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Abstract. In this paper, we compute the square roots of p-adic numbers in Qp, using the secant method. We also study
the performance of this method: the speed of its convergence and the number of iterations necessary to obtain the desired
precision M which represents the number of p-adic digits in the development of
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1. Introduction and Background

For a few hundred years theoretical physics has been developed on the basis of real and, later, complex
numbers. This mathematical model of physical reality survived even in the process of the transition from classical
to quantum physics, complex numbers became more important than real, but not essentially more so than in the
Fourier analysis which was already being used, e.g., in classical electrodynamics and acoustics. However, in the
last 20 years the field of p-adic numbers Qp (as well as its algebraic extensions, including the field of complex
p-adic numbers Cp) has been intensively used in theoretical and mathematical physics. Thus, notwithstanding the
fact that p-adic numbers were only discovered by K. Hensel around the end of the nineteenth century, the theory
of p-adic numbers has already penetrated intensively into several areas of mathematics and its applications.

For each prime p, we will get a new field called the field of p-adic numbers denoted by Qp. These fields
will be constructed in a manner analogous to the way the real number system R is constructed from Q (see
[1, 4, 6, 7]). The p-adic numbers can be used to consider and study congruences modulo p and modulo pn and
have many applications in classical number theory.

The root-finding problem is one of the most important computational problems. It arises in a wide variety of
practical applications in physics, chemistry, biosciences, engineering, etc. As a matter of fact, determination of
any unknown appearing implicitly in scientific or engineering formulas gives rise to a root-finding problem. The
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Root-Finding Problem is the problem of finding a root of the equation f(x) = 0, where f is a function of a single
variable x. Specifically, the problem is stated as follows: Given a function f . Find a number x = α such that
f(α) = 0.

Except for some very special functions, it is not possible to find an analytical expression for the root, from
where the solution can be exactly determined. Thus, most computational methods for the root-finding problem
have to be iterative in nature. Two important aspects of an iterative method are convergence and stopping criterion.

The idea behind an iterative method is the following: Starting with an initial approximation x0, construct
a sequence of iterates (xn)n using an iteration formula with a hope that this sequence converges to a root of
f(x) = 0.

In this present paper we will see how we can use classical root-finding method (secant method) and explore
a very interesting application of tools from numerical analysis to number theory. We use this method to calculate
the zero noted α of a p-adic continuous function f defined on Qp. The number α represents the square root of a
p-adic number a ∈ Q∗p.

To calculate the square root of a p-adic number a ∈ Q∗p, one studies the following problem

f(x) = x2 − a = 0, a ∈ Q∗p. (1.1)

Our goal is to calculate the first numbers of the p-adic development of the solution of the previous equation, and
this solution is approached by a sequence of the p-adic numbers (xn)n ⊂ Qp constructed by the secant method.

In fact, several studies have been made with regards to finding square roots and cubic roots of p-adic numbers.
In 2010, for instance, Knapp and Xenophontos [12] showed how classical root-finding methods from numerical
analysis can be used to calculate inverses of units modulo prime powers. In the same year, Zerzaihi, Kecies and
Knapp [15] applied some classical root-finding methods, such as the fixed-point method, in finding square roots
of p-adic numbers through Hensel’s lemma. In 2011, Zerzaihi and Kecies [13] used secant method to find the
cubic roots of p-adic numbers. These authors [14] then applied the Newton method to find the cubic roots of p-
adic numbers in Qp. A similar problem also appeared in [8] wherein Ignacio et al. computed the square roots of
p-adic numbers via Newton-Raphson method.

The paper is organized as follows. The next section recalls several concepts about Qp which will be used
through the paper. Our main contribution is formally stated and proved in section 3. The paper ends with
conclusions and final remarks.

2. Preliminaries

Definition 2.1. Let p be a prime number. We define the p-adic valuation vp(·) of a rational number x ∈ Q by the
following definition:
(i) If x ∈ Z∗, then vp(x) is equal to the highest power of p which divides x.
(ii) If x = a

b ∈ Q∗, then vp(x) = vp(a)− vp(b). The p−adic valuation of x ∈ Q is also called the p-adic order
and denoted as ord(x).
(iii) We set vp(0) = +∞. The reason to set vp(0) = +∞ is that we can divide 0 by pn for each n ∈ N.

Definition 2.2. Let the function |·|p : Q −→ R be defined as

|x|p =


p−vp(x), if x 6= 0,

0, if x = 0.

(2.1)

|·|p is called the p-adic norm on Q.

Remark 2.3.
1) The p-adic norm satisfies the non-archimedean property

|x+ y|p ≤ max
{
|x|p , |y|p

}
for all x, y ∈ Q, (2.2)
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and we say that the p-adic norm is ultra-metric or non-archimedean.
2) An important property of the p-adic norm is the discreteness of its image. It is clear that the function |·|p takes
its values in a discrete subset of R+(namely {0} ∪ {pn, n ∈ Z}).

Since for any prime p the p-adic norm is a norm hence it defines a p-adic distance function on Q given by

Definition 2.4. The p-adic norm induces a metric dp : Q×Q −→ R+ given by

dp(x, y) = |x− y|p for all x, y ∈ Q, (2.3)

this metric is called the p-adic metric.

Further since the p-adic norm is non-archimedean it follows that the p-adic distance function is an ultrametric
and satisfies

dp(x, y) ≤ max {dp(x, z), dp(z, y)} for all x, y, z ∈ Q. (2.4)

Definition 2.5. For each prime p, the normed field Qp of p-adic numbers is the completion of the field of rational
numbers Q with respect to the p-adic norm |·|p which contains the rational numbers Q as a dense subset. The
norm on Qp induced by the p-adic norm on Q, will be considered an extension of the p-adic norm, and will
therefore also be denoted by |·|p. Further each of these fields is distinct from the real numbers R and for different
primes p1, p2 the fields are distinct.

Remark 2.6. The elements of Qp are equivalent classes of Cauchy sequences in Q with respect to the extension
of the p-adic norm. For some x ∈ Qp, let (xn)n be a Cauchy sequence of rational numbers representing a. Then
by definition

|x|p = lim
n−→+∞

|xn|p . (2.5)

Proposition 2.7. [2] Let p be a fixed prime and Qp the field of p-adic numbers. Given x ∈ Qp, there exists a
unique sequence of integers (βN )n≥N , with N = vp(x), such that 0 ≤ βn ≤ p− 1 for all n and

x = βNp
N + βN+1p

N+1 + ...+ βnp
n + ... =

∞∑
k=N

βkp
k. (2.6)

Remark 2.8.
1) The representation (2.6) is called the canonical p-adic expansion of p-adic number x.
2) There is a one-to-one correspondence between the power series expansion

βNp
N + βN+1p

N+1 + ...+ βnp
n + ... (2.7)

and the short representation βNβN+1βN+2..., where only the coefficients of the powers of p are shown. We can
use the p-adic point as a device for displaying the sign of N .

βNβN+1βN+2...β−2β−1 · β0β1β2... for N < 0,

·β0β1β2... for N = 0,

·000...0β0β1β2... for N > 0.

(2.8)

The most important fact has already been noted: Qp is a complete metric space, hence every Cauchy sequence
converges. Cauchy sequences are characterized as follows

Theorem 2.9. [10] A sequence (an) in Qp is a Cauchy sequence, and therefore convergent, if and only if it
satisfies

lim
n−→+∞

|an+1 − an|p = 0. (2.9)
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The following result is an important tool for determining whether a series of p-adic numbers converge in Qp
or not.

Proposition 2.10. [10] A series
∞∑
n=0

an with an ∈ Qp converges in Qp if and only if lim
n−→+∞

an = 0, in which

case ∣∣∣∣∣
∞∑
n=0

an

∣∣∣∣∣
p

≤ max
n
|an|p . (2.10)

Definition 2.11. A p-adic number x ∈ Qp is a p-adic integer if its p-adic norm is less than or equal to 1, |x|p ≤ 1.
We denote the set of p-adic integers by Zp and hence

Zp =
{
x ∈ Qp : |x|p ≤ 1

}
. (2.11)

Lemma 2.12. [6] A p-adic number x ∈ Qp is a p-adic integer if and only if its canonical expansion has only
positive powers of p. That is

Zp =

{
x ∈ Qp : x =

∞∑
n=0

βnp
n

}
. (2.12)

The p-adic integers form a subring of Qp which contains Z.

Recall that a unit in a ring R with identity is an element which has amultiplicative inverse. In the rational
integers Z the only units are {−1, 1}. The situation is quite different in Zp where there are many units and in fact
every rational integer m relatively prime to p is invertible.

Definition 2.13. A p-adic integer x ∈ Zp is said to be a p-adic unit (or invertible) if the first digit β0 in the p-adic
p-adic expansion is different from zero. The set of p-adic units is denoted by Z×p or U(Zp). Hence we have

Z×p =

{
x =

∞∑
n=0

βnp
n : β0 6= 0

}
. (2.13)

It is also easy to see that
Z×p =

{
x ∈ Zp : |x|p = 1

}
. (2.14)

Z×p is also called the group of p-adic units.

The next result shows that any element of Qp is a product of an invertible p-adic integer and a power of p.

Proposition 2.14. [10] Let x be a p-adic number of norm p−n. Then x can be written as the product x = pnu,
where u ∈ Z×p .

The following result is very useful for our work.

Proposition 2.15. [10] We say that a and b ∈ Qp are congruent mod pn and write a ≡ b mod pn if and only if
|a− b|p ≤

1
pn .

Proposition 2.16. [1] Let (xn)n be a p-adic number sequence. If

lim
n−→+∞

xn = x, x ∈ Qp, |x|p 6= 0,

then the sequence of norms
{
|xn|p : n ∈ N

}
must stabilize for sufficiently large n, i.e., there exists N such that

|xn|p = |x|p ,∀n ≥ N. (2.15)
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The following proposition is modestly known as Hensel’s lemma.

Theorem 2.17. [3] (Hensel’s Lemma, first form). Let F (x) ∈ Zp [x] be a p-adic polynomial and assume there
exists α0 ∈ Zp such that F (α0) ≡ 0 mod p but F ′(α0) 6≡ 0 mod p. Then there exists a unique α ∈ Zp such
that F (α) = 0 and α ≡ α0 mod p.

Sometimes the stated Hensel’s lemma is not enough and one should use its generalization:

Theorem 2.18. [3] (Hensel’s Lemma, strong form). Let F (x) ∈ Zp [x] be a p-adic polynomial and assume
there exists α0 ∈ Zp such that F (α0) ≡ 0 mod p2k+1 but F ′(α0) 6≡ 0 mod pk+1. Then there exists a unique
α ∈ Zp such that F (α) = 0 and α ≡ α0 mod pk+1.

Actually Hensel’s lemma is valid for any complete nonarchimedian field.
As an application of the Hensel’s lemma, we investigate the squares in Qp.

Proposition 2.19. Let p be a prime number, then
1) If p 6= 2, then a p-adic number a ∈ Q∗p is a square if and only if a = p2nv2 for some n ∈ Z and v ∈ Z×p .
2) If p = 2, then a 2-adic number a ∈ Q∗2 is a square if and only if a = 22nv2 = 22nu for some n ∈ Z and u ≡ 1

mod 8.

Now, we are ready to give our main results.

3. Main Results

Solving non linear equations is one of the most important and challenging problems in science and engineering
applications. The root finding problem is one of the most relevant computational problems. It arises in a wide
variety of practical applications in Physics, Chemistry, Biosciences, Engineering, etc.

The Newton-Raphson method, or Newton Method, is a powerful technique for solving a nonlinear equations
f(x) = 0 numerically. We start with an initial approximation x0 and generate a sequence of approximations
(xn)n through the iterative formula

∀n ∈ N : xn+1 = xn −
f(xn)

f ′(xn)
. (3.1)

A major disadvantage of the Newton Method is the requirement of finding the value of the derivative of f ′(x)

at each approximation, which may not be practical for some choices of f . When the derivative of f(x) is either
hard or impossible to write down (and hence, to program), or when the computational effort required to evaluate
f ′(x) is very large compared to that for f(x), Newton method is impossible or costly to carry out. An alternative
is to approximate the derivative by a finite difference, that is, to write

f ′(xn) ≈ f(xn)− f(xn−1)

xn − xn−1
. (3.2)

The approximate Newton iteration can then be expressed in the following algorithm

∀n ∈ N∗ : xn+1 = xn −
f(xn)(xn − xn−1)

f(xn)− f(xn−1)
. (3.3)

This iteration is called the secant method because f(x) is approximated by a secant line through two points on
the graph of f , rather than a tangent line through one point on the graph. In the secant method, we always use xn
and xn−1 to generate xn+1.

We also study the performance of the secant method. The performance of the method is estimated by:
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a) The speed of convergence which is an important factor of the quality of the algorithms, if the speed of
convergence is high, the algorithm converges quickly and the computation time is less. To measure the speed of
convergence, we study the evolution of the sequence (en)n defined by

en = xn+n0+1 − xn+n0
. (3.4)

with n0 ∈ N. Roughly speaking, if the rate of convergence of a method is s, then after each iteration the number
of correct significant digits in the approximation increases by a factor of approximately s.

b) The number of iterations necessary to obtain the desired precision M which represents the number of
p-adic digits in the development of

√
a. So, it’s all about finding n such that

|xn+n0+1 − xn+n0
|p ≤ p

−M , (3.5)

this is equivalent to
vp(en) ≥ pM . (3.6)

The general principle of calculation is as follows,
Let a ∈ Q∗p a p-adic number such that

|a|p = p−vp(a) = p−2m,m ∈ Z, (3.7)

If (xn)n is a sequence of p-adic numbers that converges to a p-adic number α 6= 0, then from a certain rank one
has

|xn|p = |α|p ,

We also know that if there exists a p-adic number α such that α2 = a, then vp(a) is even and

|xn|p = |α|p = p−m. (3.8)

We consider the following equation
f(x) = x2 − a. (3.9)

Then, the iteration of the secant method associated with the function f is written in the form

∀n ∈ N∗ : xn+1 =
xnxn−1 + a

xn + xn−1
. (3.10)

The performance of the Secant method is given by the following theorem.

Theorem 3.1. If xn0−1 is the square root of a of order α and xn0
is the square root of a of order β, then

1) If p 6= 2, then xn+n0−1 is the square root of a of order πn, where the sequence (πn)n is defined by, for all
n ∈ N

πn =
(

1√
5

(β − α(1− Φ)) Φn + 1√
5

(−β + αΦ) (1− Φ)n
)

−2
((

1√
5

(
Φn+1 − (1− Φ)n+1

))
− 1
)
m.

(3.11)

Furthermore
∀n ∈ N : xn+n0 − xn+n0−1 ≡ 0 mod pηn , (3.12)

such as
∀n ∈ N : ηn = πn −m. (3.13)

Where Φ = 1+
√

5
2 is the golden ratio.

2) If p = 2, then xn+n0−1 is the square root of a of order π′n, where the sequence (π′n)n is defined by, for all
n ∈ N

π′n = πn − 2

((
1√
5

(
Φn+1 − (1− Φ)n+1

))
− 1

)
. (3.14)
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Furthermore
∀n ∈ N : xn+n0

− xn+n0−1 ≡ 0 mod 2η
′
n , (3.15)

such as
∀n ∈ N : η′n = π′n − (m+ 1) . (3.16)

Proof. Let (xn)n be the sequence defined by (3.10). We have

∀n ∈ N∗ : x2
n+1 − a =

(x2
n − a)(x2

n−1 − a)

(xn + xn−1)2
. (3.17)

We assume that xn0−1 (resp: xn0 ) is the square root of a of order α (resp: β), i.e,
x2
n0−1 ≡ a mod pα, α ∈ N,

x2
n0
≡ a mod pβ , β ∈ N.

Then 
vp
(
x2
n0−1 − a

)
≥ α,

vp
(
x2
n0
− a
)
≥ β.

Hence we obtain 
∣∣x2
n0−1 − a

∣∣
p
≤ p−α,∣∣x2

n0
− a
∣∣
p
≤ p−β .

Therefore, using the proposition (2.16) , we get

∣∣x2
n0+1 − a

∣∣
p

=

∣∣(x2
n0
− a)(x2

n0−1 − a)
∣∣
p

|xn0
+ xn0−1|2p

=
1

|4|p

∣∣x2
n0
− a
∣∣
p

∣∣x2
n0−1 − a

∣∣
p

p−2m
.

Since

|4|p =


1, if p 6= 2,

1
4 , if p = 2.

(3.18)

We have 
∣∣x2
n0+1 − a

∣∣
p
≤ p2mp−αp−β , if p 6= 2,∣∣x2

n0+1 − a
∣∣
2
≤ 2222m2−α2−β , if p 6= 2.

Consequently 
∣∣x2
n0+1 − a

∣∣
p
≤ p−(α+β−2m), if p 6= 2,∣∣x2

n0+1 − a
∣∣
2
≤ 2−(α+β−2m−2), if p 6= 2.

This gives 
x2
n0+1 − a ≡ 0 mod p(α+β)−2m if p 6= 2,

x2
n0+1 − a ≡ 0 mod 2(α+β)−2(m+1) if p = 2.
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In this manner, we find that if p 6= 2, then

∀n ∈ N : x2
n+n0−1 − a ≡ 0 mod pπn . (3.19)

The sequence (πn)n is defined by
∀n ∈ N : πn = Jn −mAn, (3.20)

Such that (Jn)n and (An)n are two linear recurrence sequences defined by
J0 = α, J1 = β,

∀n ∈ N∗ : Jn+1 = Jn−1 + Jn,

, (3.21)

and 
A0 = A1 = 0,

∀n ∈ N∗ : An+1 = An−1 +An + 2.

(3.22)

The general terms of the sequences (Jn)n and (An)n are given respectively by

∀n ∈ N : Jn =
1√
5

(β − α(1− Φ)) Φn +
1√
5

(−β + αΦ) (1− Φ)n. (3.23)

and

∀n ∈ N : An = 2

((
1√
5

(
Φn+1 − (1− Φ)n+1

))
− 1

)
. (3.24)

We obtain, for all n ∈ N

πn =
(

1√
5

(β − α(1− Φ)) Φn + 1√
5

(−β + αΦ) (1− Φ)n
)

−2
((

1√
5

(
Φn+1 − (1− Φ)n+1

))
− 1
)
m.

(3.25)

Furthermore
vp(x

2
n+n0−1 − a) ≥ πn. (3.26)

On the other hand, if p = 2, then

∀n ∈ N : x2
n+n0−1 − a ≡ 0 mod 2π

′
n . (3.27)

The sequence (π′n)n is defined by
∀n ∈ N : π′n = Jn − (m+ 1)An, (3.28)

Then, for all n ∈ N
π′n =

(
1√
5

(β − α(1− Φ)) Φn + 1√
5

(−β + αΦ) (1− Φ)n
)

−2
((

1√
5

(
Φn+1 − (1− Φ)n+1

))
− 1
)

(m+ 1).
(3.29)

Therefore

∀n ∈ N : π′n = πn − 2

((
1√
5

(
Φn+1 − (1− Φ)n+1

))
− 1

)
. (3.30)

Furthermore
v2(x2

n+n0−1 − a) ≥ π′n. (3.31)

On the other hand, we have

∀n ∈ N∗ : xn+1 − xn =
a− x2

n

xn + xn−1
. (3.32)
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Since

|2|p =


1, if p 6= 2,

1
2 , if p = 2.

(3.33)

We have

|xn+n0
− xn+n0−1|p =

∣∣a− x2
n+n0−1

∣∣
p

|xn+n0−1 + xn+n0−2|p
, (3.34)

Hence we obtain 
|xn+n0 − xn+n0−1|p ≤ pmp−πn , if p 6= 2,

|xn+n0 − xn+n0−1|2 ≤ 22m2−π
′
n , if p = 2.

(3.35)

and so 
xn+n0

− xn+n0−1 ≡ 0 mod pπn−m, if p 6= 2,

xn+n0 − xn+n0−1 ≡ 0 mod 2π
′
n−(m+1), if p = 2.

(3.36)

Therefore, if p 6= 2, then
∀n ∈ N : xn+n0 − xn+n0−1 ≡ 0 mod pηn . (3.37)

Where
∀n ∈ N : ηn = πn −m. (3.38)

Which give
vp(xn+n0

− xn+n0−1) ≥ ηn. (3.39)

If p = 2, then
∀n ∈ N : xn+n0

− xn+n0−1 ≡ 0 mod 2η
′
n , (3.40)

Where
∀n ∈ N : η′n = π′n − (m+ 1). (3.41)

It’s clear that

∀n ∈ N : η′n = ηn −
(

2

(
1√
5

(
Φn+1 − (1− Φ)n+1

))
− 1

)
, (3.42)

Which give
v2(xn+n0 − xn+n0−1) ≥ η′n. (3.43)

This completes the proof. �

The results obtained are presented here.

1. If p 6= 2, then the following are true.

(a) The speed of convergence of the sequence (xn)n is the order ηn.

(b) Since |1− Φ| < 1, then

ηn '
1√
5

(β − α(1− Φ)) Φn − 2√
5

(Φn+1 − 1)m, (3.44)

and if (β − α(1− Φ)− 2Φm) > 0, then the number of iterations n to obtain M correct digits is

n =

 ln
( √

5(M−m)
β−α(1−Φ)−2Φm

)
ln Φ

 . (3.45)
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2. If p 6= 2, then the following are true.

(a) The speed of convergence of the sequence (xn)n is the order η′n.

(b) If β − α(1− Φ)− 2Φ(m+ 1) > 0, then the number of iterations n to obtain M correct digits is

n =

 ln
( √

5(M−(m+1))
β−α(1−Φ)−2Φ(m+1)

)
ln Φ

 . (3.46)

According to the results obtained in this section, we conclude the following corollary.

Corollary 3.2. The order of convergence of the secant method is given by the positive number Φ = 1+
√

5
2

(superlinear order of convergence), this means the number of correct digits increases by a factor of approximately
Φ.

4. Conclusions

Let’s consider for p 6= 2 the sets defined by

S1 =
{
a ∈ Qp : |a|p = 1

}
if m = 0,

S2 =
{
a ∈ Qp : |a|p < 1

}
if m > 0,

S3 =
{
a ∈ Qp : |a|p > 1

}
if m < 0.

(4.1)

For p = 2, we consider the sets defined by

B1 = {a ∈ Q2 : |a|2 = 4} if m = −1,

B2 = {a ∈ Q2 : |a|2 < 4} if m > −1,

B3 = {a ∈ Q2 : |a|2 > 4} if m < −1.

(4.2)

Then we have the following conclusion.

1. If m < 0, then the convergence for any p-adic number (Resp: 2-adic) belongs to the set S3 (Resp: B3) is
faster than that of S1 (Resp: B1).

2. If m > 0, then the speed of convergence for any p-adic number (Resp: 2-adic) belongs to the set S2 (Resp:
B2) is slower than that of S1 (Resp: B1).
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