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Abstract. In this paper, we are interested in the numerical computation of the constrained maximum likelihood estimator
(MLE) of the parameter vector of a discrete statistical model used in statistics applied to road safety. The parameter vector is
divided into two blocks: one block with the parameter of interest and the second block with secondary parameters. The MLE
is the solution to a system of non-linear implicit equations difficult to solve in closed-form. To overcome this difficulty, we
propose a hybrid algorithm (HA) mixing the use of a one-dimensional Newton-Raphson (NR) algorithm for the first equation
of the system and a fixed-point strategy for the remaining equations. Our proposed algorithm involves no matrix inversion
but it partially enjoys the quadratic convergence rate of the one-dimensional NR algorithm. We illustrate its performance on
simulated data and we compare it to Newton-Raphson (NR) and quasi-Newton algorithms which are two of the most used
optimization algorithms. The results suggest that our HA outperforms NR and quasi-Newton algorithms. It is accurate and
converges quickly for all the starting values.
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1. Introduction

The statistical evaluation of road safety measures (for example, increase or decrease of speed limit,
modification of ground markings, installation of roundabouts, etc. . . ) is one of the very important issues in
statistics applied to road safety. Assume that a road safety measure has been implemented at s (s > 0)
geographical sites (hereinafter referred to as treatment sites) where crashes are categorized in r (r > 0) severity
levels. Also assume that each treatment site is paired with a given site (hereinafter called control site) with the
same characteristics as the treatment site (traffic flow, accident exposure, road conditions, etc. . . ) except that the
measure was not implemented. For all k = 1, . . . , s, let

Xk = (X11k, X12k, . . . , X1rk, X21k, X22k, . . . , X2rk)
T
,

where Xijk is the random number of crashes of severity level j (j = 1, . . . , r) occurred on treatment site k in
period i (i = 1 corresponds to the period before implementation of the measure and i = 2 corresponds to the
period after). Also let

zk = (z1k, . . . , zrk)
T,

where zjk is a (non-random) coefficient equal to the number of crashes of severity level j in the ”after” period
divided by the number of crashes of the same severity level in the ”before” period on the control site paired with
treatment site k.

Let α > 0 be the overall mean effect of the measure (for example, α = 0.7 < 1 means that the measure
allowed (1 − α) × 100% = 30% reduction in crashes) and βjk ∈ [0, 1] (j = 1, . . . , r; k = 1, . . . , s) be the
probability that a crash occurring on treatment site k has severity level j. Thus, for all k = 1, . . . , s, the vector
βk = (β1k, . . . , βrk)

T belongs to Sr−1, where

Sr−1 =

(p1, . . . , pr)
T ∈ [0, 1]r,

r∑
j=1

pj = 1

 . (1.1)

Let θ = (α,βT)T be the vector composed of the 1 + sr parameters, where β = (βT
1 , . . . ,β

T
s )

T ∈ (Sr−1)
s. The

question here is how to define the probability distribution of random vectors X1, . . . , Xs in such a way that it
can make it possible to estimate the vector θ.

There exist different models in the literature [28, 33, 34]. For all of them, the computation of the maximum
likelihood estimate (MLE) θ̂ of vector θ requires the numerical maximization a log-likelihood function L(θ). A
comprehensive review of modern numerical optimization algorithms is available in reference papers and books
such as [1, 4, 11, 18, 19, 21, 26, 35]. The very first algorithm that comes to mind is the Newton-Raphson (NR)
algorithm. It starts from an initial guess θ(0) and iterates according to the scheme

θ(m+1) = θ(m) − [∇2L(θ(m))]−1∇L(θ(m)),

where ∇2L(θ(m)) and ∇L(θ(m)) are respectively the Hessian matrix and the gradient vector evaluated at θ(m).
The convergence of NR algorithm is guaranteed only if the starting guess θ(0) is close to the true solution θ̂ that
is unknown in practice [11]. So, the success of NR algorithm strongly depends on the appropriate choice of θ(0)

in a neighbourhood of the unknown θ̂. In computational terms, NR algorithm can be very costly and heavy for
high-dimensional problems or simply impossible to implement because of the numerical inversion of the Hessian
matrix at each iteration. When NR algorithm is unsuccessful, alternatives such as quasi-Newton algorithms [35]
(which compute approximations of [∇2L(θ(m))]−1 at each iteration) and Derivative-Free Optimization (DFO)
algorithms [2, 23, 37] may be used but they are considered as effective in solving small to mid-size problems. In
practice, it is known that no optimization algorithm is perfect and one must find the most suitable algorithm for
each problem.

In this paper, we build a hybrid algorithm (HA) which combines a one-dimensional NR method for estimating
α and a fixed-point strategy for estimating β. Our proposed HA alternates between computing α from β using the

12



A new hybrid algorithm for maximum likelihood estimation in a model of accident frequencies

one-dimensional NR algorithm and computing β from α using the fixed-point based strategy. Starting from an
initial guess θ(0), our proposed hybrid algorithm for estimating θ updates the successive iterates in the following
manner: at step m+1, α(m+1) is updated from β(m) afterwards β(m+1) is updated from α(m+1) and β(m). Our
proposed algorithm is thus a cyclic algorithm (because it cycles through the components of θ updating one from
the other rather than updating the whole parameter vector at once) and it may be easily implemented.

The remainder of this paper is organized as follows. In Section 2, we describe the statistical model and give
the likelihood function. In Section 3, we present our new hybrid algorithm for estimating the parameter vector
θ. In Section 4, we present the results of the numerical study of the proposed algorithm and the results of its
comparison with NR and quasi-Newton algorithms which are two of the most used optimization algorithms. The
paper ends with Section 5 dedicated to the conclusion and some discussions.

2. Statistical model

As mentioned earlier, there exist different models in the literature [28, 33, 34]. The model described in [33]
has been the subject of several research works in the particular case s = 1 [9, 10, 27, 29, 32] and in the general
case s ⩾ 1 [6, 30, 31]. These results can be adapted to the model of [28] which is a reparametrization of the one
in [33]. The models in [33] and [34] have been compared in the case s = 1 by [8] who demonstrated theoretical
results on the measure of divergence between the two models and showed through real data that both models are
very competitive.

In this paper, we are interested in the model of [34] which assumes that for all k = 1, . . . , s,

Xk ⇝M(nk;πk(θ|zk)), (2.1)

whereM denotes the multinomial distribution, nk is the total number of crashes recorded on treatment site k,

πk(θ|zk) = (π11k(θ|zk), . . . , π1rk(θ|zk), π21k(θ|zk), . . . , π2rk(θ|zk))T (2.2)

π1jk(θ|zk) =
βjk

1 + α⟨zk,βk⟩
, j = 1, . . . , r, (2.3)

π2jk(θ|zk) =
αβjk⟨zk,βk⟩
1 + α⟨zk,βk⟩

, j = 1, . . . , r, (2.4)

and ⟨zk,βk⟩ =
∑r

j′=1 zj′kβj′k. The log-likelihood (see [34, p. 1275]) of observed data xk = (x11k, . . . , x1rk,
x21k, . . . , x2rk) such as

∑2
i=1

∑r
j=1 xijk = nk, k = 1, . . . , s, is given to one additive constant by:

L(θ) =

s∑
k=1

r∑
j=1

{
x•jk log βjk + x2jk logα− x•jk log

(
1 + α⟨zk,βk⟩

)
+ x2jk log⟨zk,βk⟩

}
, (2.5)

where x•jk = x1jk + x2jk. The maximum likelihood estimation problem is the following constrained
maximization problem: 

maximize L(θ) (2.6a)

subject to

α > 0 and βjk > 0, j = 1, . . . , r; k = 1, . . . , s, (2.6b)
r∑

j=1

βjk = 1, k = 1, . . . , s. (2.6c)

The maximum likelihood estimate (MLE) of θ is denoted θ̂ = (α̂, β̂T)T, where β̂ = (β̂T
1 , . . . , β̂T

s )
T and for all

k = 1, . . . , s, β̂k = (β̂1k, . . . , β̂rk)
T.

In the case s = 1, [7] has obtained the closed-form expression of the MLE. In the next section, we build a
hybrid algorithm for computing the MLE θ̂ in the case s ⩾ 1.
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3. A hybrid algorithm for computing the MLE of the vector parameter

Let us begin with the following result.

Theorem 3.1. For all k = 1, . . . , s, let

x1•k =

r∑
j=1

x1jk, x2•k =

r∑
j=1

x2jk and x1•• =

s∑
k=1

x1•k.

Then, the MLE θ̂ is solution to the following system of non-linear equations:

s∑
k=1

nk

1 + α̂⟨zk, β̂k⟩
− x1•• = 0 (3.1a)

x•jk −
nkβ̂jk(α̂zjk + 1)

1 + α̂⟨zk, β̂k⟩
− x2•kβ̂jk(⟨zk, β̂k⟩ − zjk)

⟨zk, β̂k⟩
= 0,

j = 1, . . . , r, k = 1, . . . , s. (3.1b)

Proof. In [34, p. 1276], it is proved that θ̂ is solution to the following system of non-linear equations:

s∑
k=1

r∑
j=1

x2jk − α̂x1jk⟨zk, β̂k⟩
1 + α̂⟨zk, β̂k⟩

= 0 (3.2a)

x•jk −
nkβ̂jk(α̂zjk + 1)

1 + α̂⟨zk, β̂k⟩
− x2•kβ̂jk(⟨zk, β̂k⟩ − zjk)

⟨zk, β̂k⟩
= 0,

j = 1, . . . , r, k = 1, . . . , s. (3.2b)

The non-obvious part of the proof consists in proving Equation (3.1a) using Equation (3.2a). Passing the
summation over index j to the numerator, we obtain Equation (3.2a) under the equivalent form

s∑
k=1

x2•k − α̂x1•k⟨zk, β̂k⟩
1 + α̂⟨zk, β̂k⟩

= 0.

Since x2•k = nk − x1•k, we also have

s∑
k=1

nk − x1•k − α̂x1•k⟨zk, β̂k⟩
1 + α̂⟨zk, β̂k⟩

= 0

which is equivalent to
s∑

k=1

nk

1 + α̂⟨zk, β̂k⟩
−

s∑
k=1

x1•k = 0.

The proof is thus completed. ■

In the case s = 1, [7] obtained the exact expression of θ̂. But in the general case s ⩾ 1, non-linear
Equations (3.1a) and (3.1b) cannot be solved in closed-form. There are implicit relations between parameters
α̂ and β̂jk’s which can make it possible to compute α̂ from the β̂jk’s and conversely, compute the β̂jk’s from
α̂. So, we propose the following strategy for a fast and efficient computation of θ̂: for a given estimate
θ(m) = (α(m), (β(m))T)T obtained after m iterations,
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(a) use Equation (3.1a) to compute α(m+1) from β(m) and

(b) use Equation (3.1b) to compute the β
(m+1)
jk ’s (the components of β(m+1)) from α(m+1) and β(m).

We propose a one-dimensional Newton-Raphson (NR) algorithm to perform Step (a) and a fixed point strategy
for Step (b).

3.1. Computation of α(m+1) via a NR algorithm

The following lemma states that for all estimate β(m) of β, Equation (3.1a) (considered as an equation of
unknown α) has a unique solution α(m+1).

Lemma 3.2. Let

x2•• =

s∑
k=1

x2•k

and let β(m) be the estimate of β after m iterations. Let us rewrite Equation (3.1a) under the form Ψβ(m)(u) = 0

where Ψβ(m) is the function from [0,+∞[ to ]− x1••, x2••] defined by:

Ψβ(m)(u) = −x1•• +

s∑
k=1

nk

1 + u⟨zk,β(m)
k ⟩

. (3.3)

Then, Equation Ψβ(m)(u) = 0 has a unique solution α(m+1).

Proof. The function Ψβ(m) is differentiable and its derivative Ψ′
β(m) , defined on [0,+∞[ by

Ψ′
β(m)(u) = −

s∑
k=1

nk⟨zk,β(m)
k ⟩

(1 + u⟨zk,β(m)
k ⟩)2

,

is strictly negative. Thus, Ψβ(m) is a continuous and strictly decreasing function. Therefore,

Ψβ(m)

(
[0,+∞[

)
=

]
lim

u→+∞
Ψβ(m)(u),Ψβ(m)(0)

]
,

where

Ψβ(m)(0) = −x1•• +

s∑
k=1

nk =

s∑
k=1

(−x1•k + nk) =

s∑
k=1

x2•k = x2•• > 0

and
lim

u→+∞
Ψβ(m)(u) = −x1•• < 0.

We can conclude that Ψβ(m) is bijective from [0,+∞[ to ] − x1••, x2••] and, since −x1•• < 0 < x2••, the
equation Ψβ(m)(u) = 0 has a unique solution. ■

For a given β(m), computing α(m+1) (the unique solution to Equation Ψβ(m)(u) = 0) in closed-form is
complicated when s > 1. Thus, a numerical root finding algorithm is required. There certainly exist different
algorithms for this purpose (see for example [12, Chapter 3]). Here, we propose the following one-dimensional
Newton-Raphson (NR) algorithm:

u(ℓ+1) = u(ℓ) −
Ψβ(m)(u(ℓ))

Ψ′
β(m)(u(ℓ))

, ℓ = 1, 2, . . . (3.4)

where the starting guess u(0) is positive. The main advantage of NR algorithm is that it converges quadratically
to the solution (the number of correct significant digits doubles with each iteration) if the starting guess u(0) is
close to the unknown solution. And there lies the problem: the choice of u(0). Fortunately, we prove hereafter
that, if we set u(0) = 0, then, the convergence of NR iterations (3.4) is guaranteed.
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Lemma 3.3. Let β(m) be the estimate of β after m iterations. If u(0) = 0, then, the NR iterations

u(ℓ+1) = u(ℓ) −
Ψβ(m)(u(ℓ))

Ψ′
β(m)(u(ℓ))

, ℓ = 1, 2, . . . (3.5)

converge to the next iterate α(m+1) such that Ψβ(m)(α(m+1)) = 0.

Proof. The proof uses a result from [3, Section 4.5] which states that if f : [a, b] → R is a function twice
differentiable such that f(a)f(b) < 0, and f ′(u) and f ′′(u) are non-zero and preserve signs over [a, b], then,
proceeding from an initial approximation u(0) ∈ [a, b] such that f(u(0))f ′′(u(0)) > 0, the NR sequence (u(ℓ))

defined by

u(ℓ+1) = u(ℓ) − f(u(ℓ))

f ′(u(ℓ))
, ℓ = 1, 2, . . . ,

converges to the unique root of f in [a, b].
Let uM = α(m+1) + 1. As Ψβ(m) is a strictly decreasing function and Ψβ(m)(α(m+1)) = 0, we have

Ψβ(m)(0)×Ψβ(m)(uM ) < 0. Moreover, the function Ψβ(m) is twice differentiable and, for all u ∈ [0,+∞[,

Ψ′
β(m)(u) = −

s∑
k=1

nk⟨zk,β(m)
k ⟩

(1 + u⟨zk,β(m)
k ⟩)2

< 0 (3.6)

and

Ψ′′
β(m)(u) =

s∑
k=1

2nk(⟨zk,β(m)
k ⟩)2

(1 + u⟨zk,β(m)
k ⟩)3

> 0. (3.7)

We also have u(0) = 0 ∈ [0, uM ] and Ψβ(m)(0) × Ψ′′
β(m)(0) > 0. We can conclude that the sequence (u(ℓ))

defined by (3.4) converges to the desired value α(m+1). ■

Remark 3.4. Actually, since Ψ′′
β(m)(u) > 0 for all u > 0, any starting guess u(0) such that Ψβ(m)(α(0)) > 0

could be suitable to guarantee convergence of the iterative scheme (3.4). But the search of such an u(0) seems
doomed because when u ̸= 0, the denominators contained in the expression of Ψβ(m)(u) do not vanish any more.

3.2. A fixed-point scheme for computing β(m+1)

From Equation (3.1b), we have for all k = 1, . . . , s and j = 1, . . . , r,

β̂jk

(
nk(α̂zjk + 1)

1 + α̂⟨zk, β̂k⟩
+ x2•k −

x2•kzjk

⟨zk, β̂k⟩

)
= x•jk. (3.8)

In this case too, it is complicated to get β̂jk in closed-form because it also appears in the denominator as a
component of the weighted sum ⟨zk, β̂k⟩. For all k = 1, . . . , s and j = 1, . . . , r, we propose to compute β

(m+1)
jk

using the following fixed-point scheme:

β
(m+1)
jk = x•jk

/(
nk(α

(m+1)zjk + 1)

1 + α(m+1)⟨zk,β(m)
k ⟩

+ x2•k −
x2•kzjk

⟨zk,β(m)
k ⟩

)
. (3.9)
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3.3. The hybrid algorithm (HA)

Our proposed hybrid algorithm is Algorithm 3.5. It starts from θ(0) = (α(0), (β(0))T)T, where α(0) > 0 is
randomly set and β(0) = ((β

(0)
1 )T, . . . , (β

(0)
s )T)T is also randomly set such that for all k = 1, . . . , s, β(0)

k =

(β
(0)
1k , . . . , β

(0)
rk )T ∈ Sr−1. At the (m + 1)−iteration, the update α(m+1) is computed from β(m) using the one-

dimensional NR iterations (3.4), afterwards β(m+1) is updated from α(m+1) and β(m) using Equation (3.9) and
so on. This process is repeated until a convergence criterion is satisfied.

Algorithm 3.5.
Input: x1, . . . , xs, z1, . . . , zs, ϵ1 > 0 and ϵ2 > 0.
Output: MLE θ̂.

1. (a) Set m = 0

(b) Initialize θ(0) = (α(0), (β
(0)
1 )T, . . . , (β

(0)
s )T)T randomly such that α(0) > 0, and for all k = 1, . . . , s,

β
(0)
k = (β

(0)
1k , . . . , β

(0)
rk )T ∈ Sr−1.

2. (a) Update α(m+1) as follows:

i. Set ℓ = 0

ii. Set u(ℓ) = 0

iii. Set

u(ℓ+1) = u(ℓ) −
Ψβ(m)(u(ℓ))

Ψ′
β(m)(u(ℓ))

iv. Set ℓ← ℓ+ 1

v. If |Ψβ(m)(u(ℓ))−Ψβ(m)(u(ℓ−1))| ⩾ ϵ1, go back to Step (ii).
vi. Set α(m+1) = u(ℓ).

(b) For all k = 1, . . . , s, compute β
(m+1)
k = (β

(m+1)
1k , . . . , β

(m+1)
rk )T where, for all j = 1, . . . , r,

β
(m+1)
jk = x•jk

/(
nk(α

(m+1)zjk + 1)

1 + α(m+1)⟨zk,β(m)
k ⟩

+ x2•k −
x2•kzjk

⟨zk,β(m)
k ⟩

)

(c) Update β(m+1) = ((β
(m+1)
1 )T, . . . , (β

(m+1)
s )T)T.

(d) Set θ(m+1) = (α(m+1), (β(m+1))T)T

(e) Set m← m+ 1.

3. If |L(θ(m))− L(θ(m−1))| ⩾ ϵ2, go back to Step 2.

4. Set θ̂ ← θ(m).

4. Simulation study

In this section, we compare our proposed HA to some of the best optimization algorithms available in R
software [36] in terms of accuracy, robustness (the ability of each algorithm to perform well regardless of the
starting guess) and computation time. The selected algorithms are the Newton-Raphson (NR) algorithm and the
quasi-Newton BFGS algorithm (named after its authors Broyden, Fletcher, Goldfarb and Shanno) [35, Section
6.1]. The NR and BFGS algorithms are implemented using respectively the R packages nleqslv [13] and alabama
[38]. Accuracy is measured with the Mean Squared Error (MSE)

MSE(θ̂|θ0) =
1

1 + sr
∥θ̂ − θ0∥2,
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where θ0 = (α0, (β0
1)

T, . . . , (β0
s)

T)T is the true value and ∥·∥ represents the usual Euclidean norm. Robustness is
measured by comparing the convergence proportions (the ratio of the number of times each algorithm converged
to the total number of replications) and the numbers of iterations for different starting guesses.

4.1. Data generation

The data are generated using Formulas (2.1), (2.2), (2.3) and (2.4) where the true value θ0 = (α0, (β0
1)

T, . . . ,
(β0

s)
T)T of θ is presented under five scenarios described below:

• Scenario 1: s = 2, r = 2,

α0 = 0.8, β0
1 = (0.85, 0.15)T, β0

2 = (0.40, 0.60)T.

• Scenario 2: s = 5, r = 3,
α0 = 1, β0

1 = (0.80, 0.15, 0.05)T,

β0
2 = (0.10, 0.30, 0.60)T,

β0
3 = (0.35, 0.30, 0.35)T,

β0
4 = (0.70, 0.20, 0.10)T,

β0
5 = (0.30, 0.40, 0.30)T.

• Scenario 3: s = 10, r = 5,

α0 = 1, β0
k = (0.40, 0.10, 0.05, 0.25, 0.20)T, k ∈ {1, 3, 5, 9},

β0
k = (0.30, 0.15, 0.10, 0.25, 0.20)T, k ∈ {2, 4, 7},

β0
k = (0.20, . . . , 0.20︸ ︷︷ ︸

5

)T, i ∈ {6, 8, 10}.

• Scenario 4: s = 10, r = 10,

α0 = 1.2, β0
k = (0.40, 0.10, 0.05, 0.10︸︷︷︸

2

, 0.05︸︷︷︸
5

)T, k ∈ {1, 5, 7, 10};

β0
k = (0.10︸︷︷︸

3

, 0.05︸︷︷︸
2

, 0.10, 0.25, 0.05︸︷︷︸
2

, 0.15)T, k ∈ {2, 3, 6};

β0
k = (0.10, . . . , 0.10︸ ︷︷ ︸

10

)T, k ∈ {4, 8, 9}.

• Scenario 5: s = 20, r = 10,

α0 = 1.2, β0
k = (0.40, 0.10, 0.05, 0.10︸︷︷︸

2

, 0.05︸︷︷︸
5

)T, k ∈ {1, 5, 7, 10, 11, 15, 17, 20},

β0
k = (0.10︸︷︷︸

3

, 0.05︸︷︷︸
2

, 0.10, 0.25, 0.05︸︷︷︸
2

, 0.15)T, k ∈ {2, 3, 6, 12, 13, 16},

β0
k = (0.10, . . . , 0.10︸ ︷︷ ︸

10

)T, k ∈ {4, 8, 9, 14, 18, 19}.

These scenarios allow to have low and large values of the number of parameters (1 + sr). The values of the
number of parameters for these scenarios are given in Table 1.

For each scenario, we set n1 = · · · = ns = n, where n had two different values: a low value (n = 50)
and a great value (n = 5000). In order to explore a plethora of starting guesses in the parameter space,
we have considered a random initialization scheme for setting the starting guess θ(0) = (α(0), (β(0))T)T.
The parameter α(0) is randomly generated from an uniform distribution and each β

(0)
k = (β

(0)
1k , . . . , β

(0)
rk )T is

randomly generated as β
(0)
k = Uk/

∑r
j=1 ujk where Uk = (u1k, . . . , urk)

T is a r−dimensional vector whose
components are randomly generated from a uniform distribution U [0.05; 0.95].
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Table 1: Number of parameters for the different scenarios

Scenario 1 2 3 4 5
s 2 5 10 10 20
r 2 3 5 10 10
Number of parameters (1 + sr) 5 16 51 101 201

Table 2: Results for Scenario 1 (s = 2 and r = 2). Values in brackets are standard deviations.

TRUTH HA NR BFGS

n = 50

α 0.800 0.817 (0.172) 0.817 (0.172) 0.811 (0.170)
β11 0.850 0.848 (0.049) 0.848 (0.049) 0.848 (0.048)
β21 0.150 0.152 (0.049) 0.152 (0.049) 0.152 (0.048)
β12 0.400 0.400 (0.071) 0.400 (0.071) 0.399 (0.071)
β22 0.600 0.600 (0.071) 0.600 (0.071) 0.601 (0.071)
Convergence proportion (%) - 100 99.6 77.1
Iterations - 7.1 (1.6) 5.7 (1.5) 13 (0)
CPU time (secs) - 0.004 0.002 0.100
Time ratio - 1 0.6 27.7
Log-likelihood - −121.37 −121.37 −121.37
MSE - 9e-03 8.9e-03 8.7e-03

n = 5000

α 0.800 0.800 (0.016) 0.800 (0.016) 0.800 (0.016)
β11 0.850 0.850 (0.005) 0.850 (0.005) 0.850 (0.005)
β21 0.150 0.150 (0.005) 0.150 (0.005) 0.150 (0.005)
β12 0.400 0.400 (0.007) 0.400 (0.007) 0.400 (0.007)
β22 0.600 0.600 (0.007) 0.600 (0.007) 0.600 (0.007)
Convergence proportion (%) - 100 99.8 77.7
Iterations - 6.5 (1.1) 6 (1.5) 16 (0)
CPU time (secs) - 0.004 0.003 0.121
Time ratio - 1 0.8 33.3
Log-likelihood - −12245.17 −12245.17 −12245.17
MSE - 8.1e-05 8.1e-05 8.2e-05

Table 3: Results for Scenario 2 (s = 5 and r = 3). Values in brackets are standard deviations.

HA NR BFGS

n = 50

Convergence proportion (%) 100 99.9 51.6
Iterations 9.5 (1.8) 8 (2.8) 14 (0.2)
CPU time (secs) 0.007 0.017 0.248
Time ratio 1 2.5 37.1
Log-likelihood −390.89 −390.89 −390.89
MSE 4.3e-03 4.3e-03 4.2e-03

n = 5000

Convergence proportion (%) 100 99.8 56.1
Iterations 8.1 (1.1) 8.3 (2.9) 18 (4)
CPU time (secs) 0.005 0.013 0.405
Time ratio 1 2.9 89.4
Log-likelihood −39171.57 −39171.57 −40218.56
MSE 4.4e-05 4.4e-05 1.8e-02
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Table 4: Results for Scenario 3 (s = 10 and r = 5). Values in brackets are standard deviations.

HA NR BFGS

n = 50

Convergence proportion (%) 100 99.8 21.4
Iterations 10.8 (1.8) 10.6 (3.2) 13.9 (0.3)
CPU time (secs) 0.006 0.070 0.321
Time ratio 1 11.9 54.1
Log-likelihood −1083.73 −1083.73 −1083.73
MSE 3e-03 3e-03 3e-03

n = 5000

Convergence proportion (%) 100 99.9 24
Iterations 8.6 (0.9) 10.5 (2.8) 16.7 (4.4)
CPU time (secs) 0.005 0.062 0.452
Time ratio 1 13.4 98.3
Log-likelihood −109133.14 −109133.14 −111075.03
MSE 3.2e-05 3.2e-05 5.4e-03

Table 5: Results for Scenario 4 (s = 10 and r = 10). Values in brackets are standard deviations.

HA NR BFGS

n = 50

Convergence proportion (%) 100 97.1 20.1
Iterations 10.1 (1.5) 14.2 (4.9) 13.9 (0.3)
CPU time (secs) 0.008 0.162 0.635
Time ratio 1 19.5 76.4
Log-likelihood −1406.16 −1406.16 −1406.16
MSE 1.9e-03 1.9e-03 1.9e-03

n = 5000

Convergence proportion (%) 100 93.4 19.6
Iterations 8.4 (0.7) 15 (5.3) 17.8 (2)
CPU time (secs) 0.005 0.181 1.012
Time ratio 1 34.4 193
Log-likelihood −138384.13 −138384.13 −138673.98
MSE 1.8e-05 1.8e-05 9.6e-04

Table 6: Results for Scenario 5 (s = 20 and r = 10). Values in brackets are standard deviations.

HA NR BFGS

n = 50

Convergence proportion (%) 100 95.2 3.5
Iterations 11 (1.6) 16.6 (5.1) 14 (0)
CPU time (secs) 0.008 0.644 2.079
Time ratio 1 80.1 258.6
Log-likelihood −2816.68 −2816.68 −2816.68
MSE 1.7e-03 1.7e-03 1.6e-03

n = 5000

Convergence proportion (%) 100 88 5
Iterations 8.8 (0.7) 17.9 (5.7) 11 (8)
CPU time (secs) 0.006 0.732 2.254
Time ratio 1 123.9 381.6
Log-likelihood −276918.57 −276918.57 −282868.47
MSE 1.7e-05 1.7e-05 8.6e-03
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4.2. Results

Tables 2 to 6 present the average estimates for 1000 replicates for each scenario and each value of n. In these
tables, CPU (central process unit) times are given in seconds and time ratios are calculated as the ratio between
the mean CPU time of a given algorithm and the mean CPU time of the HA. Thus, the time ratio of the HA is
always 1. To save space, the estimate θ̂ has been included only for Scenario 1 (Table 2).

Ideally, any iterative algorithm should converge to a solution close to the true value in a relatively reasonable
computation time. By analysing Tables 2 to 6, we see that the HA has a convergence proportion of 100%. The NR
algorithm has a convergence proportion between 88% and 99.6% so for this model, the convergence proportion
of the NR algorithm does not reach 100% even for a small number of parameters. The convergence proportion of
the BFGS algorithm decreases drastically (from 77.7% down to 3.5%) when the number of parameters increases.
Concerning precision, the general trend observed is the decrease of the MSE when the sample size n increases.
But the MSE of BFGS algorithm remain relatively high when n goes from 50 to 5000.

For computation times, it is noticed that the computation time of HA is stable (between 0.004 and 0.008
seconds) despite the increase in the number of parameters to be estimated. This is not the case for NR and BFGS
algorithms. The analysis of the CPU time ratios shows that the computation times required by NR and BFGS
algorithms increase with the number of parameters. Our proposed hybrid algorithm is up to 123 times faster than
NR and up to 381 times faster than BFGS.

As far as the number of iterations is concerned, the HA has a low average number of iterations. The BFGS
and NR algorithms look much more sensitive to the starting guesses. The average number of iterations of NR
algorithm and its standard deviation increase with the number of parameters while the number of iterations of
BFGS algorithm remains very high.

Overall, our hybrid algorithm outperforms NR and BFGS algorithms in terms of convergence proportion,
convergence speed, computation time and accuracy.

5. Discussion and conclusion

For numerical optimization in general, and computation of maximum likelihood estimates (MLE) specifically,
Newton-Raphson (NR) algorithm is the very first to be considered because of its fast convergence when the
starting guess is close to the unknown solution. But because it requires matrix inversion at each iteration, it
becomes tricky in computation terms for high-dimensional problems. Alternatives such as the quasi-Newton
BFGS algorithm are usually considered as good remedies when NR is unsuccessful.

In this paper, we presented a new hybrid algorithm (HA) for estimating the parameter vector θ = (α,βT)T of
a statistical model used in road safety. The parameter α > 0 which is also the parameter of interest represents the
mean effect (in the multiplicative sense) of a road safety measure and the vector β is a vector of sr probabilities
where s is the number of sites where the measure has been applied and r is the number of accidents severity
levels. Our HA mixes a one-dimensional NR approach for computing the parameter α and a fixed-point strategy
for computing β. It cycles through the parameter vector updating α from β and β from both α and β until a
convergence criterion is satisfied. It thus partially enjoys (for the estimation of α) the fast convergence property
of NR while avoiding its defects (it requires no matrix inversion and the starting value is automated in order to
guarantee convergence). Since it cycles through the parameters, our HA is also a cyclic algorithm and, therefore,
as claimed by [16], it enjoys overall fast convergence because the log-likelihood function is always driven in the
right direction. The numerical studies performed in this paper suggest that our HA outperforms NR and BFGS
algorithms in terms of convergence proportion, convergence speed, computation time and accuracy. They also
suggest that the HA is globally convergent (it converges to the MLE for all starting guesses). A future work
may be devoted to the study of the theoretical properties of our proposed hybrid algorithm such as the global
convergence (the convergence to the MLE whatever the starting point θ(0)).

In this paper, we have not mentioned MM (Minorization-Maximization) algorithms [16, 20, 22] which have
become very popular over the years. Strictly speaking, the MM method is not a simple box in which we insert
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the function L(θ) while waiting for the output but it is rather a principle of construction of an optimization
algorithm for a specific function. For example, the MM principle for building an algorithm for maximization of
a log-likelihood L(θ) consists in constructing a minorizing function g(θ) for L(θ) such that the maximization of
g(θ) is equivalent to that of L(θ) and afterwards construct an algorithm for maximizing g(θ) (see, for example,
[16, 20, 22] for the definition of a minorizing function). The design of an MM algorithm is often not easy and for
each L(θ) it is necessary to build an adequate MM algorithm. This explains why the design of an MM algorithm
is often done by model [5, 14, 15, 17, 24, 39]. In this line of thought, in [25], the authors constructed an MM
algorithm for estimating the parameters of the road safety model of [33]. However this algorithm cannot be used
for the model [34] considered in the present paper. In a future work, it would be interesting to build an MM
algorithm for the model of [34] and compare it with our hybrid algorithm.
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