need the following definitions [25].

Definition 2.9. A one parameter family {C(t), t ∈ J} of bounded linear operators in the Banach space X is
called a strongly continuous cosine family if

(i) C(s+ t) + C(s− t) = 2C(s)C(t), for all s, t ∈ J ;

(ii) C(0) = I;

(iii) C(t)x is continuous in t on J , for each x ∈ X .

Define the associated sine family S(t), t ∈ J by

S(t)x :=

∫ t

0

C(s)xds, x ∈ X, t ∈ J

The infinitesimal generator of a strongly continuous cosine family {C(t), t ∈ J} is the operator A : X → X ,
defined by

Ax = lim
t→0

d2

dt2
C(t)x, x ∈ D(A),

where D(A) := {x ∈ X : C(t)x is twice continuously differentiable in t}.
Define E := {x ∈ X : C(t)x is twice continuously differentiable in t}. We assume

(HA) A is the infinitesimal generator of a strongly continuous cosine family {C(t), t ∈ J} of bounded linear
operators in the Banach space X .

To establish our main theorem, we need the following lemmas.

Lemma 2.10. Let (HA) hold. Then

(i) there exist constants M ≥ 1 and ω ≥ 0 such that ∥C(t)∥ ≤ Meω|t| and

∥S(b)− S(a)∥ ≤ M |
∫ a

b

eω|s|ds|, for a, b ∈ J ;

(ii) S(t)X ⊂ E and S(t)E ⊂ D(A), for t ∈ J;
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(iii) d
dtC(t)x = AS(t)x, for x ∈ E and t ∈ J;

(iv) d2

dt2C(t)x = AC(t)x, for x ∈ D(A) and t ∈ J .

Further we denote by∥C(t)∥ and ∥S(t)∥ the operators norm of C(t), S(t) for t ∈ [0, T ] in the Banach space
E, respectively. From assumption (HA) it follows that there is a constant M ≥ 1 such that

∥C(t)∥ ≤ M and ∥S(t)∥ ≤ M for t ∈ [0, T ].

Lemma 2.11. [25] Let (HA) hold and v : R → X be such that v is continuous and let q(t) =
∫ t

0
S(t−s)v(s)ds.

Then q is twice continuously differentiable and, for t ∈ I: q(t) ∈ D(A), q′(t) =
∫ t

0
C(t− s)v(s)ds and

q′′(t) =

∫ t

0

C(t− s)v′(s)ds+ C(t)v(0) = Aq(t) + v(t).

3. Main results

We first give the following hypotheses:

(HA) A is the infinitesimal generator of a strongly continuous cosine family {C(t), t ∈ I} of bounded linear
operators in the Banach space X .

(Hf ) (i) (t, x, y) 7→ f(t, x, y) satisfies the Carathéodory conditions, i.e. f(., x, y) is measurable for x, y ∈ E

and f(t, ., .) is continuous for a.e. t ∈ [0, T ]

(ii) There exist m ∈ L1([0, T ],R+) such that ∥f(t, x, y)∥ ≤ m(t)(∥x∥+ ∥y∥) for a.e. t ∈ [0, T ] and all
x ∈ E.

(iii) There exists a function l ∈ L1([0, T ],R+) such that for any bounded subset
B,D ⊂ E,α(f(t, B,D)) = l(t)max{α(B), α(D)} for a.e. t ∈ [0, T ].

(Hg) (i) g is continuous.

(ii) There is nonnegative constant q such that α(g(D)) ≤ qαpc1(D) for any bounded set
D ⊂ PC1([0, T ], E).

(H) (i) Ii and Di are continuous.

(ii) There exist nonnegative constants k1i and k2i such that α(Ii(B)) ≤ k1i α(B) and α(Di(B,D)) ≤
k2i max(α(B), α(D)) for any nonempty and bounded subset B,D ⊂ E and i = 1, ..., p.

(HR) There exists a number R > 0 such that

max(η1(R), η1(R)) ≤ R,

where,

η1(R) = M
[
∥x0∥+ ∥x1∥+ C1

]
+ 2MR sup

t∈[0,T ]

( ∫ t

0

m(s)ds
)
+Mp(C2 + C3)

and

η2(R) = M
[
∥A∥(∥x0∥+ C1) + ∥x1∥

]
+ 2MR sup

t∈[0,T ]

( ∫ t

0

m(s)ds
)
+Mp(∥A∥C2 + C3),
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where
C1 = sup

x∈Bpc1 (R)

g(∥x∥),

C2 = sup
x∈Bpc1 (R)

∥Ii(x(ti))∥

and
C3 = sup

x∈Bpc1 (R)

∥Di(x(ti), x
′(ti))∥.

Next, let us start by defining what we mean by a solution of the problem (1.1)(see [6]).

Definition 3.1. A function x ∈ PC1([0, T ], E) is said to be a mild solution of the problem (1.1) if x satisfies the
equation

x(t) = C(t)[x0 + g(x)] + S(t)x1 +

∫ t

0

S(t− s)f(s, x(s), x′(s))ds

+
∑

0<ti<t

C(t− ti)Ii(x(ti)) +
∑

0<ti<t

S(t− ti)Di(x(ti), x
′(ti)), t ∈ [0, T ]. (3.1)

Remark 3.2. Assumptions (Hf )(i), (Hg)(ii) and (H)(ii) imply that mappings f , g, Ii and Ii are bounded on
bounded subsets of PC1([0, T ], E) and E, respectively.

To simplify the writing and the calculation one poses

L̃ =

∫ T

0

l(s)ds, S1 =
∑

0<ti<t

k1i and S2 =
∑

0<ti<t

k2i

.

Theorem 3.3. Let E be a separable Banach space. Assume that the assumptions (HA), (Hf ), (Hg),(H) and
(HR) are satisfied. If

max{q + L̃+ S1 + S2; ∥A∥q + L̃+ ∥A∥S1 + S2} <
1

M
,

then for each x0 ∈ E, the equation (1.1) has at least one mild solution x in PC1(J,E).

Proof. Consider the operator Fx : PC1([0, T ], E) → PC1([0, T ], E) define by

(Fx)(t) = C(t)[x0 + g(x)] + S(t)x1 +

∫ t

0

S(t− s)f(s, x(s), x′(s))ds

+
∑

0<ti<t

C(t− ti)Ii(x(ti)) +
∑

0<ti<t

S(t− ti)Di(x(ti), x
′(ti)), t ∈ [0, T ]. (3.2)

It easy to see that (Fx) ∈ PC([0, T ], E) for x ∈ PC1([0, T ], E). Moreover,

(Fx)′(t) =
∂(Fx)

∂t
(t) = AS(t)[x0 + g(x)] + C(t)x1 +

∫ t

0

C(t− s)f(s, x(s), x′(s))ds

+
∑

0<ti<t

AS(t− ti)Ii(x(ti)) +
∑

0<ti<t

C(t− ti)Di(x(ti), x
′(ti)), t ∈ [0, T ]. (3.3)

Then, we get that (Fx)′ ∈ PC([0, T ], E) and therefore, Fx ∈ PC1([0, T ], E). So, F maps the Banach space
PC1([0, T ], E) into itself. Next, Let R be a positive number satisfying the inequality from assumption (HR). Taking an
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arbitrary function x ∈ Bpc1(R), we get

∥Fx(t)∥pc ≤ M
[
∥x0∥+ g(∥x∥)

]
+M∥x1∥+M

∫ t

0

m(s)(∥x(s)∥+ ∥x′(s)∥)ds

+ M
∑

0<ti<t

∥Ii(x(ti))∥+M
∑

0<ti<t

∥Di(x(ti), x
′(ti))∥

≤ M
[
∥x0∥+ sup

x∈B
pc1

(R)

g(∥x∥)
]
+M∥x1∥

+ 2M sup
t∈[0,T ]

( ∫ t

0

m(s)max{∥x(s)∥, ∥x′(s)∥}ds
)

+ M
∑

0<ti<t

sup
x∈B

pc1
(R)

∥Ii(x(ti))∥+M
∑

0<ti<t

sup
x∈B

pc1
(R)

∥Di(x(ti), x
′(ti))∥

≤ η1(R). (3.4)

Similarly,

∥(Fx)′(t)∥pc ≤ M∥A∥
[
∥x0∥+ g(∥x∥)

]
+M∥x1∥+M

∫ t

0

m(s)(∥x(s)∥+ ∥x′(s)∥)ds

+ M∥A∥
∑

0<ti<t

∥Ii(x(ti))∥+M
∑

0<ti<t

∥Di(x(ti), x
′(ti))∥

≤ M
[
∥x0∥+ sup

x∈B
pc1

(R)

g(∥x∥)
]
+M∥x1∥

+ 2M sup
t∈[0,T ]

( ∫ t

0

m(s)max{∥x(s)∥, ∥x′(s)∥}ds
)

+ M∥A∥
∑

0<ti<t

sup
x∈B

pc1
(R)

∥Ii(x(ti))∥+M∥
∑

0<ti<t

sup
x∈B

pc1
(R)

∥Di(x(ti), x
′(ti))∥

≤ η2(R), (3.5)

and thus,

∥(Fx)(t)∥pc1 = max
{
∥(Fx)(t)∥pc, ∥(Fx)′(t)∥pc

}
≤ max

{
η2(R), η2(R)

}
= η(R) ≤ R. (3.6)

The last inequality shows that (Fx) ∈ Bpc1(R) for x ∈ Bpc1(R), that is F (Bpc1(R)) ⊂ Bpc1(R). Now, we prove that
operator F is continuous in Bpc1(R). To do this, let us fix x ∈ Bpc1(R) and take an arbitrary sequence (xn) ∈ Bpc1(R)

such that xn → x in Bpc1(R). It also implies that the family {Fx x ∈ Bpc1(R)} is equibounded. Next, we shall show that
the family {Fx x ∈ Bpc1(R)} is equicontinuous on each interval of continuity Jk, k = 0, 1, ..., p. For this, let x ∈ Bpc1(R)

and 0 ≤ t1 < t2 ≤ T . Then we have

(Fx)′(t2)− (Fx)′(t1) = A[S(t2)− S(t1)][x0 + g(x)] + [C(t2)− C(t2)]x1

+

∫ t1

0

[C(t2 − s)− C(t2 − s)]f(s, x(s), x′(s))ds+

∫ t2

t1

C(t2 − s)f(s, x(s), x′(s))ds

+
∑

0<ti<t1

A[S(t2 − ti)− S(t1 − ti)]Ii(x(ti)) +
∑

t1<ti<t2

A[S(t2 − ti)]Ii(x(ti))

+
∑

0<ti<t1

[C(t2 − ti)− C(t1 − ti)]Di(x(ti), x
′(ti)) +

∑
t1<ti<t2

[C(t2 − ti)]Di(x(ti), x
′(ti).
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So,

∥(Fx)′(t2)− (Fx)′(t1)∥ ≤ ∥A∥∥S(t2)− S(t1)∥[∥x0∥+ ∥g(x)∥] + [∥C(t2)− C(t2)∥]∥x1∥

+

∫ t1

0

[∥C(t2 − s)− C(t2 − s)∥]∥f(s, x(s), x′(s))∥ds+
∫ t2

t1

∥C(t2 − s)∥∥f(s, x(s), x′(s))∥ds

+
∑

0<ti<t1

∥A∥[∥S(t2 − ti)− S(t1 − ti)∥]∥Ii(x(ti))∥+
∑

t1<ti<t2

∥A∥∥S(t2 − ti)∥∥Ii(x(ti))∥

+
∑

0<ti<t1

∥C(t2 − ti)− C(t1 − ti)∥∥Di(x(ti), x
′(ti))∥+

∑
t1<ti<t2

∥C(t2 − ti)∥∥Di(x(ti), x
′(ti)∥.

Then,

∥(Fx)′(t2)− (Fx)′(t1)∥ ≤ ∥A∥∥S(t2)− S(t1)∥[∥x0∥+ C1] + ∥C(t2)− C(t2)∥∥x1∥

+ R

∫ t1

0

[∥C(t2 − s)− C(t2 − s)∥]m(s)ds+MR

∫ t2

t1

m(s)ds

+ ∥A∥C2

∑
0<ti<t1

∥S(t2 − ti)− S(t1 − ti)∥+ ∥A∥MC2i(t1, t2)

+ C3

∑
0<ti<t1

∥C(t2 − ti)− C(t1 − ti)∥+Mi(t1, t2). (3.7)

where, i(t1, t2) is the number of instants of impulse effect in the interval [t1, t2). First, notice that the right-hand side of
inequality is independant of the choose of x ∈ Bpc1(R). Further, from the uniform continuity of C(t) and S(t) on J in the
operator norm, all norm in the right-hand side converge to 0 as t1 → t2. Finally i(t1, t2) is zero for t1, t2 both in one of the
intervals of continuity Jk, k = 0, 1, ..., p. This, prove that the family of functions {(Fx)′ : x ∈ Bpc1(R)} is equicontinuous
on each interval Jk, k = 0, 1, ..., p. In what follows, we will show that F is a strict set contraction from PC1(J,E) into
itself. Let Q be a bounded set of PC1(J,E). Then F (Q) ⊂ PC1(J,E) is bounded and by (3.7) the elements of (F (Q))′

are equicontinuous on each interval Jk, k = 0, 1, ..., p. Hence by lemma 2.4, we get

αpc1(FQ) = max{sup
t∈J

α((FQ)(t)), sup
t∈J

α((FQ)′(t))}. (3.8)

Firstly,

α((FQ)(t)) ≤ Mα(g(Q)) +M

∫ t

0

α(f(s,Q(s), Q′(s)))ds

+ M
∑

0<ti<t

α(Ii(Q(ti))) +M
∑

0<ti<t

α(Di(Q(ti), Q
′(ti))

≤ Mqαpc1(Q) +Mαpc1(Q)

∫ t

0

l(s)ds

+ M
∑

0<ti<t

k1
iα(Q(ti))) +Mαpc1(Q)

∑
0<ti<t

k2
i

≤ M(q + L̃+ S1 + S2)αpc1(Q). (3.9)

Similarly,

α((FQ)(t)) ≤ M(∥A∥q + L̃+ ∥A∥S1 + S2)αpc1(Q). (3.10)

Finally, inequalities (3.8), (3.9) and (3.10) imply that

αpc1((FQ)) ≤ MKαpc1(Q),

where K = max(∥A∥q + L̃+ ∥A∥S1 + S2, q + L̃+ S1 + S2)

By lemma 2.5 the theorem (3.3) is proved.
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4. Application

Consider the following impulse scalar second order differential equation with nonlocal conditions

x′′(t) = x(t) + arctan(t)

18+t2

[
x(t) + x′(t)

]
, t ∈ J = (0, 1]\{β1, β2, ..., β5}

x(0) = x0 +
1
9

3∑
j=1

2−jx(tj), x
′(0) = x1

△(x( 1
4
)) = 1

30
x( 1

4
), i = 0, ..., 5

△(x′( 1
4
)) = 1

100
(x( 1

4
) + x′( 1

4
)),

(4.1)

where 0 < β1 < β2 < ... < β5 < 1 and tj ∈ (0, 1], j = 1, 2, ..., p. Here E = R, C(t) = cosh(t), S(t) = sinh(t),
max
t∈[0,1]

cosh(t) = cosh(1) < 3. Since arcosh(3) = 1,7627, max
t∈[0,1]

sinh(t) = sinh(1) < 3, thus we can choose M = 3. It is

easy to see that f(t, x, y) = 1
1+t2

√
x2 + y2 satisfies to the inequality |f(t, x, y)| ≤ 1

18+t2
(|x| + |y|) for all t ∈ [0, 1] and

x, y ∈ R. Similarly, it is not difficult to show that

q =
1

9

3∑
j=1

(
1

2
)j , k1

i = 1
9

, k2
i = 1

9
and l(s) = π

2(18+s2)
. If we take R = 3 it is easy to see that when ∥x0∥ + ∥x1∥ < 13

30

and q + L + S1 + S2 < 1
3

. Then all conditions of theorem (3.3) are satisfied. Thus, our conclusion follows from the main
theorem.
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