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Abstract. In this paper, the Weyl function for the Sturm-Liouville operator which contains the discontinuous coefficient and
discontinuity conditions at an interior point of the finite interval is defined and examined. The uniqueness theorem of solution
of the inverse spectral problem for the discontinuous Sturm-Liouville operator according to Weyl function is proved.
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1. Introduction and Background

This paper deals with the discontinuous Sturm-Liouville operator which contains both the discontinuous
coefficient and the discontinuity conditions at an interior point x = ξ ∈ (0, π) of the finite interval:

−ω′′ + q(x)ω = τ2r(x)ω, 0 < x < π (1.1)

ω (ξ + 0) = cω (ξ − 0) , ω′ (ξ + 0) = c−1ω′ (ξ − 0) (1.2)

ω′(0)− b1ω(0) = 0, ω′(π) + b2ω(π) = 0, (1.3)

where real valued function q(x) belongs to L2(0, π), c > 0, b1 and b2 are real constants, τ is a spectral parameter,
the discontinuous coefficient r(x) is in the following form:

r(x) =

{
1, 0 < x < ξ,

a2, ξ < x < π,

0 < a ̸= 1 and assume that ξ > aπ
a+1 .

In recent years, many works on the discontinuous boundary value problems have been done and there has
been a significant increase in interest on this subject. We indicate that such problems are connected with
discontinuous material properties, so the investigations on this problems are attractive in the mathematics, physics
and engineering (for details see [8]).
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The purpose of this study is to examine the inverse spectral problem for the discontinuous Sturm-Liouville
problem (1.1)-(1.3) and this problem is stated in the following way: given the Weyl function, construct the
boundary value problem (1.1)-(1.3). Therefore, firstly we define and examine the Weyl function of the problem
(1.1)-(1.3) and then the uniqueness theorem for the solution of this inverse spectral problem is proved.

Differently from other studies, considered problem contains both the discontinuous coefficient r(x) and the
discontinuity conditions at x = ξ ∈ (0, π). In the special cases, i.e., as c = 1, the inverse problems for Sturm-
Liouville operator with discontinuous coefficient by Weyl function are examined in [1, 4, 11] and as r(x) ≡ 1, the
inverse problems for Sturm-Liouville operator with discontinuity conditions by Weyl function are investigated in
[6, 7]. Moreover, the various works on the inverse problems for the discontinuous Sturm-Liouville operators can
be given as follows: [3, 5, 9, 10, 12–18] and the references therein.

The spectral properties of the boundary value problem (1.1)-(1.3) are studied in [2]; namely, the integral
representation of the solution of (1.1) with discontinuity conditions (1.2) is obtained and using this solution,
the asymptotic formulas of the eigenvalues and eigenfunctions of this problem are investigated. Note that the
constructed integral representation is not transformation operator, moreover; the kernel of this solution has a
discontinuity along the line t = −a(x − ξ) + a, for ξ < a < π. Unlike other studies, using this constructed
integral representation we prove the uniqueness theorem of the inverse spectral problem (1.1)-(1.3) by the Weyl
function.

Theorem 1.1. [2] The integral representation of the solution f(x, τ) of equation (1.1) with discontinuity
conditions (1.2) satisfying the conditions f(0, τ) = 1, f ′(0, τ) = iτ has the form:

f(x, τ) = f0(x, τ) +

∫ α(x)

−α(x)

k(x, t)eiτtdt, (1.4)

where

f0(x, τ) =

{
eiτx, 0 < x < ξ,

κ1e
iτ(a(x−ξ)+ξ) + κ2e

iτ(−a(x−ξ)+ξ), ξ < x < π,

with κ1 = 1
2

(
c+ 1

ac

)
and κ2 = 1

2

(
c− 1

ac

)
,

α(x) =

{
x, 0 < x < ξ,

a(x− ξ) + ξ, ξ < x < π,

the kernel k(x, .) ∈ L1(−α(x), α(x)) for each fixed x ∈ (0, π) and satisfies the inequality∫ α(x)

−α(x)

|k(x, t)|dt ≤ epσ(x) − 1

with

σ(x) =

∫ x

0

(x− u)|q(u)|du, p = (a+ 4)|κ1|+ (a+ 2)|κ2|.

Remark 1.2. The function k(x, t) has following properties:

k(x, α(x)) =


1
2

∫ x

0
q(u)du, 0 < x < ξ,

κ1

2

∫ x

0
1√
r(u)

q(u)du, ξ < x < π,

k (x,−a(x− ξ) + ξ + 0)− k (x,−a(x− ξ) + ξ − 0) =
−κ2
2

(∫ ξ

0

q(u)du− 1

a

∫ x

ξ

q(u)du

)
, ξ < x < π,

k(x,−α(x)) = 0.

Moreover, it is seen that the real-valued function k(x, t) has a discontinuity along the line t = −a(x− ξ)+ ξ for
ξ < x < π.
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Now, take into account the case of b1 = ∞ in the boundary condition (1.3). Then, the boundary condition is
as follows:

ω(0) = ω′(π) + b2ω(π) = 0 (1.5)

and consider the boundary value problems (1.1)-(1.3) and (1.1),(1.2),(1.5).
Denote u(x, τ) and v(x, τ) by the solutions of the equation (1.1) with the condition (1.2) under the initial

conditions
u(0, τ) = 1, u′(0, τ) = b1,

v(0, τ) = 0, v′(0, τ) = 1.

Using the integral representation (1.4), we express the solutions u(x, τ) and v(x, τ) in the following forms:

u(x, τ) = u0(x, τ) +

∫ α(x)

0

(
h(x, t) cos τt+ h̃(x, t)

b1 sin τt

τ
dt

)
,

and

v(x, τ) = v0(x, τ) +

∫ α(x)

0

h̃(x, t)
sin τt

τ
dt,

where for 0 < x < ξ :

u0(x, τ) = cos τx+
b1 sin τx

τ
, v0(x, τ) =

sin τx

τ

and for ξ < x < π :

u0(x, τ) = κ1

(
cos τυ+(x) +

b1 sin τυ
+(x)

τ

)
+ κ2

(
cos τυ−(x) +

b1 sin τυ
−(x)

τ

)
,

v0(x, τ) = κ1
sin τυ+(x)

τ
+ κ2

sin τυ−(x)

τ

with υ±(x) = ±a(x− ξ) + ξ, h(x, t) = k(x, t) + k(x,−t) and h̃(x, t) = k(x, t)− k(x,−t), respectively.
Let ϕ(x, τ) be the solution of the equation (1.1) with the condition (1.2) under the initial conditions

ϕ(π, τ) = −1, ϕ′(π, τ) = b2.

The characteristic functions χ(τ) and φ(τ) of the problems (1.1)-(1.3) and (1.1), (1.2) and (1.5) can be given as
follows:

χ(τ) = u′(π, τ) + b2u(π, τ) = ϕ′(0, τ)− b1ϕ(0, τ) (1.6)

φ(τ) = v′(π, τ) + b2v(π, τ) = −ϕ(0, τ), (1.7)

respectively. It is known from [2] that

|χ(τ)| ≥ Cδ|τ |e|Imτ |υ+(π), τ ∈ Gδ, (1.8)

where Gδ = {τ : |τ − τ̃n| ≥ δ}, here τ̃n = nπ
υ+(π) + dn, sup

n
|dn| = d < ∞ and δ << s

2 is a sufficiently small

positive number with s = inf
n ̸=k

|τ̃n − τ̃k| > 0. Moreover, from the expression of the solution v(x, τ), we have

|φ(τ)| ≤ Ce|Imτ |υ+(π). (1.9)

Theorem 1.3. [2] The boundary value problem (1.1)-(1.3) has a countable set of eigenvalues {τ2n}n≥1:

τn = τ̃n +
sn
τ̃n

+
tn
n
,

where sn is a bounded sequence and {tn} ∈ l2.
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The norming constants γn of the problem (1.1)-(1.3) are defined by

γn =

∫ π

0

u2(x, τ)r(x)dx.

Moreover, the following asymptotic formulas of the solutions u(x, τ), v(x, τ) and ϕ(x, τ) are valid for |τ | → ∞:

u(x, τ) = O(e|Imτ |α(x)), v(x, τ) = O

(
e|Imτ |α(x)

|τ |

)
,

ϕ(x, τ) = O(e|Imτ |(α(π)−α(x))). (1.10)

Note that when q(x) ≡ 0 in the equation (1.1), the solution ϕ0(x, τ) has the representation:

ϕ0(x, τ) = −a(κ1 cos τ(υ+(π)− x)− κ2 cos τ(υ
−(π)− x))

−b2
(
κ1

sin τ(υ+(π)− x)

τ
+ κ2

sin τ(υ−(π)− x)

τ

)
, 0 < x < ξ,

ϕ0(x, τ) = − cos τ(υ+(π)− υ+(x))− b2 sin τ(υ
+(π)− υ+(x))

aτ
, ξ < x < π.

2. Main Results

Now, let us examine the Weyl solution and Weyl function for the boundary value problem (1.1)-(1.3).
Denote ψ(x, τ) by a solution of the equation (1.1) with the condition (1.2) satisfying the conditions

ψ′(0, τ)− b1ψ(0, τ) = 1, ψ′(π, τ) + b2ψ(π, τ) = 0.

Then, it is obtained that

ψ(x, τ) =
ϕ(x, τ)

χ(τ)
= v(x, τ) +m(τ)u(x, τ), (2.1)

where m(τ) = ψ(0, τ). The functions ψ(x, τ) and m(τ) are called the Weyl solution and Weyl function,
respectively. Moreover, taking into account (1.7), we can write

m(τ) =
ϕ(0, τ)

χ(τ)
= −φ(τ)

χ(τ)
. (2.2)

Hence, it can be seen that Weyl function m(τ) is meromorphic function with simple poles in the points τ = τn,

n ≥ 1. The squares of the poles and zeros of m(τ) coincide with the eigenvalues of the problems (1.1)-(1.3) and
(1.1), (1.2), (1.5), respectively.

Theorem 2.1. The representation is valid:

m(τ) =

∞∑
n=1

1

γn(τ2 − τ2n)
. (2.3)

Proof. Taking into account (1.8), (1.9) and (2.2) we have for sufficiently large τ∗ > 0

|m(τ)| ≤ Cδ

|τ |
, τ ∈ Gδ, |τ | ≥ τ∗. (2.4)

Using the relations χ̇(τn) = 2τnγnµn and ϕ(x, τn) = µnu(x, τn) with µn ̸= 0 (see [2]), we find φ(τn) =

−ϕ(0, τn) = −µn. Then, it follows from this relation that

Res
τ=τn

m(τ) = −φ(τn)
χ̇(τn)

=
1

2τnγn
. (2.5)

359



Ozge AKCAY KARAKUS

Now, consider the contour integral

JN (τ) =
1

2πi

∫
ΓN

m(ζ)

ζ − τ
dζ, τ ∈ intΓN ,

where ΓN = {τ : |τ | = |τ̃n| + s
2}. It follows from (2.4) that lim

N→∞
JN (τ) = 0. Moreover, applying the residue

theorem and from (2.5), we find

JN (τ) = m(τ) +

N∑
n=1

1

2τnγn

(
1

(τn − τ)
− 1

(τn + τ)

)

= m(τ)−
N∑

n=1

1

γn(τ2 − τ2n)
.

Thus, as N → ∞, since lim
N→∞

JN (τ) = 0, we obtain the relation (2.3). ■

Now, we examine the inverse problem indicated in the following way: given the Weyl function m(τ),
determine the boundary value problem (1.1)-(1.3).

Let us demonstrate the uniqueness theorem of the solution for this inverse problem. Then, we specify the
boundary value problem (1.1)-(1.3) as L = L(q(x), b1, b2) and we take the problem L̂ = L(q̂(x), b̂1, b̂2) which
has a similar form to L but with different potential and coefficients in the boundary conditions.

Theorem 2.2. If m(τ) = m̂(τ), then L = L̂. Namely, the Weyl function uniquely determines the problem
(1.1)-(1.3).

Proof. Denote the matrix U(x, τ) = [Ukℓ(x, τ)]k,ℓ=1,2 by the relation

U(x, τ)

(
û(x, τ) ψ̂(x, τ)

û′(x, τ) ψ̂′(x, τ)

)
=

(
u(x, τ) ψ(x, τ)

u′(x, τ) ψ′(x, τ)

)
. (2.6)

It follows from the equality
⟨u(x, τ), ψ(x, τ)⟩ = 1 (2.7)

and the formula (2.6) that

Uk1(x, τ) = u(k−1)(x, τ)ψ̂′(x, τ)− ψ(k−1)(x, τ)û′(x, τ),

Uk2(x, τ) = ψ(k−1)(x, τ)û(x, τ)− u(k−1)(x, τ)ψ̂(x, τ), k = 1, 2

(2.8)

and
u(x, τ) = U11(x, τ)û(x, τ) + U12(x, τ)û

′(x, τ),

ψ(x, τ) = U11(x, τ)ψ̂(x, τ) + U12(x, τ)ψ̂
′(x, τ).

(2.9)

Using (2.1), (2.7) and (2.8), we obtain

U11(x, τ) = 1 + u(x, τ)

(
ϕ̂′(x, τ)

χ̂(τ)
− ϕ′(x, τ)

χ(τ)

)
+
ϕ(x, τ)

χ(τ)
(u′(x, τ)− û′(x, τ))

and

U12(x, τ) = û(x, τ)
ϕ(x, τ)

χ(τ)
− u(x, τ)

ϕ̂(x, τ)

χ̂(τ)
.
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With the help of the asymptotic formulas (1.10) and the inequality (2.4), we find

lim
|τ |→∞
τ∈Gδ

max
0≤x≤π

|U11(x, τ)− 1| = lim
|τ |→∞
τ∈Gδ

max
0≤x≤π

|U12(x, τ)| = 0. (2.10)

According to (2.1) and (2.8), we can write

U11(x, τ) = u(x, τ)v̂′(x, τ)− v(x, τ)û′(x, τ) + u(x, τ)û′(x, τ)(m̂(τ)−m(τ)),

U12(x, τ) = v(x, τ)û(x, τ)− u(x, τ)v̂(x, τ) + u(x, τ)û(x, τ)(m(τ)− m̂(τ)).

If m(τ) = m̂(τ), then the functions U11(x, τ) and U12(x, τ) are entire in τ and according to (2.10), we have
U11(x, τ) ≡ 1 and U12(x, τ) ≡ 0. Putting these relations into (2.9), we find u(x, τ) ≡ û(x, τ) and ψ(x, τ) ≡
ψ̂(x, τ), thus we obtain L = L̂. As a result, it is shown that the problem (1.1)-(1.3) is uniquely determined by
the Weyl function m(τ). ■

Remark 2.3. Taking into account the Weyl function expansion (2.3), it can be seen that the Weyl function m(τ)

is represented by the spectral data {τ2n, γn}n≥1. Then, we can state that the spectral data {τ2n, γn}n≥1 uniquely
determines the boundary value problem (1.1)-(1.3).

Considering the relation (2.2) it is appeared that the poles and zeros of the Weyl function m(τ) coincide with
the zeros τn and λn of the characteristic functions χ(τ) and φ(τ), respectively. Thus, the Weyl function m(τ) is
determined by two spectra {τ2n} and {λ2n} and the problem (1.1)-(1.3) is uniquely specified by two spectra.

Consequently, the inverse problems of the boundary value problem (1.1)-(1.3) by spectral data and two
spectra are special cases of the inverse problem of the problem (1.1)-(1.3) by Weyl function.
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