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Generalized Mixed Higher Order Functional Equation in Various Banach Spaces

1. Introduction

A inspiring and renowned talk presented by Ulam [50] in 1940, encouraged the study of stability problems for
various functional equations. He gave a wide range of talk before a Mathematical Colloquium at the University
of Wisconsin in which he presented a list of unsolved problems.

The first confident answer to celebrated Ulam’s question concerning the problem of stability of functional
equations was given by Hyers [17] for the case of additive mappings in Banach spaces. In development of time,
the theorem conveyed by Hyers was generalized by Aoki [3], Rassias [39, 40], Gavruta [14] for additive mappings
and Ravi [42] for quadratic mappings.

The general solution and generalized Ulam - Hyers stability of several types of functional equations in various
normed spaces were discussed by many authors one can see [1, 9, 11, 19, 20, 41] and references there in.

The simplest functional equations are

f(−x) = −f(x); and g(−x) = g(x) (1.1)

which are the well known odd and even functions.
Inspiring by the overhead idea, Arunkumar et. al., [4] introduced and established the general solution and

generalized Ulam - Hyers stability of the simple additive-quadratic and simple cubic-quartic functional equations

f(2x) = 3f(x) + f(−x); and g(2x) = 12g(x) + 4g(−x); (1.2)

having solutions

f(x) = ax+ bx2 and g(x) = cx3 + dx4. (1.3)

Also, the generalized Ulam - Hyers stability of the functional equations (1.2) in Quasi-Beta Banach space,
Intuitionistic fuzzy Banach space applying direct and fixed point methods were discussed in [5].

Infact, the generalized version of (1.2) was introduced and examined the generalized Ulam - Hyers stability
of single variable generalized additive-quadratic and generalized cubic-quartic functional equations of the form

ϕ(λw) =
λ

2
(ϕ(w)− ϕ(−w)) + λ2

2
(ϕ(w) + ϕ(−w)) ; (1.4)

ψ(µw) =
µ3

2
(ψ(w)− ψ(−w)) + µ4

2
(ψ(w) + ψ(−w)) (1.5)

having solutions

ϕ(w) = aw + bw2 and ϕ(w) = cw3 + dw4, (1.6)

was investigated by Arunkumar et. al., [6] .
Motivated from overhead ideas in this article, we establish the generalized Ulam-Hyers stability of a

Generalized Mixed nth(n+ 1)th Order Functional Equation

Nn;n+1(T v) =
T n

2
(Nn;n+1(v)−Nn;n+1(−v)) +

T n+1

2
(Nn;n+1(v) +Nn;n+1(−v)) (1.7)

having solutions

Nn;n+1(v) = avn + bvn+1 (1.8)

with n ̸= 0 is an odd positive integer and T ≥ 2 in various Banach Spaces via Hyers Method.
The solution of the functional equation (1.7) are as follows. Assume A1 and A2 are vector spaces. Applying

oddness and evenness of Nn;n+1 the following lemmas are trivial.
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Lemma 1.1. An odd function Nn;n+1 : A1 → A2 satisfying (1.7) and if we define

Nn;n+1 = Nn (1.9)

then Nn is an nth order function.

Lemma 1.2. An even function Nn;n+1 : A1 → A2 satisfying (1.7) and if we define

Nn;n+1 = Nn+1 (1.10)

then Nn+1 is an (n+ 1)th order function.

2. Stability In Banach Space of (1.7)

In this section, we investigate the generalized Ulam - Hyers stability of the functional equations (1.7) in Banach
space. To prove stability results, let us take R1 be an normed space and R2 be an Banach space.

2.1. Stability Results: Odd Case

Theorem 2.1. Assume Nn;n+1 : R1 → R2 be an odd function fulfilling the inequality∥∥∥∥Nn;n+1(T v)−
T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

)∥∥∥∥ ≤ M(v); ∀ v ∈ R1, (2.1)

where M : R1 → [0,∞) with the condition

lim
m→∞

M(T nmtv)

T nmt
= 0; ∀ v ∈ R1. (2.2)

Then there exists one and only nth order mapping Γn(v) : R1 → R2 satisfying the functional equation (1.7)
and

∥Γn(v)−Nn(v)∥ ≤ 1

T n

∞∑
r= 1−t

2

M(T nrtv)

T nrt
; ∀ v ∈ R1; (2.3)

with t = ±1. The mapping Γn(v) is defined by

Γn(v) = lim
m→∞

Nn(T nmtv)

T nmt
; ∀ v ∈ R1. (2.4)

Proof. Applying oddness of Nn;n+1 in (2.1) and by (1.9), we observe that

∥Nn(T v)− T nNn(v)∥ ≤ M(v); ∀ v ∈ R1. (2.5)

The overhead inequality can be rewritten as∥∥∥∥Nn(T v)
T n

−Nn(v)

∥∥∥∥ ≤ M(v)

T n
; ∀ v ∈ R1. (2.6)

Changing v by T v and multiplying by
1

T n
in (2.6), we notice that∥∥∥∥Nn(T 2v)

T 2n
− Nn(T v)

T n

∥∥∥∥ ≤ M(T v)
T 2n

; ∀ v ∈ R1. (2.7)
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From (2.6) and (2.7), we obtain that∥∥∥∥Nn(T 2v)

T 2n
−Nn(v)

∥∥∥∥ ≤ 1

T n

(
M(v) +

M(T v)
T n

)
; ∀ v ∈ R1. (2.8)

Generalizing for a positive integer m, we acquire that∥∥∥∥Nn(T mv)

T nm
−Nn(v)

∥∥∥∥ ≤ 1

T n

m−1∑
r=0

M(T rv)

T nr
; ∀ v ∈ R1. (2.9)

Thus
{
Nn(T mv)

T nm

}
is a Cauchy sequence and it converges to a point Γn(v) ∈ R2.

Indeed, replacing v by T κw and divided by T nκ in (2.9), we achieve that∥∥∥∥Nn(T m+κv)

T nm+nκ
− Nn(T κv)

T nκ

∥∥∥∥ =
1

T nκ

∥∥∥∥Nn(T m · T κv)

T nm
−Nn(T κv)

∥∥∥∥
≤ 1

T n

m−1∑
r=0

M(T r+κv)

T nr+nκ

→ 0 as κ → ∞ (2.10)

for all v ∈ R1. Thus, we define mapping Γn(v) : R1 → R2 such that

Γn(v) = lim
m→ ∞

Nn(T mv)

T nm
; ∀ v ∈ R1.

Letting limit m→ ∞ in (2.9) and applying the definition of Γn(v), we arrive that∥∥∥∥ lim
m→ ∞

Nn(T mv)

T nm
−Nn(v)

∥∥∥∥ ≤ 1

T n

∞∑
r=0

M(T rv)

T nr
⇒ ∥Γn(v)−Nn(v)∥ ≤ 1

T n

∞∑
r=0

M(T rv)

T nr

for all v ∈ R1. Thus (2.3) holds for t = 1. Now, to show that Γn(v) satisfies (1.7), changing v by T mv and
divided by T nm in (2.1), we observe that

1

T nm

∥∥∥∥Nn;n+1(T m · T v)− T n

2

(
Nn;n+1(T mv)−Nn;n+1(−T mv)

)
−T n+1

2

(
Nn;n+1(T mv) +Nn;n+1(−T mv)

)∥∥∥∥ ≤ 1

T nm
M(T mv)

for all v ∈ R1. Approaching m → ∞ and applying the definition of Γn(v) and (2.2) in the overhead inequality,
we identify that

Γn(T v) =
T n

2

(
Γn(v)− Γn(−v)

)
+

T n+1

2

(
Γn(v) + Γn(−v)

)
; ∀ v ∈ R1.

Hence Γn(v) satisfies the functional equation (1.7) for all v ∈ R1. In order to prove the existence of Γn(v) is
unique, assume ΓB(v) be another nth order mapping satisfying (1.7) and (2.3). Now,

∥Γn(v)− ΓB(v)∥ =
1

T nκ
∥Γn(T κv)− ΓB(T κv)∥

=
1

T nκ
∥Γn(T κv)−Nn(T κv) +Nn(T κv)− ΓB(T κv)∥

≤ 1

T nκ
{∥Γn(T κv)−Nn(T κv)∥+ ∥ΓB(T κv)−Nn(T κv)∥}

≤ 2

T n

∞∑
r=0

M(T r+κv)

T nr+nκ

→ 0 as κ → ∞
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for all v ∈ R1. This proves that Γn(v) = ΓB(v) for all v ∈ R1. Thus Γn(v) is unique. Hence the theorem holds
for t = 1.
Further, replacing v by

v

T
in (2.5), we find that∥∥∥Nn(v)− T nNn

( v
T

)∥∥∥ ≤ M
( v
T

)
(2.11)

for all v ∈ R1. Again replacing v by
v

T
and multiply by T n in (2.11), we notice that∥∥∥T nNn

( v
T

)
− T 2nNn

( v

T 2

)∥∥∥ ≤ T nM
( v

T 2

)
(2.12)

for all v ∈ R1. applying triangle inequality on (2.11) and (2.12), we obtain that∥∥∥Nn(v)− T 2nNn

( v

T 2

)∥∥∥ ≤ M
( v
T

)
+ T nM

( v

T 2

)
(2.13)

for all v ∈ R1. Generalizing for a positive integer m, we acquire that∥∥∥Nn(v)− T nmNn

( v

T m

)∥∥∥ ≤
m−1∑
r=1

T nr−nM
( v

T r

)
=

1

T n

m−1∑
r=1

T nrM
( v

T r

)
(2.14)

for all v ∈ R1. The rest of the proof is similar ideas to that of case t = 1. Thus the theorem is true for t = −1.
Hence the proof is complete. ■

The following corollary is the immediate consequence of Theorem 2.1 concerning the stabilities of (1.7).

Corollary 2.2. Assume s and µ be positive numbers. Let Nn;n+1 : R1 → R2 be an odd function fulfilling the
inequality ∥∥∥∥Nn;n+1(T v)−

T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

)∥∥∥∥ ≤
{
s;

s||v||µ; µ ̸= n
(2.15)

for all v ∈ R1. Then there exists one and only nth order mapping Γn(v) : R1 → R2 satisfying the functional
equation (1.7) and

∥Γn(v)−N (v)∥ ≤


s

|T n − 1|
;

s||v||µ

|T n − T µ|
;

(2.16)

for all v ∈ R1.

2.2. Stability Results: Even Case

The proof of the following theorem and corollary is similar clues that of Theorem 2.1 and Corollary 2.2 with the
help of (1.10). Hence the details of the proof are omitted.

Theorem 2.3. Assume Nn;n+1 : R1 → R2 be an even function satisfies the inequality∥∥∥∥Nn;n+1(T v)−
T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

)∥∥∥∥ ≤ M(v); ∀ v ∈ R1, (2.17)
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where M : R1 → [0,∞) with the condition

lim
m→∞

M(T mtv)

T 2nmt
= 0; ∀ v ∈ R1. (2.18)

Then there exists one and only (n+ 1)th order mapping Γn+1(v) : R1 → R2 satisfying the functional equation
(1.7) and

∥Γn+1(v)−Nn+1(v)∥ ≤ 1

T 2n

∞∑
r= 1−t

2

M(T rtv)

T 2nrt
; ∀ v ∈ R1 (2.19)

with t = ±1. The mapping Γn+1(v) is defined by

Γn+1(v) = lim
m→∞

M(T mtv)

T 2nmt
; ∀ v ∈ R1. (2.20)

Corollary 2.4. Assume s and µ be positive numbers. Let Nn;n+1 : R1 → R2 be an even function fulfilling the
inequality ∥∥∥∥Nn;n+1(T v)−

T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

)∥∥∥∥ ≤
{
s;

s||v||µ; µ ̸= 2n
(2.21)

for all v ∈ R1. Then there exists one and only (n + 1)th order mapping Γn+1(v) : R1 → R2 satisfying the
functional equation (1.7) and

∥Γn+1(v)−Nn+1(v)∥ ≤


s

|T 2n − 1|
;

s||v||µ

|T 2n − T µ|
;

(2.22)

for all v ∈ R1.

2.3. Stability Results: Odd-Even Case

Theorem 2.5. Assume Nn;n+1 : R1 → R2 be a function satisfies the inequality∥∥∥∥Nn;n+1(T v)−
T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

)∥∥∥∥ ≤ M(v); ∀ v ∈ R1, (2.23)

where M : R1 → [0,∞) satisfying the conditions (2.2) and (2.18) for all v ∈ R1. Then there exists one and
only nth order mapping Γn(v) : R1 → R2 and one and only (n + 1)th order mapping Γn+1(v) : R1 → R2

satisfying the functional equation (1.7) and

∥Nn;n+1(v)− Γn(v)− Γn+1(v)∥

≤ 1

2

 1

T n

∞∑
r= 1−t

2

M(T rtv)

T rnt
+

M(−T rtv)

T rnt
+

1

T 2n

∞∑
r= 1−t

2

M(T rtv)

T 2rnt
+

M(−T rtv)

T 2rnt

 (2.24)

for all v ∈ R1 with t = ±1. The mappings Γn(v) and Γn+1(v) are respectively defined in (2.4) and (2.20) for
all v ∈ R1.
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Proof. Suppose define a function Nodd(v) by

Nodd(v) =
Nn(v)−Nn(−v)

2
; ∀ v ∈ R1. (2.25)

Then it is easy to verify from (2.25) that

Nodd(0) = 0 and Nodd(−v) = −Nodd(v); ∀ v ∈ R1.

By Theorem 2.1 and (2.25), we notice that

∥Γn(v)−Nodd(v)∥ ≤ 1

2T n

∞∑
r= 1−t

2

M(T rtv)

T rnt
+

M(−T rtv)

T rnt
; ∀ v ∈ R1. (2.26)

Again define a function Neven(v) by

Neven(v) =
Nn+1(v) +Nn+1(−v)

2
; ∀ v ∈ R1. (2.27)

Then it is easy to verify from (2.27) that

Neven(0) = 0 and Neven(−v) = Neven(v); ∀ v ∈ R1.

By Theorem 2.3 and (2.27), we notice that

∥Γn+1(v)−Neven(v)∥ ≤ 1

2T 2n

∞∑
r= 1−t

2

M(T rtv)

T 2rnt
+

M(−T rtv)

T 2rnt
; ∀ v ∈ R1. (2.28)

Define a function Nn;n+1 by

Nn;n+1(v) = Nodd(v) +Neven(v); ∀ v ∈ R1. (2.29)

Now, it follows from (2.26), (2.28) and (2.29), we achieve our desired result. ■

Corollary 2.6. Assume s and µ be positive numbers. Let Nn;n+1 : R1 → R2 be a function fulfilling the
inequality ∥∥∥∥Nn;n+1(T v)−

T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

)∥∥∥∥ ≤
{
s;

s||v||µ; µ ̸= n; 2n
(2.30)

for all v ∈ R1. Then there exists one and only nth order mapping Γn(v) : R1 → R2 and one and only (n+1)th

order mapping Γn+1(v) : R1 → R2 satisfying the functional equation (1.7) and

∥Nn;n+1(v)− Γn(v)− Γn+1(v)∥ ≤


s

(
1

|T n − 1|
+

1

|T 2n − 1|

)
;

s||v||µ
(

1

|T n − T µ|
+

1

|T 2n − T µ|

)
;

(2.31)

for all v ∈ R1.
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3. Stability In Modular Space of (1.7)

In this section, we investigate the generalized Ulam - Hyers stability of the functional equation (1.7) in Modular
space. To prove stability results, let us take R1 be an linear space and R2ρ be an ρ− complete convex modular
space.

3.1. Basic Concepts on Modular Spaces

Now, we introduce to adopt the usual terminologies, notations, definitions and properties of the theory of modular
spaces given in [2, 22, 23, 25, 27–29, 34, 37, 38, 45, 49, 52, 55].

Definition 3.1. Let X be a linear space over a field K(R or C). We say that a generalized functional ρ : X →
[0,∞] is a modular if for any x, y ∈ X ,

(MS1) ρ(x) = 0 if and only if x = 0;

(MS2) ρ(αx) = ρ(x) for all scalar α with |α| = 1;

(MS3) ρ(αx+ βy) ≤ ρ(x) + ρ(y) for all scalar α, β ≥ 0 with α+ β = 1.

(MS4) If (MS3) is replaced by ρ(αx + βy) ≤ ρ(x) + ρ(y) for all scalar α, β ≥ 0 with α + β = 1, then the
functional ρ is called a convex modular.

Definition 3.2. A modular ρ defines the following vector space:

Xρ = {x ∈ X : ρ(λx) → 0 as λ → 0},

and we say that Xρ is a modular space.

Definition 3.3. Let Xρ be a modular space and let {xn} be a sequence in Xρ then {xn} is ρ−convergent to a
point x ∈ Xρand write xn

ρ→ x if ρ(xn–x) → 0 as n→ ∞.

Definition 3.4. Let Xρ be a modular space and let {xn} be a sequence in Xρ then {xn} is called ρ−Cauchy if
for any ϵ > 0one has ρ(xn − xm) < ϵ for sufficiently large m,n ∈ N.

Definition 3.5. Let Xρ be a modular space and let {xn} be a sequence in Xρ. A subset K ⊆ Xρ is called
ρ−complete if any ρ−Cauchy sequence is ρ−convergent to a point in K.

Definition 3.6. A modular space ρ has the Fatou property if and only if ρ(x) ≤ lim inf
n → ∞

ρ(xn) whenever the

sequence {xn} is ρ−convergent to x in modular space Xρ .

Definition 3.7. A modularρ is said to satisfy the ∆2−condition if there exists k > 0 such that ρ(T nx) ≤ kρ(x)

for all x ∈ Xρ .

Remark 3.8. Suppose that ρ is convex and satisfies ∆2−condition with ∆2− constant k > 0. If k < T n, then
ρ(x) ≤ kρ(x) ≤ k

T n ρ(x), which implies ρ = 0. Therefore, we must have the ∆2− constant k ≥ T n if ρ is
convex modular.

3.2. Stability Results: Odd Case : Without Applying ∆2 Condition

Theorem 3.9. Assume Nn;n+1 : R1 → R2 be an odd function fulfilling the inequality

ρ

(
Nn;n+1(T v)−

T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

))
≤ M(v); ∀ v ∈ R1, (3.1)
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where M : R1 → [0,∞) with the condition

lim
m→∞

M(T nmv)

T nm
= 0; ∀ v ∈ R1. (3.2)

Then there exists one and only nth order mapping Γn(v) : R1 → R2 satisfying the functional equation (1.7)
and

ρ (Γn(v)−Nn(v)) ≤
1

T n

∞∑
r=0

M(T nrv)

T nr
; ∀ v ∈ R1. (3.3)

The mapping Γn(v) is defined by

lim
m→∞

ρ

(
Nn(T nmv)

T nm
− Γn(v)

)
→ 0; ∀ v ∈ R1. (3.4)

Proof. Using oddness of Nn;n+1 in (3.1) and by (1.9), we observe that

ρ (Nn(T v)− T nNn(v)) ≤ M(v) (3.5)

for all v ∈ R1. Without applying the ∆2− condition it follows from (3.5), generalizing for a positive integer m,
we acquire that

ρ

(
Nn(T mv)

T nm
−Nn(v)

)
= ρ

(
m−1∑
r=0

1

T n(r+1)

[
T nrNn(T rv)−Nn(T r+1v)

])

≤
m−1∑
r=0

1

T n(r+1)
ρ
(
T nrNn(T rv)−Nn(T r+1v)

)
≤ 1

T n

m−1∑
r=0

M(T rv)

T nr
(3.6)

for all v ∈ R1. Thus
{
Nn(T mv)

T nm

}
is a ρ− Cauchy sequence in R2ρ and R2ρ is ρ−complete there exists a ρ−

limit function Γn(v) : R1 → R2ρ given by

lim
m→∞

ρ

(
Nn(T mv)

T nm
− Γn(v)

)
→ 0; ∀ v ∈ R1.

Indeed, replacing v by T κw and divided by T nκ in (3.6), we achieve that

ρ

(
Nn(T m+κv)

T nm+nκ
− Nn(T κv)

T nκ

)
=

1

T nκ
ρ

(
Nn(T m · T κv)

T nm
−Nn(T κv)

)
≤ 1

T n

m−1∑
r=0

M(T r+κv)

T nr+nκ

→ 0 as κ → ∞ (3.7)

for all v ∈ R1. Thus, we define mapping Γn(v) : R1 → R2 such that

Γn(v) = lim
m→ ∞

Nn(T mv)

T nm
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for all v ∈ R1. It follows from the Fatou property that the inequality

ρ (Γn(v)−Nn(v)) ≤ lim inf
m →∞

ρ

(
Nn(T mv)

T nm
−Nn(v)

)
≤ 1

T n

∞∑
r=0

M(T rv)

T nr

for all v ∈ R1. Thus, we see (3.3) holds. Now, to show that Γn(v) satisfies (1.7), changing v by T mv and divided
by T nm in (3.1), we observe that

ρ

(
1

T nm

{
Nn;n+1(T m · T v)− T n

2

(
Nn;n+1(T mv)−Nn;n+1(−T mv)

)
−T n+1

2

(
Nn;n+1(T mv) +Nn;n+1(−T mv)

)})
≤ 1

T nm
M(T mv)

for all v ∈ R1. By convexity of ρ that

ρ

(
1

4
Γn(T v)−

1

4

T n

2

(
Γn(v)− Γn(−v)

)
− 1

4

T n+1

2

(
Γn(v) + Γn(−v)

))
≤ 1

4
ρ

(
Γn(T v)−

1

T nm
Nn;n+1(T m · T v)

)
+

1

4
ρ

(
−T n

2

(
Γn(v)− Γn(−v)

)
+

1

T nm

T n

2

(
Nn;n+1(T mv)−Nn;n+1(−T mv)

))
+

1

4
ρ

(
−T n+1

2

(
Γn(v) + Γn(−v)

)
+

1

T nm

T n+1

2

(
Nn;n+1(T mv) +Nn;n+1(−T mv)

))
+

1

4
ρ

(
1

T nm

{
Nn;n+1(T m · T v)− T n

2

(
Nn;n+1(T mv)−Nn;n+1(−T mv)

)
−T n+1

2

(
Nn;n+1(T mv) +Nn;n+1(−T mv)

)})
for all v ∈ R1. Approaching m→ ∞, we notice that

ρ

(
1

4
Γn(T v)−

1

4

T n

2

(
Γn(v)− Γn(−v)

)
− 1

4

T n+1

2

(
Γn(v) + Γn(−v)

))
= 0

for all v ∈ R1. Hence Γn(v) satisfies the functional equation (1.7) for all v ∈ R1. In order to prove the existence
of Γn(v) is unique, assume ΓB(v) be another nth order mapping satisfying (1.7) and (3.3). Now,

ρ

(
1

2
Γn(v)−

1

2
ΓB(v)

)
≤ 1

2
ρ

(
1

T nκ
Γn(T κv)− 1

T nκ
ΓB(T κv)

)
≤ 1

2

1

T nκ
ρ (Γn(T κv)−Nn(T κv) +Nn(T κv)− ΓB(T κv))

≤ 1

2

1

T nκ
{ρ (Γn(T κv)−Nn(T κv)) + ρ (ΓB(T κv)−Nn(T κv))}

≤ 1

2

2

T n

∞∑
r=0

M(T r+κv)

T nr+nκ

→ 0 as κ → ∞

for all v ∈ R1. This proves that Γn(v) = ΓB(v) for all v ∈ R1. Thus Γn(v) is unique. This completes the proof
of the theorem. ■

The following corollary is the immediate consequence of Theorem 3.9 concerning the stabilities of (1.7).
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Corollary 3.10. Assume s and µ be positive numbers. Let Nn;n+1 : R1 → R2 be an odd function fulfilling the
inequality

ρ

(
Nn;n+1(T v)−

T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

))
≤
{
s;

s||v||µ; µ < n
(3.8)

for all v ∈ R1. Then there exists one and only nth order mapping Γn(v) : R1 → R2 satisfying the functional
equation (1.7) and

ρ (Γn(v)−N (v)) ≤


s

(T n − 1)
;

s||v||µ

(T n − T µ)
;

(3.9)

for all v ∈ R1.

3.3. Stability Results: Even Case : Without Applying ∆2 Condition

The proof of the following theorem and corollary is similar clues that of Theorem 3.9 and Corollary 3.10 with
the help of (1.10). Hence the details of the proof are omitted.

Theorem 3.11. Assume Nn;n+1 : R1 → R2 be an even function satisfies the inequality

ρ

(
Nn;n+1(T v)−

T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

))
≤ M(v); ∀ v ∈ R1, (3.10)

where M : R1 → [0,∞) with the condition

lim
m→∞

M(T mv)

T 2nm
= 0; ∀ v ∈ R1. (3.11)

Then there exists one and only (n+ 1)th order mapping Γn+1(v) : R1 → R2 satisfying the functional equation
(1.7) and

ρ (Γn+1(v)−Nn+1(v)) ≤
1

T 2n

∞∑
r=0

M(T rv)

T 2nr
; ∀ v ∈ R1. (3.12)

The mapping Γn+1(v) is defined by

ρ

(
lim

m→∞

M(T mv)

T 2nm
− Γn+1(v)

)
→ 0; ∀ v ∈ R1. (3.13)

Corollary 3.12. Assume s and µ be positive numbers. Let Nn;n+1 : R1 → R2 be an even function fulfilling the
inequality

ρ

(
Nn;n+1(T v)−

T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

))
≤
{
s;

s||v||µ; µ < 2n
(3.14)
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for all v ∈ R1. Then there exists one and only (n + 1)th order mapping Γn+1(v) : R1 → R2 satisfying the
functional equation (1.7) and

ρ (Γn+1(v)−Nn+1(v)) ≤


s

(T 2n − 1)|
;

s||v||µ

(T 2n − T µ)
;

(3.15)

for all v ∈ R1.

3.4. Stability Results: Odd- Even Case: Without Applying ∆2 Condition

Theorem 3.13. Assume Nn;n+1 : R1 → R2 be a function satisfies the inequality

ρ

(
Nn;n+1(T v)−

T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

))
≤ M(v); ∀ v ∈ R1, (3.16)

where M : R1 → [0,∞) satisfying the conditions (3.2) and (3.11) for all v ∈ R1. Then there exists one and
only nth order mapping Γn(v) : R1 → R2 and one and only (n + 1)th order mapping Γn+1(v) : R1 → R2

satisfying the functional equation (1.7) and

ρ (Nn;n+1(v)− Γn(v)− Γn+1(v))

≤ 1

2

{
1

T n

∞∑
r=0

M(T rv)

T rn
+

M(−T rv)

T rn
+

1

T 2n

∞∑
r=0

M(T rv)

T 2rn
+

M(−T rv)

T 2rn

}
(3.17)

for all v ∈ R1 with t = ±1. The mappings Γn(v) and Γn+1(v) are respectively defined in (3.4) and (3.13) for
all v ∈ R1.

Proof. The proof is similar lines to that of Theorem 2.5. ■

Corollary 3.14. Assume s and µ be positive numbers. Let Nn;n+1 : R1 → R2 be a function fulfilling the
inequality

ρ

(
Nn;n+1(T v)−

T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

))
≤
{
s;

s||v||µ; µ < n; 2n
(3.18)

for all v ∈ R1. Then there exists one and only nth order mapping Γn(v) : R1 → R2 and one and only (n+1)th

order mapping Γn+1(v) : R1 → R2 satisfying the functional equation (1.7) and

ρ (Nn;n+1(v)− Γn(v)− Γn+1(v)) ≤


s

(
1

(T n − 1)
+

1

(T 2n − 1)

)
;

s||v||µ
(

1

(T n − T µ)
+

1

(T 2n − T µ)

)
;

(3.19)

for all v ∈ R1.
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3.5. Stability Results: Odd Case: Applying ∆2 Condition

Theorem 3.15. Assume Nn;n+1 : R1 → R2ρ be an odd function fulfilling the inequality

ρ

(
Nn;n+1(T v)−

T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

))
≤ M(v); ∀ v ∈ R1, (3.20)

where M : R1 → [0,∞) with the condition

lim
m→∞

(
k2

T n

)m

M
( v

T m

)
= 0; ∀ v ∈ R1. (3.21)

Then there exists one and only nth order mapping Γn(v) : R1 → R2ρ satisfying the functional equation (1.7)
and

ρ (Γn(v)−Nn(v)) ≤
1

k

∞∑
r=1

(
k2

T n

)r

M
( v

T r

)
; ∀ v ∈ R1. (3.22)

The mapping Γn(v) is defined by

lim
m→∞

ρ

(
Nn(T nmv)

T nm
− Γn(v)

)
→ 0; ∀ v ∈ R1. (3.23)

Proof. Applying oddness of Nn;n+1 in (3.20) and by (1.9), we observe that

ρ (Nn(T v)− T nNn(v)) ≤ M(v) (3.24)

for all v ∈ R1. Further, replacing v by
v

T
in (3.24), we find that

ρ
(
Nn(v)− T nNn

( v
T

))
≤ M

( v
T

)
(3.25)

for all v ∈ R1. Applying the ∆2 condition it follows from (3.25) and the convexity of the modular ρ that,

ρ
(
Nn(v)− T nNn

( v
T

))
≤ k

T n
M
( v
T

)
(3.26)

for all v ∈ R1. Again, replacing v by
v

T
in (3.26), we notice that

ρ
(
Nn

( v
T

)
− T nNn

( v

T 2

))
≤ k

T n
M
( v

T 2

)
(3.27)

for all v ∈ R1. Applying the ∆2 condition it follows from (3.27) and the convexity of the modular ρ that,

ρ
(
T nNn

( v
T

)
− T 2nNn

( v

T 2

))
≤ k3

T 2n
M
( v

T 2

)
(3.28)

for all v ∈ R1. From (3.26) and (3.28), we obtain that

ρ
(
Nn(v)− T 2nNn

( v

T 2

))
≤ k

T n
M
( v
T

)
+

k3

T 2n
M
( v

T 2

)
(3.29)
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for all v ∈ R1. Generalizing for a positive integer m, we acquire that

ρ
(
Nn(v)− T nmNn

( v

T m

))
≤ 1

k

m∑
r=1

(
k2

T n

)r

M
( v

T r

)
(3.30)

for all v ∈ R1. Thus
{
T nmNn

( v

T m

)}
is a ρ− Cauchy sequence in R2ρ and R2ρ is ρ−complete there exists a

ρ− limit function Γn(v) : R1 → R2ρ given by

lim
m→∞

ρ
(
T nmNn

( v

T m

)
− Γn(v)

)
→ 0; ∀ v ∈ R1.

Indeed, replacing v by T κw and divided by T nκ in (3.29), we achieve that

ρ
(
T nκNn

( v

T κ

)
− T nmNn

( v

T m

))
≤ kκ ρ

(
Nn

( v

T κ

)
− T nm−nκNn

( v

T m

))
≤ kκ−1

m−κ∑
r=1

(
k2

T n

)r

M
( v

T r+κ

)
= kκ−1

(
T n

k2

)κ m∑
r=κ+1

(
k2

T n

)r

M
( v

T r+κ

)
(3.31)

→ 0 as κ → ∞

for all v ∈ R1. It follows from (3.30) and the Fatou property that

ρ (Γn(v)−Nn(v)) ≤ lim inf
m →∞

ρ

(
Nn(T mv)

T nm
−Nn(v)

)
≤ 1

k

∞∑
r=1

(
k2

T n

)r

M
( v

T r

)
for all v ∈ R1. Thus, we see that (3.22) holds. The rest of the proof is similar to that of Theorem 3.9. ■

The following corollary is the immediate consequence of Theorem 3.15 concerning the stabilities of (1.7).

Corollary 3.16. Assume s and µ be positive numbers. Let Nn;n+1 : R1 → R2ρ be an odd function fulfilling the
inequality

ρ

(
Nn;n+1(T v)−

T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

))
≤
{
s;

s||v||µ; µ > log2
k2

T n

(3.32)

for all v ∈ R1. Then there exists one and only nth order mapping Γn(v) : R1 → R2ρ satisfying the functional
equation (1.7) and

ρ (Γn(v)−N (v)) ≤


sk

T n − k2
;

sk||v||µ

T n+µ − k2
;

(3.33)

for all v ∈ R1.
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3.6. Stability Results: Even Case : Applying ∆2 Condition

Theorem 3.17. Assume Nn;n+1 : R1 → R2ρ be an even function satisfies the inequality

ρ

(
Nn;n+1(T v)−

T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

))
≤ M(v); ∀ v ∈ R1, (3.34)

where M : R1 → [0,∞) with the condition

lim
m→∞

(
k2

T 2n

)m

M
( v

T m

)
= 0; ∀ v ∈ R1. (3.35)

Then there exists one and only (n+1)th order mapping Γn+1(v) : R1 → R2ρ satisfying the functional equation
(1.7) and

ρ (Γn(v)−Nn(v)) ≤
1

k2

∞∑
r=1

(
k3

T 2n

)r

M
( v

T r

)
; ∀ v ∈ R1.; ∀ v ∈ R1. (3.36)

The mapping Γn+1(v) is defined by

lim
m→∞

ρ

(
Nn(T 2nmv)

T nm
− Γn(v)

)
→ 0; ∀ v ∈ R1. (3.37)

Proof. Applying even of Nn;n+1 in (3.34) and by (1.10), we observe that

ρ
(
Nn+1(T v)− T 2nNn+1(v)

)
≤ M(v) (3.38)

for all v ∈ R1. Further, replacing v by
v

T
in (3.38), we find that

ρ
(
Nn+1(v)− T 2nNn+1

( v
T

))
≤ M

( v
T

)
(3.39)

for all v ∈ R1. Applying the ∆2 condition it follows from (3.39) and the convexity of the modular ρ that,

ρ
(
Nn+1(v)− T 2nNn+1

( v
T

))
≤ k

T 2n
M
( v
T

)
(3.40)

for all v ∈ R1. Again, replacing v by
v

T
in (3.40), we notice that

ρ
(
Nn+1

( v
T

)
− T 2nNn+1

( v

T 2

))
≤ k

T 2n
M
( v

T 2

)
(3.41)

for all v ∈ R1. Applying the ∆2 condition it follows from (3.41) and the convexity of the modular ρ that,

ρ
(
T 2nNn+1

( v
T

)
− T 4nNn+1

( v

T 2

))
≤ k4

T 4n
M
( v

T 2

)
(3.42)

for all v ∈ R1. From (3.40) and (3.42), we obtain that

ρ
(
Nn+1(v)− T 2nNn+1

( v

T 2

))
≤ k

T 2n
M
( v
T

)
+

k4

T 4n
M
( v

T 2

)
(3.43)
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for all v ∈ R1. Generalizing for a positive integer m, we acquire that

ρ
(
Nn+1(v)− T 2nmNn+1

( v

T m

))
≤ 1

k2

m∑
r=1

(
k3

T 2n

)r

M
( v

T r

)
(3.44)

for all v ∈ R1. Thus
{
T 2nmNn+1

( v

T m

)}
is a ρ− Cauchy sequence in R2ρ and R2ρ is ρ−complete there

exists a ρ− limit function Γn+1(v) : R1 → R2ρ given by

lim
m→∞

ρ
(
T 2nmNn+1

( v

T m

)
− Γn+1(v)

)
→ 0; ∀ v ∈ R1.

The rest of the proof is similar to that of Theorem 3.15. ■

The following corollary is the immediate consequence of Theorem 3.17 concerning the stabilities of (1.7).

Corollary 3.18. Assume s and µ be positive numbers. Let Nn;n+1 : R1 → R2ρ be an even function fulfilling
the inequality

ρ

(
Nn;n+1(T v)−

T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

))
≤
{
s;

s||v||µ; µ > log2
k3

T 2n

(3.45)

for all v ∈ R1. Then there exists one and only (n + 1)th order mapping Γn+1(v) : R1 → R2ρ satisfying the
functional equation (1.7) and

ρ (Γn+1(v)−Nn+1(v)) ≤


sk

T 2n − k3
;

sk||v||µ

T 2n+µ − k3
;

(3.46)

for all v ∈ R1.

3.7. Stability Results: Odd-Even Case: Applying ∆2 Condition

Theorem 3.19. Assume Nn;n+1 : R1 → R2ρ be a function satisfies the inequality

ρ

(
Nn;n+1(T v)−

T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

))
≤ M(v); ∀ v ∈ R1, (3.47)

where M : R1 → [0,∞) satisfying the conditions (3.21) and (3.35) for all v ∈ R1. Then there exists one and
only nth order mapping Γn(v) : R1 → R2ρ and one and only (n+ 1)th order mapping Γn+1(v) : R1 → R2ρ

satisfying the functional equation (1.7) and

ρ (Nn;n+1(v)− Γn(v)− Γn+1(v)∥

≤ 1

2

{
1

k

∞∑
r=1

(
k2

T n

)r [
M
( v

T r

)
+M

(
−v
T r

)]
+

1

k2

∞∑
r=1

(
k3

T 2n

)r [
M
( v

T r

)
+M

(
−v
T r

)]}
(3.48)

for all v ∈ R1. The mappings Γn(v) and Γn+1(v) are respectively defined in (3.23) and (3.37) for all v ∈ R1.

Proof. The proof is similar lines to that of Theorem 2.5. ■
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Corollary 3.20. Assume s and µ be positive numbers. Let Nn;n+1 : R1 → R2ρ be a function fulfilling the
inequality

ρ

(
Nn;n+1(T v)−

T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

))
≤
{
s;

s||v||µ; µ > log2
k2

T n ; log2
k3

T 2n

(3.49)

for all v ∈ R1. Then there exists one and only nth order mapping Γn(v) : R1 → R2ρ and one and only
(n+ 1)th order mapping Γn+1(v) : R1 → R2ρ satisfying the functional equation (1.7) and

ρ (Nn;n+1(v)− Γn(v)− Γn+1(v)) ≤


sk

(
1

T n − k2
+

1

T 2n − k2

)
;

sk||v||µ
(

1

T n+µ − k2
+

1

T 2n+µ − k3

)
;

(3.50)

for all v ∈ R1.

4. Stability In Fuzzy Banach Space of (1.7)

In this section, we investigate the generalized Ulam - Hyers stability of the functional equation (1.7) in Fuzzy
Banach space. To prove stability results, let us take R3, (R1, F ) and (R2, F

′) are linear space, fuzzy normed
space and fuzzy Banach space.

4.1. Definitions on Fuzzy Banach Spaces

In this section, we present the definitions and notations on fuzzy normed spaces given in [7, 30–33].

Definition 4.1. Let X be a real linear space. A function N : X × R → [0, 1] is said to be a fuzzy norm on X if
for all x, y ∈ X and all s, t ∈ R,
(FNS1) N(x, c) = 0 for c ≤ 0;

(FNS2) x = 0 if and only if N(x, c) = 1 for all c > 0;

(FNS3) N(cx, t) = N
(
x, t

|c|

)
if c ̸= 0;

(FNS4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(FNS5) N(x, ·) is a non-decreasing function on R and limt→∞N(x, t) = 1;

(FNS6) for x ̸= 0, N(x, ·) is (upper semi) continuous on R.
The pair (X,N) is called a fuzzy normed linear space. One may regard N(X, t) as the truth-value of

the statement the norm of x is less than or equal to the real number t’.

Example 4.2. Let (X, || · ||) be a normed linear space. Then

N (x, t) =


t

t+ ∥x∥
, t > 0, x ∈ X,

0, t ≤ 0, x ∈ X

is a fuzzy norm on X .

Definition 4.3. Let (X,N) be a fuzzy normed linear space. Let xn be a sequence in X . Then xn is said to be
convergent if there exists x ∈ X such that lim

n→∞
N(xn − x, t) = 1 for all t > 0. In that case, x is called the limit

of the sequence xn and we denote it by N − lim
n→∞

xn = x.
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Definition 4.4. A sequence xn in X is called Cauchy if for each ϵ > 0 and each t > 0 there exists n0 such that
for all n ≥ n0 and all p > 0, we obtain that N(xn+p − xn, t) > 1− ϵ.

Definition 4.5. Every convergent sequence in a fuzzy normed space is Cauchy. If each Cauchy sequence is
convergent, then the fuzzy norm is said to be complete and the fuzzy normed space is called a fuzzy Banach space.

4.2. Stability Results: Odd Case

Theorem 4.6. Assume Nn;n+1 : R1 → R2 be an odd mapping fullfilling the inequality

F

(
Nn;n+1(T v)−

T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

)
, c

)
≥ F ′ (M (v) , c ) (4.1)

where M : R1 → R3 with the conditions

lim
m→∞

F ′ (M (
T nmtv

)
, T nmtc

)
= 1; (4.2)

F ′ (M (
T tv

)
, c
)
≥ F ′ (OtM (v) , c

)
; (4.3)

with 0 <
( c

T n

)t
< 1. Then there exists a unique nth order mapping Γn : R1 → R2 which satisfies (1.7) and

F (Nn(v)− Γn(v), c) ≥ F ′ (M (v) , c |T n −O|) . (4.4)

The mapping Γn(v) is defined by

lim
m→∞

F

(
Γn(v)−

Nn(T nmtv)

T nmt
, c

)
= 1 (4.5)

for all v ∈ R1 and all c > 0 with t± 1.

Proof. Applying oddness of Nn;n+1 in (4.1) and by (1.9), we observe that

F (Nn(T v)− T n Nn(v), c ) ≥ F ′ (M (v) , c ) ; ∀ v ∈ R1; c > 0. (4.6)

Applying (FNS3) in (4.6), we obtain that

F

(
1

T n
Nn(T v)−Nn(v),

c

T n

)
≥ F ′ (M (v) , c) ; ∀ v ∈ R1; c > 0. (4.7)

Replacing v by T mv in (4.7) and applying (4.3), (FNS3), we find that

F

(
1

T n
Nn(T m+1v)−Nn(T mv),

c

T n

)
≥ F ′ (M (T mv) , c)

≥ F ′ (OmM (v) , c)

= F ′
(
M (v) ,

c

Om

)
;∀ v ∈ R1; c > 0. (4.8)

With the help of (FNS3) it follows from (4.8), that

F

(
1

T n+mn
Nn(T m+1v)− 1

T mn
Nn(T mv),

c

T n · T mn

)
≥ F ′

(
M (v) ,

c

Om

)
;∀ v ∈ R1; c > 0. (4.9)
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Changing c by Omc in (4.9), we achieve that

F

(
1

T n+mn
Nn(T m+1v)− 1

T mn
Nn(T mv),

c

T n
·
[
O

T n

]m)
≥ F ′ (M (v) , c) ;∀ v ∈ R1; c > 0. (4.10)

It is easy to see that

1

T mn
Nn(T mv)−Nn(v) =

m−1∑
r=0

[
1

T n+rn
Nn(T r+1v)− 1

T rn
Nn(T rv)

]
; ∀ v ∈ R1. (4.11)

for all v ∈ R1. From equations (4.10) and (4.11), we obtain that

F

(
1

T mn
Nn(T mv)−Nn(v),

c

T n
·
m−1∑
r=0

[
O

T n

]r)

≥ minF

(
m−1∑
r=0

[
1

T n+rn
Nn(T r+1v)− 1

T rn
Nn(T rv)

]
,
c

T n
·
m−1∑
r=0

[
O

T n

]r)

≥ min

m−1⋃
r=0

{
F

([
1

T n+rn
Nn(T r+1v)− 1

T rn
Nn(T rv)

]
,
c

T n
·
[
O

T n

]r)}

≥ min

m−1⋃
r=0

{
F ′
(
M (v) , c

)}
= F ′ (M (v) , c) ;∀ v ∈ R1; c > 0. (4.12)

Replacing v by T κv in (4.12) and applying (4.3), (FNS3), we find that

F

(
1

T mn+κn
Nn(T m+κv)− 1

T κn
Nn(T κv),

c

T n · T κn

m−1∑
r=0

[
O

T n

]r)
≥ F ′ (M (T κv) , c) ≥ F ′ (OκM (v) , c) = F ′

(
M (v) ,

c

Oκ

)
;∀ v ∈ R1; c > 0. (4.13)

Changing c by Oκc in (4.13), we achieve that

F

(
1

T mn+κn
Nn(T m+κv)− 1

T κn
Nn(T κv),

c

T n
·
m−1∑
r=0

[
O

T n+κ

]r)
≥ F ′ (M (v) , c) ;∀ v ∈ R1; c > 0.

(4.14)

for all κ > m ≥ 0. It follows from (4.14), we see that

F

(
1

T mn+κn
Nn(T m+κv)− 1

T κn
Nn(T κv), c

)
≥ F ′

(
M (v) ,

c
1

T n

∑m−1
r=0

[
O

T n+κ

]r
)
;∀ v ∈ R1; c > 0.

(4.15)

Since 0 < t < T n and
m∑
r=0

( c

T n

)r
< ∞, the Cauchy criterion for convergence and (FNS5) implies that{

1

T mn
Nn(T mv)

}
is a Cauchy sequence in (R2, N

′) and it is complete, this sequence converges to some point

Γn ∈ R2. So one can define the mapping Γn : R1 → R2 by

lim
m→∞

F

(
Γn(v)−

1

T mn
Nn(T mv), c

)
= 1 (4.16)
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for all v ∈ R1 and all s > 0. Letting κ = 0 and m→ ∞ in (4.15), we achieve that

F (Γn(v)−Nn(v), c) ≥ F ′ (M (v) , c · (T n −O)) ;∀ v ∈ R1; c > 0. (4.17)

To prove Γn satisfies the (1.7), replacing v by T mv in (4.3), we arrive that

F

(
1

T nm
· Nn;n+1(T T mv)− 1

T nm
· T

n

2

(
Nn;n+1(T mv)−Nn;n+1(−T mv)

)
− 1

T nm
· T

n+1

2

(
Nn;n+1(T mv) +Nn;n+1(−T mv)

)
, c

)
≥ F ′ (M (T mv) , T nmc ) ;∀ v ∈ R1; c > 0.

(4.18)

Now,

F

(
Γn(T v)−

T n

2

(
Γn(v)− Γn(−v)

)
− T n+1

2

(
Γn(v) + Γn(−v)

)
, c

)
≥ min

{
F

(
Γn(T v)−

1

T nm
· Nn;n+1(T T mv),

c

4

)
,

F

(
−T n

2

(
Γn(v)− Γn(−v)

)
+

1

T nm
· T

n

2

(
Nn;n+1(T mv)−Nn;n+1(−T mv)

)
,
c

4

)
,

F

(
−T n+1

2

(
Γn(v) + Γn(−v)

)
+

1

T nm
· T

n+1

2

(
Nn;n+1(T mv) +Nn;n+1(−T mv)

)
,
c

4

)
,

F

(
1

T nm
· Nn;n+1(T T mv)− 1

T nm
· T

n

2

(
Nn;n+1(T mv)−Nn;n+1(−T mv)

)
− 1

T nm
· T

n+1

2

(
Nn;n+1(T mv) +Nn;n+1(−T mv)

)
, c

)}
(4.19)

for all v ∈ R1 and all c > 0. Applying (4.16), (4.18), (FNS5) in (4.19), we observe that

F

(
Γn(T v)−

T n

2

(
Γn(v)− Γn(−v)

)
− T n+1

2

(
Γn(v) + Γn(−v)

)
, c

)
≥ min {1, 1, 1, F ′ (M (T mv) , T nmc )} ;∀ v ∈ R1; c > 0. (4.20)

Approaching m tends to infinity in (4.20) and applying (4.3), we achieve that

F

(
Γn(T v)−

T n

2

(
Γn(v)− Γn(−v)

)
− T n+1

2

(
Γn(v) + Γn(−v)

)
, c

)
= 1 (4.21)

for all v ∈ R1 and all c > 0. Applying (FNS2) in (4.21) we identify that

Γn(T v) =
T n

2

(
Γn(v)− Γn(−v)

)
+

T n+1

2

(
Γn(v) + Γn(−v)

)
;∀ v ∈ R1; c > 0.

for all v ∈ R1. Hence Γn satisfies the functional equation (1.7). To prove Γn(v) is unique, let Γ′
n(v) be another

additive functional equation satisfying (1.7) and (4.5). So,

N(Γn(v)− Γ′
n(v), s) = F

(
Γn(T mv)

T nm
− Γ′

n(T mv)

T nm
, c

)
≥ min

{
F

(
Γn(T mv)

T nm
− Γ′

n(T mv)

T nm
,
c

2

)
, F

(
Γ′
n(T mv)

T nm
− Γn(T mv)

T nm
,
c

2

)}
≥ F ′

(
M (T mv) ,

c (T n −O) T nm

2

)
= F ′

(
M (v) ,

c (T n −O) T nm

2 Om

)
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for all v ∈ R1 and all c > 0. Since lim
m→∞

c (T n−O)T nm

2 Om = ∞, it follows that

lim
m→∞

F ′
(
M (v) , c (T n−0) T nm

2 Om

)
= 1 for all v ∈ R1 and all c > 0. Thus

N(Γn(v)− Γ′
n(v), s) = 1

for all v ∈ R1 and all c > 0, hence Γn(v) = Γ′
n(v). Therefore Γn(v) is unique. Hence for t = 1 the theorem

holds.
Replacing v by

v

T
in (4.6), we notice that

F
(
Nn(v)− T n Nn

( v
T

)
, c
)
≥ F ′

(
M
( v
T

)
, c
)
; ∀ v ∈ R1; c > 0. (4.22)

The rest of the proof is similar lines to that of case t = 1 Hence the theorem holds for the case t = −1. This
completes the proof of the theorem. ■

The following corollary is the immediate consequence of Theorem 4.6 concerning the stabilities of (1.7).

Corollary 4.7. Assume s and µ be positive numbers. Let Nn;n+1 : R1 → R2 be an odd function fulfilling the
inequality

F

(
Nn;n+1(T v)−

T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

)
, c

)
≥
{
F ′ (s, c ) ;

F ′ (s||v||µ, c ) ; (4.23)

for all v ∈ R1 and all c > 0. Then there exists one and only nth order mapping Γn(v) : R1 → R2 satisfying
the functional equation (1.7) and

F (Γn(v)−Nn(v), c) ≥
{
F ′ (s, c · |T n − 1|) ,
F ′ (s ||v||µ, c · |T n − T µ|) , µ ̸= n;

(4.24)

for all v ∈ R1 and all c > 0.

4.3. Stability Results: Even Case

The proof of the following theorem and corollary is similar clues that of Theorem 4.6 and Corollary 4.7 with the
help of (1.10). Hence the details of the proof are omitted.

Theorem 4.8. Assume Nn;n+1 : R1 → R2 be an even mapping fullfilling the inequality

F

(
Nn;n+1(T v)−

T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

)
, c

)
≥ F ′ (M (v) , c ) (4.25)

where M : R1 → R3 with the conditions

lim
m→∞

F ′ (M (
T 2nmtv

)
, T 2nmtc

)
= 1; (4.26)

F ′ (M (
T tv

)
, c
)
≥ F ′ (OtM (v) , c

)
; (4.27)

with 0 <
( c

T 2n

)t
< 1. Then there exists a unique (n + 1)th order mapping Γn+1 : R1 → R2 which satisfies

(1.7) and
F (Nn(v)− Γn+1(v), c) ≥ F ′ (M (v) , c |T 2n −O|

)
. (4.28)
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The mapping Γn+1(v) is defined by

lim
m→∞

F

(
Γn+1(v)−

Nn(T 2nmtv)

T 2nmt
, c

)
= 1 (4.29)

for all v ∈ R1 and all c > 0 with t± 1.

Corollary 4.9. Assume s and µ be positive numbers. Let Nn;n+1 : R1 → R2 be an even function fulfilling the
inequality

F

(
Nn;n+1(T v)−

T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

)
, c

)
≥
{
F ′ (s, c ) ;

F ′ (s||v||µ, c ) ; (4.30)

for all v ∈ R1 and all c > 0. Then there exists one and only (n + 1)th order mapping Γn+1(v) : R1 → R2

satisfying the functional equation (1.7) and

F (Γn+1(v)−Nn(v), c) ≥
{
F ′ (s, c · |T 2n − 1|

)
,

F ′ ( s ||v||µ, c · |T 2n − T µ|
)
, µ ̸= 2n;

(4.31)

for all v ∈ R1 and all c > 0.

4.4. Stability Results: Odd-Even Case

Theorem 4.10. Assume Nn;n+1 : R1 → R2 be a function satisfies the inequality

F

(
Nn;n+1(T v)−

T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

)
, c

)
≥ F ′ (M (v) , c ) (4.32)

where M : R1 → [0,∞) satisfying the conditions (4.2), (4.3), (4.26) and (4.27) with 0 <
( c

T 2n

)t
<
( c

T n

)t
<

1. Then there exists one and only nth order mapping Γn : R1 → R2 and one and only (n+1)th order mapping
Γn+1 : R1 → R2 which satisfies (1.7) and

F (Nn(v)− Γn(v)− Γn+1(v), 2c) ≥ min
{
F ′
((

M (v) +M (−v)
)
, 2c

(
|T n −O|+ |T 2n −O|

))}
(4.33)

for all v ∈ R1 and all c > 0 with t± 1. The mappings Γn(v) and Γn+1(v) are respectively defined in (4.5) and
(4.29).

Proof. The proof is similar lines to that of Theorem 2.5. ■

Corollary 4.11. Assume s and µ be positive numbers. Let Nn;n+1 : R1 → R2 be a function fulfilling the
inequality

F

(
Nn;n+1(T v)−

T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
−T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

)
, c

)
≥
{
F ′ (s, c ) ;

F ′ (s||v||µ, c ) ; (4.34)

313



E. Sathya and M. Arunkumar

for all v ∈ R1 and all c > 0. Then there exists one and only nth order mapping Γn : R1 → R2 and one and
only (n+ 1)th order mapping Γn+1 : R1 → R2 which satisfies (1.7) and

F (Γn+1(v)−Nn(v), 2c) ≥

F ′
(
s, c
(
|T n − 1|+ |T 2n − 1|

))
,

F ′
(
s, c
(
|T n − T µ|+ |T 2n − T µ|

))
, µ ̸= n, 2n;

(4.35)

for all v ∈ R1 and all c > 0.

5. Stability In Random Banach Space of (1.7)

In this section, we investigate the generalized Ulam - Hyers stability of the functional equations (1.7) in Fuzzy
Banach space. To prove stability results, let us take R1 and (R2, η, c) are linear space and Random Banach space.

5.1. Definitions on Random Banach Spaces

In the sequel, we adopt the usual terminology, notations and conventions of the theory of random normed spaces
as in [46, 47].

From now on, D+ is the space of distribution functions, that is, the space of all mappings

F : R ∪ {−∞,∞} → [0, 1] ,

such that F is left continuous and nondecreasing on R,F (0) = 0 and F (+∞) = 1. D+ is a subset of D+

consisting of all functions F ∈ D+ for which l−F (+∞) = 1, where l−f(x) denotes the left limit of the function
f at the point x, that is,

l−f(x) = lim
t→x−

f(t).

The space D+ is partially ordered by the usual pointwise ordering of functions, that is, F ≤ G if and only if
F (t) ≤ G(t) for all t ∈ R. The maximal element for D+ in this order is the distribution function ϵ0 given by

ϵ0(t) =

{
0, if t ≤ 0,

1, if t > 0.
(5.1)

Definition 5.1. A mapping T : [0, 1] × [0, 1] → [0, 1] is called a continuous triangular norm (briefly, a
continuous t−norm) if T satisfies the following conditions:

(a) T is commutative and associative;

(b) T is continuous;

(c) T (a, 1) = a for all a ∈ [0, 1];

(d) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1] .

Typical examples of continuous t−norms are TP (a, b) = ab, TM (a, b) = min(a, b) and TL(a, b) = max(a+

b − 1, 0) (the Lukasiewicz t−norm). Recall (see [15, 16]) that if T is a t−norm and xn is a given sequence of
numbers in [0, 1] , then Tn

i=1xn+i is defined recurrently by

T 1
i=1xi = x1 and Tn

i=1xi = T
(
Tn−1
i=1 xi, xn

)
for n ≥ 2.

T∞
i=nxi is defined as T∞

i=1xn+i. It is known [16] that, for the Lukasiewicz t−norm, the following implication
holds:

lim
n→∞

(TL)
∞
i=1xn+i = 1 ⇐⇒

∞∑
n=1

(1− xn) <∞ (5.2)
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Definition 5.2. A random normed space (briefly, RN-space) is a triple (X, η, T ), where X is a vector space, T
is a continuous t−norm and η is a mapping from X into D+ satisfying the following conditions:

(RBS1) ηx(t) = ε0(t) for all t > 0 if and only if x = 0;

(RBS2) ηα x(t) = ηx(t/|α|) for all x ∈ X , and α ∈ R with α ̸= 0;

(RBS3) ηx+y(t+ s) ≥ T (ηx(t), ηy(s)) for all x, y ∈ X and t, s ≥ 0.

Example 5.3. Every normed spaces (X, || · ||) defines a random normed space (X, η, TM ), where

ηx(t) =
t

t+ ||x||

and TM is the minimum t−norm. This space is called the induced random normed space.

Definition 5.4. Let (X, η, T ) be a RN-space.

(1) A sequence {xn} in X is said to be convergent to a point x ∈ X if, for any ε > 0 and λ > 0, there exists a
positive integer N such that ηxn−x(ε) > 1− λ for all n ≥ N .

(2) A sequence {xn} in X is called a Cauchy sequence if, for any ε > 0 and λ > 0, there exists a positive
integer N such that ηxn−xm(ε) > 1− λ for all n ≥ m ≥ N .

(3) A RN-space (X, η, T ) is said to be complete if every Cauchy sequence in X is convergent to a point in X .

Theorem 5.5. If (X, η, T ) is a RN-space and {xn} is a sequence in X such that xn → x, then
lim
n→∞

ηxn(t) = ηx(t) almost everywhere.

To prove stability results, let us take

N T
n;n+1(v) =Nn;n+1(T v)−

T n

2

(
Nn;n+1(v)−Nn;n+1(−v)

)
− T n+1

2

(
Nn;n+1(v) +Nn;n+1(−v)

)
5.2. Stability Results: Odd Case

Theorem 5.6. Assume Nn;n+1 : R1 → R2 be an odd function fulfilling the inequality

ηNT
n;n+1(v)

( c ) ≥ η′v( c ); ∀ v ∈ R1; c > 0. (5.3)

for which there exist a function η′ : R1 → D+ with the condition

lim
m→∞

T∞
r=0η

′
T (m+r)tv

(
T (m+r+1)tc

)
= 1 = lim

m→∞
η′T mtv

(
T mtc

)
;∀ v ∈ R1; c > 0. (5.4)

Then there exists one and only nth order mapping Γn(v) : R1 → R2 satisfying the functional equation (1.7)
and

ηΓn(v)−Nn(v)( c ) ≥ T∞
r=0η

′
T rtv(T (rn+n)t c ); ∀ v ∈ R1; c > 0. (5.5)

with t = ±1. The mapping Γn(v) is defined by

ηΓn(v)( c ) = lim
m→∞

ηNn(T mtv)

T nmt

( c ); ∀ v ∈ R1; c > 0. (5.6)
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Proof. Applying oddness of Nn;n+1 in (5.3) and by (1.9), we observe that

ηNn(T v)−T nNn(v)( c ) ≥ η′v( c ); ∀ v ∈ R1; c > 0. (5.7)

Applying (RBS2) in (5.7), we obtain that

ηNn(T v)
T n −Nn(v)

( c

T n

)
≥ η′v( c ); ∀ v ∈ R1; c > 0. (5.8)

Changing c by T n c in (5.8), we notice that

ηNn(T v)
T n −Nn(v)

(c) ≥ η′v(T n c ); ∀ v ∈ R1; c > 0. (5.9)

Replacing v by T mv in (5.9), we see that

ηNn(T T mv)
T n −Nn(T mv)

(c) ≥ η′T mv(T n c ); ∀ v ∈ R1; c > 0. (5.10)

Applying (RBS2) in (5.10), we achieve that

ηNn(T m+1v)

T nm+n −Nn(T mv)
T nm

( c

T nm

)
≥ η′T mv(T n c ); ∀ v ∈ R1; c > 0. (5.11)

Changing c by T m c in (5.11), we obtain that

ηNn(T m+1v)

T nm+n −Nn(T mv)
T nm

( c ) ≥ η′T mv(T nm+n c ); ∀ v ∈ R1; c > 0. (5.12)

It is easy to see that

1

T mn
Nn(T mv)−Nn(v) =

m−1∑
r=0

[
1

T n+rn
Nn(T r+1v)− 1

T rn
Nn(T rv)

]
; ∀ v ∈ R1. (5.13)

From equations (5.12) and (5.13) and (RBS3), we observe that

ηNn(T mv)
T nm −Nn(v)

( c ) = ηm−1∑
r=0

[ 1

T n+rn Nn(T r+1v)− 1
T rn Nn(T rv)]

( c )

≥ Tm−1
r=0 η[ 1

T n+rn Nn(T r+1v)− 1
T rn Nn(T rv)](T

rn+n c )

≥ Tm−1
r=0 η′T rv(T rn+n c ); ∀ v ∈ R1; c > 0. (5.14)

In order to prove the convergence of the sequence
{

Nn(T mv)
T m

}
, replacing v by T κv in (5.14) and applying

(RBS2), (5.4 ), we arrive

ηNn(T m+κv)

T nm+nκ −Nn(T κv)
T nκ

( c ) ≥ Tm−1
r=0 η′T r+κv(T

nm+nr+n c )

→ 1 as m→ ∞; ∀ v ∈ R1; c > 0.

Thus
{

1

T nm
Nn(T mv)

}
is a Cauchy sequence R2 and it is complete, this sequence converges to some point

Γn ∈ R2. So one can define the mapping Γn : R1 → R2 by

ηΓn(v)( c ) = lim
m→∞

ηNn(T mv)
T nm

( c ); ∀ v ∈ R1; c > 0.

Letting m → ∞ in (5.14), we identify that (5.5) holds for t = 1, for all v ∈ R1 and all c > 0. To prove that Γn

satisfies (1.7), replacing v by T mv in (5.3), we find that

η 1
T nm NT

n;n+1(T mv)( c ) ≥ η′T mv (T nm c) ; ∀ v ∈ R1; c > 0.
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for all v ∈ R1 and all c > 0. Letting n→ ∞ in the overhead inequality and applying the definition of Γn(v), we
identify that Γn satisfies (1.7) for all v ∈ R1. To prove Γn(v) is unique, let Γ′

n(v) be another mapping satisfying
(1.7) and (5.6). So,

ηΓn(v)−Γ′
n(v)

(2 c ) = ηΓn(T mv)−Nn(T mv)+Nn(T mv)−Γ′
n(T mv)(T nm · 2 c )

≥ T
(
ηΓn(T mv)−Nn(T mv)(T nm c ), ηNn(T mv)−Γ′

n(T mv)(T nm c )
)

≥ T
(
T∞
r=0η

′
T rv(T rn+nm+n) c ), T∞

r=0η
′
T rv(T rn+nm+n c )

)
→ 1 as m→ ∞; ∀ v ∈ R1; c > 0.

Hence, Γn is unique. Hence for t = 1 the theorem holds.
Replacing v by

v

T
in (5.7), we notice that

ηNn(v)−T nNn( v
T )

( c ) ≥ η′v( c ); ∀ v ∈ R1; c > 0. (5.15)

The rest of the proof is similar lines to that of case t = 1 Hence the theorem holds for the case t = −1. This
completes the proof of the theorem. ■

The following corollary is the immediate consequence of Theorem 5.6 concerning the stability of (1.7).

Corollary 5.7. Assume s and µ be positive numbers. Let Nn;n+1 : R1 → R2 be an odd function fulfilling the
inequality

ηNT
n;n+1(v)

( c ) ≥
{
η′s( c );

η′s||v||µ( c ); µ ̸= n,
(5.16)

for all v ∈ R1 and all c > 0. Then there exists one and only nth order mapping Γn(v) : R1 → R2 satisfying
the functional equation (1.7) and

ηΓn(v)−Nn(v)( c ) ≥
{
η′|s| (|T

n − 1| c )
η′s||v||µ(|T

n − T µ| c ) (5.17)

for all v ∈ R1 and all c > 0.

5.3. Stability Results: Even Case

The proof of the following theorem and corollary is similar clues that of Theorem 5.6 and Corollary 5.7 with the
help of (1.10). Hence the details of the proof are omitted.

Theorem 5.8. Assume Nn;n+1 : R1 → R2 be an even function fulfilling the inequality

ηNT
n;n+1(v)

( c ) ≥ η′v( c ); ∀ v ∈ R1; c > 0. (5.18)

for which there exist a function η′ : R1 → D+ with the condition

lim
m→∞

T∞
r=0η

′
T (m+r)tv

(
T 2(m+r+1)tc

)
= 1 = lim

m→∞
η′T mtv

(
T 2mtc

)
;∀ v ∈ R1; c > 0. (5.19)

Then there exists one and only (n+ 1)th order mapping Γn+1(v) : R1 → R2 satisfying the functional equation
(1.7) and

ηΓn+1(v)−Nn(v)( c ) ≥ T∞
r=0η

′
T rtv(T 2(rn+n)t c ); ∀ v ∈ R1; c > 0. (5.20)

with t = ±1. The mapping Γn+1(v) is defined by

ηΓn+1(v)( c ) = lim
m→∞

ηNn(T mtv)

T 2nmt

( c ); ∀ v ∈ R1; c > 0. (5.21)
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Corollary 5.9. Assume s and µ be positive numbers. Let Nn;n+1 : R1 → R2 be an even function fulfilling the
inequality

ηNT
n;n+1(v)

( c ) ≥
{
η′s( c );

η′s||v||µ( c ); µ ̸= 2n,
(5.22)

for all v ∈ R1 and all c > 0. Then there exists one and only (n + 1)th order mapping Γn+1(v) : R1 → R2

satisfying the functional equation (1.7) and

ηΓn+1(v)−Nn(v)( c ) ≥
{
η′|s|(|T

2n − 1| c )
η′s||v||µ(|T

2n − T µ|c ) (5.23)

for all v ∈ R1 and all c > 0.

5.4. Stability Results: Odd - Even Case

Theorem 5.10. Assume Nn;n+1 : R1 → R2 be a function fulfilling the inequality

ηNT
n;n+1(v)

( c ) ≥ η′v( c ); ∀ v ∈ R1; c > 0. (5.24)

for which there exist a function η′ : R1 → D+ with the conditions (5.4) and (5.19) . Then there exists one and
only nth order mapping Γn(v) : R1 → R2 and one and only (n + 1)th order mapping Γn+1(v) : R1 → R2

satisfying the functional equation (1.7) and

ηNn(v)−Γn(v)−Γn+1(v)( c )

≥ T 3
(
T∞
r=0η

′
T rtv(T (rn+n)t c ), T∞

r=0η
′
T rt−v(T (rn+n)t c ),

T∞
r=0η

′
T 2rtv(T (rn+n)t c ), T∞

r=0η
′
T 2rt−v(T (rn+n)t c )

)
;∀ v ∈ R1; c > 0. (5.25)

with t = ±1. The mappings Γn(v) and Γn+1(v) are respectively defined in (5.6) and (5.21) .

Corollary 5.11. Assume s and µ be positive numbers. Let Nn;n+1 : R1 → R2 be a function fulfilling the
inequality

ηNT
n;n+1(v)

( c ) ≥
{
η′s( c );

η′s||v||µ( c ); µ ̸= n, 2n,
(5.26)

for all v ∈ R1 and all c > 0. Then there exists one and only nth order mapping Γn(v) : R1 → R2 one and only
(n+ 1)th order mapping Γn+1(v) : R1 → R2 satisfying the functional equation (1.7) and

ηNn(v)−Γn(v)−Γn+1(v)( c ) ≥

 η′|s|

(
(|T n − 1|+ |T 2n − 1|) · c

)
η′s||v||µ

(
(|T n − T µ|+ |T 2n − T µ|) · c

) (5.27)

for all v ∈ R1 and all c > 0.
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