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1. Introduction and Background

Banach fixed point theorem has been expanded in numerous ways and it has undergone numerous
generalisations in various metric spaces. Partial metric space (PMS), which Matthews [1] introduced in 1992, is
a very intriguing generalisation of the metric space in which the self distance not required to be zero.By
establishing a new class of contractive type mappings known as & — @/A) contractive type mappings, Samet et al.
[3] further expanded and generalised the Banach contraction principle. The & — 1 contractive type mappings
were generalised by Karapinar and Samet[4].On the other hand, Berinde [7, 8] introduced the concept of almost
contractions in metric spaces. The concept of weak partial metric spaces, a generalisation of partial metric
spaces, was first introduced by Heckmann [14] in 1999. Some results for mappings in weak partial metric
spaces have recently been obtained in [17], [18],[19] and [20].

Definition 1.1. [12] Let U be the set of functions ) : [0, 00) — [0, 00) such that
(a) zﬁ is non decreasing and continuous;

(b) P(u) =0« u=0.
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Definition 1.2. [3] LetT' : W, — W, and & : W), x W,, — [0, 00). T is said to &-admissible if
a(np, Gp) 2 1= (I, I'Gp) = 1

for all n,, ¢, € W),

Definition 1.3. [5] LetT' : W), — Wy and 6 : W, x W, — [0, 00) be two functions. Then T is said to triangular
G-admissible if T is &-admissible and for n,, (,, 6, € W, &(np, dp) > 1 and &(0,,(p) > 1= &(np, (p) > 1.

Lemma 1.4. [5] LetT' : W, — W), be a triangular &-admissible mapping. Suppose that there exists 0, € W,
such that &(np,,I'np,) > LIf we define a sequence {ny,} by np,., = I'ny, for every i € No. Then we have
G&(Mp;»Mp,) > 1 forall j,i € Nwith j > .

In 1992, Matthews [1] presented generalization of metric space as follows:

Definition 1.5. ([1]) Let W), be a set which is non-empty. A mapping 3, : W, x W,, — [0, 00) is known as
partial metric on W, if the following conditions are satisfied:

(PMS1) 1y = Cp 05 (1ps 1hp) = 06(Cps Gp) = Vo 10p Cp) 5

(PMS2) 05(np, Mp) < 0o (11p, Cp);

(PMS3) 0, (11p; Cp) = 05(Cps M)

(PMS4) 0,(1p, Cp) < 0o(0py 0p) +05(0p, Cp) — 0o(0p, ). for all my,, Cp, 5, € Wy
Lemma 1.6. ([1]) Let (W, 0,) be a partial metric space.

(a) A sequence {ny,} in the space (W,,0,) converges to a point n, € W, <
0(Mp,p) = Lim 4 (1, ,77p),
71— 00
(b) Iflim; ; 00 04(np,, Mp, ) exists and finite then the sequence {ny, } is a Cauchy sequence in space (W,0,),
(c) If every Cauchy sequence {ny,} in W, converges to a point n, € W, such that
00 (Mps p) = Lm0y (10,571, ) = 1m0 (15 71p) = 0 (1 1)
Jyi—o0 i—00

Then (W, 0,) is complete.

Lemma 1.7. ([11],[1],[2]) Let 0, be a partial metric on Wy, then the mapping 0y Wy, x W, — R* such that

a:;n(npv Cp) = maX{ag(Up’ Cp) - %(77p7 771))’ Dg(npv Cp) - aQ(va Cp)}

=00 (Mp: Cp) — min{0,(1p, mp), 00(Cp Gp)} (L.1)
is metric on Wy, Furthermore, (W,,0}") is metric space.
Let (W}, 0}") be a partial metric space. Then

1. A sequence {n,,} in (W,,37") is a Cauchy sequence < {n,,} is a Cauchy sequence in the metric space

P Yo
(Wp, 03"),

2. (Wp,03) is complete < (W, 0,) is complete. Moreover
lim; o0 02"(77101-,77;7) =0 0,(7p, Mp) = limy 00 04 (1p,,Mp) = limy; 00 Dg(npwnpj)-

e
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Lemma 1.8. ([18]) Suppose that {n,,} be a sequence n,, — §, as i — oo in a partial metric space (Wp,0,)
such that 0,(0p, 6p) = 0. Then 1im; o0 0,(1p, , () = 0,(6p, () for every ¢, € W,

Lemma 1.9. [18] If {ny, }be a sequence with 1im;_,c 0,(np,,Mp,,,) = O such that {n,,} is not a Cauchy
sequence in (Wp,0,), and there exist two sequences {i(u)} and {j(u)} of positive integers such that i(u) >
j(u) > u, then following sequences

DQ(npj(u) ’ npi('u)+1 )7 Dg(npj(u) ’ npi(u))’

aQ(npj(u)fl ’ npi(u)+1)7 Dg(npj(u)f1 ’ npi(u))
tend to pi, > 0 when u — o0

Lemma 1.10. ([12], [16])Let W), be a set which is non-empty. Suppose that (W,,0,) be a partial metric space.
L Ifny # Cp then 3,(1p, Gp) > 0,

2. if%(??p’ Cp) = 0 then n, = (.

By omitting the small self-distance axiom in partial metric spaces, Heckmann [14] introduced the concept of
weak partial metric space as follows:

Definition 1.11. [14] Let W), be a set which is non-empty . A mapping d, : Wy, x W,, — [0, 00) is known as
weak partial metric on W, if the following conditions are satisfied:

(WPMSI) np = G & Dg(npanp) = Dg(Cp, Cp) = 0,(x, Cp) ;
(WPMS2) 0,(1p, Cp) = 00(Cps )3

(WPMS3) 0,(np, Cp) < 00(0p, 8p) +05(8p, Cp) — 05(8p, 8p). for all my, Cp, 6p € W

and the pair (W, 9,) is called weak partial metric space (in short WPMS).
Additionally, Heckmann [14] demonstrates that the weak small self-distance feature follows if 0, is a weak partial
metric on W), i.e.
25(1ps Mp) +00(Cpy p)
2

a@(npa Cp) Z

foralln,, ¢, € W,

Every partial metric space is obviously a weak partial metric space, but the converse may not be true. For
. e geSp . . . . .

example, for 1, ¢, € R the function 9,(n,, (p) = 55— is a weak partial metric space but not a partial metric

onR.

Lemma 1.12. [15] Let (W,,,0,) be a weak partial metric space(WPMS).
(i) {np. } is a Cauchy sequence in (W,0,) < it is a Cauchy sequence in (W, 0y");
(ii) (Wy,0,) is complete <> (W, 0,") is complete.
Lemma 1.13. [17] Let (W,,d,) be a weak partial metric space and {n,,} is a sequence in (W,,0,). If
Wm0 7p, = 1p and 0o(Np, 1p) = 0, then im; 06 0o (1p,; Cp) = Vo (p, Cp), for all G, € W
Definition 1.14. [13] Let ® be the set of all functions ¢ : [0,00) — [0, 00) satisfying the following conditions:
(i) o(u) < ﬁ(u)forallu >0
(ii) ¢(0) =0
Definition 1.15. [21] Let © be the set of functions 9 : [0, 00) — [0, 00) such that
(i) J is continuous;
(ii) D(u) =0 < u=0.

Remark 1.16. The convergence of sequences, Cauchy sequences, and completeness in a weak partial metric
space are defined as being in a partial metric space.
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2. Main Results

Definition 2.1. Let (W,,,) be a weak partial metric space and I' : Wy, — W), be a given self map. We say
that T is almost generalized (év, 1), ¢, 0)-contractive mapping if there exists év : W, x W, — [0,00) and Dev,
¢ € P9 € 0andLL >0 such that for all n,, ¢, € Wy, we have

a(np, Cp)@zj(%(r"h)a ['¢p)) < oM (mp, Cp)) + Lﬁ( (npa ) (2.1
Where
M(npv Cp) =1Inax {09(77177 gp)v ag(npv an); DQ(CZN FCp)v %[%(nm FCp) + aQ(va an)]} (2.2)
and )
N(npa Cp) = min{b’g"(np, an)’ DZL(CIH an)} (2.3)

Theorem 2.2. Let (W,,0,) be a complete weak partial metric space and T' : W, — W, be self mapping.
Suppose & : W, x W, — [0, 00) be the mapping satisfying the conditions:

(i) T is triangular &-admissible;
(ii) T is almost generalized (&, 1[1, P, @)-contractive mapping;
(iii) There exists np, € W, such that &(np,,'np,) > 1;
(iv) T is continuous.
Then I has a fixed point in W,

Proof. Let there be an arbitrary point 7, such that &(n,,,I'n,,) > 1. Suppose there is a sequence {7, } in W,
such that n,,,, = I'np,, forall i € Ny.

If np, = np,,, for some i € Ny, then 7, is a fixed point of I" and then proof of existence part of fixed point
is finished. Suppose 1,, # 7)p,,, for every i € No, Then 9,(7,,,7p,.,) > 0 by Lemma 1.10. Now, since I is
&-admissible, so

d(rnpo ’ anl) = 07(%1 ) 77p2)

>1
d(F??p1>F77p2) = @(npzanps) >1

and using induction we have &(7,,,7p,,,) > 1 foralli € N.

Now, from (2.1) we have

¢(Dg(npia77pi+1)) = 7;(09<F77p1,717rnp1,)) S @(WpiflaWpi)ﬁ(ag(rnpiflarnpi))
< @(M(T}pi—l7np7')) + Lﬁ(-/\?(nmﬂanm)) (2.4)

where

/\7(77101-71777101-) = min{a;n(npi—17ani—1)7a;n(npi7ani—l)}
= min{azn<npi—l ) npi)v Dz;n(npia Mp; )}
=0

i

244
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and
- 1
M(’rlpi—l ) npi) =max {09071%71 ) npi)’ Dg(npi—l i 7 )s 09(77171' ) ani)’ 5[09(771%71 ) ani) + ag(ﬁpw ani—l)]}

1
=max {Dg(npi—l ) npi)’ DQ(npi—l ) npi)’ ag(nm ) 77pi+1)a 5[09(77pi71 ) an»l) + DQ(TIpi ) 77115)]}

(2.6)
Now, using the condition(WPMS3) we have
Dg(npi—l ’ 77pi+1) S DQ(”P1—1 ’ npi) + 09(77[)1” 77;Dz‘+1) - Dg(npm npi)
Therefore
1 1
5[09(77@'_1 ’ 77Pi+1) + Dg(npi ) 77P7)] S i[og(npi_l ) npi) + 09(77171‘ ’ npqz+1> - Dg(npi ) npz‘) + Dg(npi ) 77;07)]
1
= 5[09(77]01'—1 9 npi) + Dg(npi ) npi+1)]
S max{ag(npi—l ? npi)? ag(npi ? an»l )} (27)
By (2.6) and (2.7) we get that
'A;l(npi—l ? npi) S maX{DQ(npi—l ? npz' )’ DQ("]:W ? "71?7'+1 )} (28)
Now, using (2.5) and (2.8) in (2.4) and the fact that and @(u) =0 < u =0, we get that
w(ag(npi ) T]pqt+1 )) S @(max{og(npi ) npi+1)7 DQ(T}pi—l ) npi, }) (29)
Now, if 0, (7p,, Mpisy) > 0o(7p,_1 s 1p, ) using definition that p(u) < ¥ (u) for u > 0 we get
Iﬁ(ag(npwnpiﬂ)) < @(ag(npmnpiﬂ)) < '&(Dg(npwanJ)
which is a contradiction. Hence
¢(aa(npi ) npi+1>) S @(aﬁ)(npz:fl 9 771)1)) < 1/’(%(77101-71 ) npi)) (210)

We get a sequence of non-negative real numbers {0,(7,,,7p,,,) : © € N} that decreases. Therefore there
exists A\g > 0 such that
li 3 Mpias) = A
Jm 0, (11p;, Mpisa) = Ao

Let Ag > 0. Then taking limit « — oo in (2.10) we get

B(No) < B(Ao) < (o)

This is contradiction. Hence
Jim 0, (mp,,7pi 1) = 0 211

We now show that {7, } is a Cauchy sequence in W),. i.e. lim; j o0 04(1p,,1p;) = 0.
By contradiction, we prove it.
Let

lim Dg(npmnpg‘) 7é 0

17— 00

e
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Then, with reference to lemma 1.9 all sequences tends to p, > 0, when u — oo.
So we can see that
lim Dg(npj(u)7np7‘,(u)) = Wp (2.12)

U—r 00
Further corresponding to j(u), we can choose i(u) in such a way that it is smallest integer with i(u) > j(u) >
u. Then

uli_{IolODQ(npi(u)fl7npj(u)) = Hp (2.13)
Again,
DQ(npj(u)fl ’ nm(u)71) S Dg(npj(u)fl ’ npi(u)) + Dg(npi(u) ’ npi(u)—l) - ag(npi(u) ’ npi(u))
Letting © — oo and using lemma 1.9 we get
lim a@(npj(u,)—l ’ 77117‘,(“,)—1) = Hp (2.14)

U—00

Again note that

Now, since I is triangular &-admissible, from Lemma 1.4 we derive that d(npi , npj) > 1foralli > j € Ng.
Replacing 7, by 7y, ,, and ¢, by m,, , in (2.1) respectively, we get

w(ag(npi(u) ’ npj(u) )) = w(ag(l—‘npi(u)—l ’ ]'—‘npj(u)—l )) S d(npi(u)—l ’ npj(u)—l )’l/](bg(rnpi(u)—l ’ anj(u)—l ))

S @(M(npi(u)717npj(u)f1)) + L(ﬁ(N(npi(u)fpnpj(u)71)))
(2.15)

Where

M(npi(u)—l ’ npj(u)fl) = max{bg(npi(u)l ’ /r]pj(u)fl)7 Dg(npi(u)—l ’ ]'—‘npi(u)—l )7 Dg(npj(u)fl ’ ]'—‘npj(u)—l )7

1
5 [Dg(npi(u)fl ’ anj(u)fl) + Dg(npj(u)fl ’ ani(u)fl )]}
ma’X{aQ(nPi(u)1 ’ npj(u)—l)’ DQ(T}pi(u)fl ’ T]pi(u))’ Dg(’r]pj(u)fl ’ npj(u) )7
1

§[ag(npi(u)—1 ) T]pj(u)) + ag(npj(u)—l ) npi(u))]

and

N(npi(u)—l ’ npj(u)—l) = min{DgL (npi<u)—l ) ani<u)—1 )7 agn (npj(u)—l ’ ani(u)—l )}

= min{DZL (npi(u)—l ) npi(u) )7 DZL (npj(u,)—l ) npi(u) )} (216)
Letting u — oo in (??) and (2.16) and using (2.11), (2.12), (2.13), (2.14) and lemma 1.9 we get
S M (1,1 Mgy —r) = max{ 1, 0,0, p1p } = 1 2.17)
and

uILH;oN(npi(w—l’nPﬂu)—l) =0. (2.18)

S

=]

MM
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Now Letting © — oo in (2.15) and using (2.17) and (2.18) we get

V(p) < Ppp) < h(pp)

This is a contradiction, Therefore
im0y (np,,7p,) =0 (2.19)

1,]—>00

This implies that {n,, } is a Cauchy sequence in (W}, 9,). On the other hand, since

agb(npwnpj) = ag(”}m”m) - min{ag(npwnpi)vag(npjvnpj)}
S a@(npmnpj)

Now, taking the limit as j,¢? — oo and using (2.19) we get that

lim D?(Upmﬁpj) =0 (220)

1,]j—>00

This shows that {7, } is also a Cauchy sequence in the metric space (W, 07"). Since (W), 9,) is complete, then
from Lemma 1.12, the sequence {7,, } converges in the metric space (W}, 0y"), say lim; o 03" (7p,,6p) = O.
Again from Lemma 1.12 we have

DQ((SP? 511) = leglc ag(npm 5[)) = lm %(Upm 77pj) (2.21)

i
J,i—00
Therefore, from (2.21) and (2.19) we get that

Dg(épaép) = nh_>ngoag(77pw‘5p> = .Pm Dg(npwnpi) =0 (2.22)

7,8—00

Moreover, As I' is continuous, we have

Op = zlgrolo Mpiyr = ZIE& Inp, =T,

In the following, we omit the continuity assumption of I' in Theorem 2.2.

Theorem 2.3. Let (W,,0,) be a complete weak partial metric space and T' : W, — W, be self mapping.
Suppose & : W, x W, — [0, 00) be the mappings satisfying the conditions:

(i) T is triangular &-admissible;
(ii) T is almost generalized (&, 1/;, ?, é)-contractive mapping;
(iii) There exists np, € W, such that &(np,, I'np,) > 1;

(iv) If {np,} is a sequence in Wy, such that n,, — n, € Wy, &(np,,Mp,,,) = 1 for all i, there exists a
subsequence {1y, } of {np, } such that &(ny, ., ,np) > 1 for all u.

Then I has a fixed point in W), Further if §,, d, are fixed points of I" such that &(d,,d) > 1 then 6, = J.

Proof. From the proof of the Theorem 2.2, the sequence 7, defined by 7, , = I'n,, is Cauchy in W, and
converges to , € W,. According to the assumptions, there is a subsequence of {7, } of {n,,} such that
G(np, ) 0p) > 1 for all u. We will now demonstrate that d,, is a fixed point of I". Consider the alternative, then
0,(6,,T9,) > 0.

Now in (2.1) replacing 7, by 7,, ,, and (, by &, we get

e

[V =)
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1[)(09( L'ép)) = @(Dg(Tnmwmp)) < d(npi(u)’5P)¢(DQ(F77P'L(u)’F5P))
< P(M (M, 0p)) + LON (1, 6p))) (2.23)

1
FA010) =05 {00 087000l T )00 T8 50+ T0) 4 005 T, )1}

1
=1max {09(771)1;(“) ; Op) Dg(npuu) ) 77p1:(u,)+1)a 0,(6p,T'0), 5[%(77171(“) ;T0p) +0,(0p, 77pi(7‘,)+1)]}
(2.24)

and

N(npt(u) ’ 6;0) = min{azl(npi(u) ’ ani(u) )’ DZL((SW ani(u) )}

= min{DZl (npi(u) ) npi(u)+1)7 a;n(dpv npi(u)+1 )} (2'25)

Now, taking u — oo in (2.24) and ((2.25) and using the fact that due to (2.22) we have 9,(d,,d,) = 0, we get
. ~ 1
ulglolo M(”pm) ;0p) = max{0,0,0,(6p, '), 5[09(5% Lép) + 0]} = 0,(6p, 1'6p) (2.26)

and

lim N(np,,,,0) =0 (2.27)

U— 00

Now, taking © — oo in (2.23) and using (2.26), (2.27) and definitions of 1&, ¢ and J we get

@(Dg(ép’r‘sp)) < @(0,(6p, T'6p)) < 7[}(09(51?71—‘5?))

which is a contradiction. Therefore I'd,, = J,, i.e. dy, is a fixed point.
Further, suppose d,, and d, be two fixed point of I" such that 9,(d,, ;) > 0 and &(d,,d,) > 1 then replacing 7,

by d, and (, by d, in (2.1) we get

1&(0@(6177 5q)> = 1[}(09(1—‘61771—‘6(1)) S d(6P7 JQ)DQ(F(SP?F(SQ)
< G(M(8,84)) + LION (8, 0,))) (2.28)

Where

~ 1

M(dy,d4) = max {D@(‘Spv 04)500(0p, I'6p),0,(0¢, I'dg), 5[09(5177 ['éq) +0,(8gs P‘sp)}}
1

= max {09(51)7 8q),00(0p, 0p),00(0g, dg), 5[09(51)7 8q) +0,(0q, §p)]}

1
— max {og(ap, 50): 0,0, 5[25(3p: 84) + (35, 3,) }by(WPMSZ)

= Dg(gpaéq)
e
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and

N (0p, 6¢) = min{0y" (0, T'0p), 05" (34, I'0p) }
= min{O;n((Sp, dp); 0?(5q7 dp)}
-0 (2.30)

By putting (2.29), (2.30) in (2.28) and using the definitions of 1& ¢ and J we get

D (0(6p,0,)) < $(0(0p,6,)) < P(0,(6,,,))

This is contradictory. As a result, I' has a unique fixed point. The evidence is now complete.

The theorems’ consequences are given below.
Corollary 2.4. Let (W,,0,) be a complete weak partial metric space. T : W,, — W, satisfy the criterion by
self-mapping with

P, (T TG)) < G0, (1. o) + LN (1, G)) (2.31)
For all 0y, ¢, € W, 7& cVU,ocPand L > 0. Then T has a unique fixed point in W,

Corollary 2.5. Let (W,,0,) be a complete weak partial metric space. A self-mapping T' : W, — W, be such
that

0,(I'mp, I'Gp) < k(M(np, Cp))

For all n,, ¢ € Wy, k € (0,1), where

~ 1
M1y, Gp) =max {0, (1p: Gp)s 0o (p: T1p) 00(Gpr '), 500 (1 TGp) +00(Gp Tpp)]} - (232)

Then I has a unique fixed point in Wp,.

Example 2.6. Let W, = [0, 1] and 2,(n,,(p) = 2(np + (), Then 05 (s Cp) = L1np — (ol Therefore, since
(W, 0y') is complete, the by Lemma 1.12 (W, 0,) is a complete weak partial metric space (WPMS).

Consider the mapping I : W, — W, defined by I'(1),) = "2 and let ¥, $,0 : [0,00) — [0, 00) be such that
O(u) = 2u, p(u) = 24 and J(u) = u for all u > 0. If we define the functions & : W, x W, — [0, 00) as

) 1 .G €0, 3]
a(np, Gp) = per e (2.33)
o 1y, Gp € (3,1]
‘We show that contractive condition of Theorem 2.2 is satisfied.
Let 7, ¢y € [0, 1] we get
R ) . v e G
O‘(npv CpW(%(FUp, FCp)) = O‘(npa Cp)w(ag(gpv ?p))
_ = 1 Np + Cp
= (5 (22
2
= 390, Cp) (2.34)
S
Vo
MM
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On the other side

- 1
M(ﬂp, Cp) =max {%(ﬂp, Cp), Dg(”pa an)a DQ(CIM FCp)a 5 [09(77;07 FC;D) + D@(va an)]}

= e {2, G,). 0y 2.0 (4,,,9’),4 O, )+ 25(G, )]}
—max {2 1% Mo Ko "”“p}
:%T—’_Cp = Dg(ﬂp, Cp) 23)

and

N(npv Cp) = min{bl,”(np, I'¢y), m(czn I'np)}

= min{0] (1, ), 07 (Gpr 2} (2.36)
Therefore from (2.35) we get
Py, o)) + DO (s 6))) = (22 2) + LN ()
p +Cp
= 2T 4 LWy )

= 3000, ) + LN (. ) .37

Now since L(N (1,,¢p)) = L(min{0} (1, ), 00" (Cp, 2)}) > 0 for all 1, (, € W, and from (2.34) and
(2.37) we get

(77177 Cp) (77;07 Gp) + L( (npv Cp)) (2.38)

- 3
for all n,,, ¢, € W,

Now, let 1,,(, € (4,1], in this case the contractive conditions of theorem 2.2 is already satisfied since
&(np, ¢p) = 0. It is clear that all the conditions of Theorem 2.2 hold. Hence I has a fixed point, which in this
case is 0.

Example 2.7. Let W, = [0,1] and 9,(n,, () = 3(np + (), Then 00 (s Gp) = 3np — Cpl- Therefore, since
(W, 0y') is complete, the by lemma 1.12 (W),,0,) is a complete weak partial metric space ( WPMS).

Np € [0, %}

and let ¢, ¢ : [0,00) — [0, 00)
7717 S 9 1]

2
Consider the mapping I" : W, — W), defined by I'(n,)= {’7;;

—~
N

be such that ¢(u) = u, $(u) = 5 forall u > 0.
Now, we show that contractive condition of corollary 2.4 is satisfied for L = 1, i.e.,

U}( o(Lnp, T'G)) < (0,1, Gp)) + LN (npan)) (2.39)
for all 1, ¢, € W, Let 1, ¢, € [0, 3], then
R 22 e
0T 1) =ty e LGy Ly o)

0,(1ps Gp) + min{bm (np, T'np), D? (Cps I'mp) }

<y
= @(0,(1p,Cp)) —i—mln{Dm(np,an), 0 (Czwrnp)}
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Now, let 77, ¢, € (%, 1], then result is clear since in this case 9,(I',, ;) = 0. As a result, all requirements of
corollary 2.4 are completely satisfied. As a result, it has a fixed point, which in this instance is 0.
Now, we demonstrate that the contractive requirement of Corollary 2.5 is met.

Example 2.8. Let W, = [0, 1] and 2,(n,,(p) = 3(np + (), Then 05 (s Cp) = 1np — Cpl- Therefore, since

(Wp, o o ) is complete, the by lemma 1.12 (W),,0,) is a complete weak partial metric space (WPMS).

Consider the mapping I : W, — W), defined by I'(1,) = “& Then

0 (T TG) = 052, $2) = 20,y )
(2.40)
On the other hand side
WA Gp) = max {0, G 000 ) 00(Go T ), 50005 ) + (G T )}
= {2,056 00> ™). 00 ), 2 000 2) + 2,06, )}
(G 2 2 1
Z%TH}’ = 0o(1ps Cp) (2.41)
From (2.40) and (2.41) we get
0,(Mp, Cp) < ko (mp, Cp) (2.42)

fork € [3,1). ie.
0,(I'np, ') < k(M (77177 Cp))

for k € [%, 1).It is evident from (2.42) that it satisfies the requirement of Corollary 2.5. As a result, it has a fixed
point, which in this instance is 0.

3. Conclusion

In this study, we proved certain fixed point theorems in the context of complete weak partial metric spaces
using triangular &-admissible mappings and provided some implications of the main findings. We included
some examples to support our results. The results in this article expand upon and generalise several results from
the existing literature.
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