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B. PRASAD ! AND R.P.S. YADAV*?2
L2 Department of Mathematics, S.M.M.T.P.G. College, Ballia-277001, U.P, India.

Received 14 December 2020; Accepted 26 March 2021

Abstract. The object of the present paper is to introduce a new type of Ricci recurrent manifold called nearly Ricci recurrent
manifold . Some geometric properties of nearly Ricci recurrent manifold have been studied. Finally we give an example of
nearly Ricci recurrent manifold.

AMS Subject Classifications: 53C15 and 53C25.

Keywords: Nearly Ricci recurrent manifold, Constant scalar curvature tensor, Conformally flat manifold.

Contents

1 Introduction 55
2 Preliminaries 57
3 Existence ofa N {R(R,)} (n > 2) 57
4 Nature of scalar curvature of a N {R(R,,)} 58
5 Nature of the 1-forms A and B 58
6 N {R(R,)} with constant scalar curvature 58
7 Conformally flat N { R(R,,)} with constant scalar curvature 59
8 Necessary and sufficient condition for a N {R(R,)} tobea (NR), 60
9 Example 61

1. Introduction

Let (M™, g) be an n-dimensional Riemannian manifold with the matric g. A tensor field T" of type (0, g) is
said to recurrent [1] if the relation

(DxTYY1,Ys, ... Y )T (Z1, 22, ... Zq) — T(Y1,Ys, ..., Yo ) (DxT)(Z1, 25, ..., Zq) = 0

holds on (M™, g). From definition it follows that if at a point z € M; T(X) # 0, then on some neighbourhood
of z, there exits a unique 1-form A satisfying

(DxT)(Y1,Ys,....Y,) = A(X)T(Y1,Ys,...,Y,)
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In 1952, Patterson [2] introduced a Ricci recurrent manifolds. According to him, a manifold (M™, g) of
dimension n, was called Ricci recurrent if

(Dx )Y, Z) = A(X)S(Y, Z)

for some 1-form A. He denoted such a manifold by R,,. Ricci recurrent manifolds have been studied by several
authors ( [3], [4], [1], [5] ) and many others. In a recent paper De, Guha and Kamilya [6] introduced the notion
of generalized Ricci recurrent manifold as follows:

A non-flat Riemannian manifold (M™, g)(n > 2) is called generalized Ricci recurrent if the Ricci tensor S is
non-zero and satisfies the condition:

(Dx )Y, Z2) = A(X)S(Y, Z) + B(X)g(Y, 2),

where A and B non-zero 1-forms. Such a manifold where denoted by them as GR,,. If the associated 1-form
B becomes zero, then the manifold GR,, reduces to a Ricci recurrent manifold R,,. This justifies the name
generalized Ricci recurrent manifold and the symbols GR,, for it. Also in a paper De, and Guha [7] introduced
a non flat Riemannian (M™, g)(n > 2) called a generalized recurrent manifold if its curvature tensor R(X,Y)Z
of type (1,3) satisfies the condition:

(DuR)(X,Y)Z = A(U)R(X,Y)Z + B(U)[g(Y, 2)X — g(X, 2)Y],

where A and B are two non-zero 1-forms and D denotes the operator of covariant differentiation with respect
to metric tensor g. Such a manifold has been denoted by GK,,. If the associated 1-form B becomes zero, then
the manifold GK,, reduces to recurrent manifold introduced by Ruse [8] and Waker [9] which was denoted by
K,,. In recent papers Arslan etal [10], Shaikh and Patra [11], Mallick, De and De [12], Khairnar [Kh], Shaikh,
Prakasha and Ahmad [14], Kumar, Singh and Chowdhary [15], Hui [16], Singh and Mayanglambam [17], Singh
and Kishor [18] etc. explored various geometrical propertis by using generlaized recurrent and generlaized Ricci
recurrent manifold on Riemannian manifolds , Lorentzian Trans-Sasakian manifolds, LP-Sasakian manifolds,
(k — p) contact metric manifolds.

Further the authors Prasad and Yadav [19] considered a non-flat Riemannian manifold (M™, g)(n > 3) whose
curvature tensor R satisfies the following condition:

(DuR)(X,Y)Z = [A(U) + B(U)IR(X,Y)Z + B(U)[g(Y, 2) X — g(X, Z)Y],

where A and B are two non-zero 1-forms and D has the meaning already mentioned. Such a manifold where
called by them as nearly recurrent Riemannian manifold and denoted by (N R),,.

The motivation of the above studies, we define a new type of non flat Riemannian manifold is called nearly
Ricci recurrent manifolds if the Ricci tensor .S is non zero and satisfies the condition:

(DxS)(Y,Z) = [A(X) + B(X)]S(Y, Z2) + B(X)g(Y, 2) (1.1)
where A and B non-zero 1-forms, P and ) be two vector fields such that
A(X) =g(P,X), B(X)=g(Q,X) (1.2)

Such a manifold shall be called as a nearly Ricci recurrent manifold and 1-forms A and B shall be called its
associated 1-form and n dimensional nearly Ricci recurrent manifold of this kind shall be denoted by N { R(R,,)}.
The name nearly Ricci recurrent Riemannian manifold was chosen because if B = 0 in (1.1) then the manifold
reduces to a Ricci recurrent manifold which is very close to Ricci recurrent space. This justifies the name
Nearly Ricci recurrent mani fold for the manifold defined by (1.1) and the use of the symbol N { R(R,,)} for
1t.
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In this paper, after preliminaries, the existence of a N { R(R,,)} is first established and then it proved that the
scalar curvature of N { R(R,,)} cannot be zero. In section 4, the necessary and sufficient condition for constant
scalar curvature of N {R(R,,)} is obtained. Here it is established if A is closed then B is also closed and
conversely in section 5. In section 6, it is shown that if the scalar curvature is constant in N {R(R,,)} then the
eigen value of the Ricci tensor .S corresponding to the given eigen vector not exist. In section 7, it is proved that in
Conformally flat N { R(R,,)} with constant scalar curvature if the 1-form A is closed then R(X,Y).S = 0 if and
only if {A(X)+ B(X)} A(LZ) = {A(Z) + B(Z)} A(LX). In section 8, a necessary and sufficient condition
for N {R(R,,)} to be a (NR), is obtained. Finally the existence of nearly Ricci recurrent manifold N { R(R,)}
is ensured by a non trivial example.

2. Preliminaries

Let L denotes the symmetric endomorphism of the tangent space at each point of the manifold corresponding to
the Ricci tensor S that is g(LX,Y) = S(X,Y) for every vector field X, Y. Therefore,

9((Dx L)Y, Z) = (DxS)(Y, Z). 2.1
From (1.1), we have
dr(X) =[A(X) 4+ B(X)]r + nB(X). 2.2)
3. Existence of a N {R(R,)} (n > 2)

In this section, it show that there exist a Riemannian manifold (M™, ¢g)(n > 2) whose Ricci tensor .S of type
(0,2) satisfies the condition

(DxS)(Y, Z) = [A(X) + B(X)]S(Y, Z) + B(X)g(Y, Z)
and for which (DxS)(Y,Z) # A(X)S(Y,Z). For this we consider a Riemannian manifold (M™, g) which
admits a linear connection D defined by

DyY = DyY + %B(X)LY + %B(X)Y 3.1)

where B is non zero l-form L is a symmetric endomorphism of the tangent space at each point (M",g)
corresponding to the Ricci tensor S defined by g(LX,Y) = S(X,Y) and L?X = X and which satisfies the

condition
(DxS)(Y, 2) = AX)S(Y, 2) (32)

If (3.2) holds, then
XS(Y.2) ~ S(DxY, Z) ~ S(Y.Dx Z) = A(X)S(Y, 2)

S XS(Y,Z)~ S (DXY + %B(X)LY + %B(X)Y, z) _
s (Y DxZ + %B(X)LZ n ;B(X)Z> — A(X)S(Y, Z)

From this, we get
(DxS)(Y, Z) = [A(X) + B(X)]S(Y, Z) + B(X)g(Y, Z)

The connection D is not identical with D. Hence (DxS)(Y, Z) # A(X)S(Y, Z). Thus a Riemannian manifold
(M™, g)(n > 2) admits a linear connection D which satisfies (3.1) and (3.2) then the manifold is a N { R(R,,)}.
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4. Nature of scalar curvature of a N {R(R,)}

From (2.2), we get if r = 0, then B = 0. Since the 1-form B cannot be zero.
Hence we can state the following theorem:

Theorem 4.1. The scalar curvature of a N {R(R,,)} (n > 2) cannot be zero.

Now suppose that N { R(R,,)} is of constant scalar curvature. Then from (2.2) it follows that
[A(X)+ B(X)]r +nB(X) =0

Hence we have n
AX) = — (1 + ;) B(X) @.1)

Again if (4.1) holds, then from (2.2) we get » = constant.
Hence we have the following theorem:

Theorem 4.2. A N {R(R,,)} (n > 2) is of constant scalar curvature if and only if the condition (4.1) holds.

5. Nature of the 1-forms A and B

We have 1
er(X, Y)= 3 [Xdr(Y)—Ydr(X)—dr([X,Y)])] 6.1

Now in virtue of (2.2), we get from (5.1)

3 X LAY+ BONr 0B} — Y {(AXX) + BX))r +nB(X)} ~nB (X, Y])]

orrdA(X,Y)+ (n+r)dB(X,Y)=0

Since B is closed then rd A(X,Y) = 0. But r # 0, A is closed.
Conversely if A is closed then B is closed.
Hence we have the following theorem:

Theorem 5.1. In a N{R(R,)} if B is closed then A is closed. Conversely if A is closed then B is closed,
provided r #£ 0.

6. N {R(R,)} with constant scalar curvature

Let us suppose that the scalar curvature r of a N { R(R,,)} be constant. Now from (1.1), we have

(DxS)(Y, Z) = (Dz9)(Y, X) =[A(X) + B(X)|S(Y, 2) — [A(Z) + B(Z)]S(Y, X)

6.1
+B(X)g(Y, Z) — B(Z)g(Y, X)
In view of (2.1), we have from (6.1)
9(DxL)Z,Y) — ((DZL)X Y) =[A(X) + B(X)]g(LZ,Y) — [A(Z) + B(Z)]g(LX,Y)
B(X)g(Z2,Y) - B(Z)g9(X,Y)
or (DxL)Z — (DzL)X = [A(X) +B(X)|LZ — [A(Z)+ B(Z)][LX + B(X)Z — B(Z)X
which on contraction gives
dr(X) =2[A(X) + B(X)]r —2[A(LX) + B(LX)] + 2(n — 1) B(X). (6.2)
e
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From (2.2) and (6.2), we have
2[A(LX) + B(LX)] = [A(X) + B(X)]r 4+ (n — 2)B(X)
" AX) (6.3)

or B(X):T+2_2[A(LX)+B(LX)]*T+TL_2

In view of (2.2) and (6.3), we get
_ 2 2(r +n)
dr(X) = T 2A(X) + e— 2[A(LX) + B(LX)].
1
S(X.P) +S(X,Q) = 1w 9(X. P) (6.4)

Now if r is constant then

33

Hence we can state the following theorem:
)}, none of P and Q can be an eigen vector corresponding to any eigen values

Theorem 6.1. Ina N {R(R,

7. Conformally flat N { R(R,)} with constant scalar curvature

In Conformally flat (M™, g) it known [20]

(Dx8)(Y.Z) = (Dz8)(Y,X) = gy ldr(X)g(Y, 2) — dr(2)g(X. Y], )

From (2.2) and (7.1), we get
1
(DxS)(¥.2) = (Dz8)(¥. X) =505 AR + BOO (Y. 2) +nB(X0O9(V.2)
(2)}rg(Y, X) —nB(Z)g(Y, X)].

—{A(Z)+ B

Putting Y = P in (7.2), we get
[(A(X) + B(X)]A(LZ) - [(A(Z) + B(Z)]A(LX) +

2(n1_ Ty {AX) + BX)}rA(Z) + nBX)A(Z) —{A(Z) +

[B(X)A(Z) — B(Z2)A(X)] =
B(2)} rA(X) = nB(Z2)A(X)],

or A)B(Z) - AZ)BX) = 2= 14(X) + BOXO) A(L2) .
~{(A(2) + BZ)} A(LX)

Now from (1.1),we get

(DuDyS)(Y, Z) =[(DuA)(V) + A(DuV) + (Du B)
+[A(U) + BU)I[A(V) + B(V)|S(Y, Z)+

[AV)B(U) + B(U)B(V) + (DuB)(V) + B(DuV)]g(Y, Z)

(V) + B(DuV)]S(Y, Z)

From above, we have

(DvDuS)(Y, Z) — (Dv9)(Y,

(DuDyS)(Y, Z) - Z)
[(DuA)(V) = (DvA)(U) + (DuB)(V) — (DvB)(U)]|S(Y, Z)
[(DyB)(V) = (DvB)(U) + A(V)B(U = A(U)B(V))lg(Y, Z)

#
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which gives
(R(U,V).S)Y, Z) =[(dA(U,V) 4+ dB(U,V)|S(Y, Z) + dB(U,V)g(Y, Z) (7.4)
[AV)B(U) — AU)B(V)]g(Y, Z). '

Suppose the 1-form A is closed. Then in virtue of theorem (5.1) and (7.3) we get from (7.4)
2(n—1)

= [{AX) + BXO}A(LZ) ~ {A(2) + B(Z)} A(LX)
Hence we have the following theorem:

Theorem 7.1. In a Conformally flat N {R(R,,)}with constant scalar curvature, R(X,Y).S = 0 if and only if
{A(X)+ B(X)}A(LZ) = {A(Z) + B(2)} A(LX).

(R(U,V).S)Y,Z) =

8. Necessary and sufficient condition for a N {R(R,)} tobea (NR),

It is known that the Conformal curvature tensor 'C of type (0, 4) of a Riemannian manifold (M", g)(n > 3) is
given by

CXY, 2,W) = ROX,Y, 2,1) = —[S(¥, 2)g(X, W) = S(X, Z)g(Y, W)
(X, W)g(Y, 7) - S, W)g(X, 2)] - .1

r
m[g(K 2)9(X, W) —g(X, Z)g(Y,W)],
where 'C(X,Y,Z,W) = g(C(X,Y)Z,W) ,'R(X,Y,Z,W) = g(R(X,Y)Z,W) and C is the Conformal
curvature tensor of type (1,3). Now let M™ be a nearly Ricci recurrent manifold N {R(R,,)} specified by a
non-zerol-form B.
Then in view of (1.1), (2.2) and (8.1), we get
(Du 'C) X, Y, Z,W) = [A(U) + B(U)] 'C(X,Y, Z,WV) =
(DU /R)(Xv Yv Za W) - [A(U) + B(U)] /R(X, Y7 Zv W)_
B(U)
(n—1)

(8.2)

[Q(K Z)g(X,W) —g(X,Z)g(Y,W)L

Conversely if (8.2) holds, then putting Y = Z = e; in (8.2) where {¢;},j = 1,2,3, ..., n is orthonormal basis
of the tangent space at each point of the manifold and [ is summed for [ < 5 < n, we get

(DuC)(X, W) = [AU) + B(U)|C(X, W) =

(Do S)(X, W) = [AU) + B(U)]S(X, W) = B(U)g(X, W)
But in view of C'(X, W) = 0, we get from (8.3) that

(DuS)(X, W) = [AU) + BU)IS(X, W) — BU)g(X, W).

(8.3)

From (8.2) and (8.3), we can state the following theorem:

Theorem 8.1. A necessary and sufficient condition that Riemannian manifold M™ be a N { R(R,,)} is that (8.2)
holds.

In particular, if the M™ Conformal to a flat space or if n = 3 then C' = 0. In the first case it follows (8.2) that
the N {R(R,)} is a (NR),. In the second case it follows that N { R(R3)} is a (N R)s3.
Thus we can state the following theorem:

Theorem 8.2. Every N {R(R,)} (n > 3) isa (NR),, if it is Conformal to a flat space and every N {R(R3)} is
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9. Example

Let us consider the 3-dimensional manifold M =
ordinate of R3.
We choose the vector fields

which is linearly independently at each point of M.
Let g be the Riemannian metric denoted by

(eive5) = {1’ =
A (A
Let D be the Levi-Civita connection with respect to metric g. Then from equation (9.1), we have
[e1, ea] = —ieq, [e1,e3] = 0, [ea, e3] = —ies.
The Riemannian connection D of the metric g is given by

29(DxY,2) =Xg(Y,Z2)+Yg(X,Z) - Zg(X,Y) — g (X,[Y, Z])
79(Y; [Xa ZD +g(Zv [X,YD,

which is known as Koszul’s formula. Using (9.2) and (9.3) in (9.4), we get

D.,e1 =ies, De,ea=—ie;, D.e3=0,
Dezel = 0, DEZEQ = 0, D62€1 = O,
D6361 = 0, De3€2 = i63, D63€3 = —i€2.

The curvature tensor is given by
R(X,Y)Z =DxDyZ — DyDxZ — Dix y1Z

Using (9.3) and (9.5) in (9.6) , we get

R(er,ex)e; = R(e1,e2)ea =e€1, R(er,ea)e3 =0
R(es,e3)e; = R(€2763) es = —e3, R(ea,e3)es =es
R(el,eg)elze R(ey,e3)ea =0 R(ey,e3)e3 = —e
R(e1,e1)er = R(er,e1)ea = R(er,e1)e3 =0
R(eq,e2)e1 = R(ea,ea)ea = R(ea,ea)e3 =0

R (es,e3)e; = R(es,e3)ea = R(es,e3)es =0.

From (9.7) and (9.8), we get

and the scalar curvature is = 2.
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Since {eq, €2, e3} forms a basis of Riemannian manifold any vector field X,Y, Z € x(M) can be written as
X =aje; +bres +cres, Y = ase; + boes + coeg,

where a;,b;,¢c; € §+ ( the set of all positive real numbers), j = 1,2, 3.
Hence
S(X,Y) =bby (9.10)

9(X,Y) = aras + biba + c1co 9.11)

By view of (9.10), we get
(De;S)(X,Y) =D, S(X,Y) - S(D,; X,Y) - S(X, DY)

(DEIS)(X, Y) == 7i(albg -+ agbl)
(De, S)(X,Y) =0
(DESS)(X, Y) = —i(blcg + b261)

Consequently, the manifold under consideration is neither Ricci symmetric nor Ricci recurrent. Let us now
consider 1-form non vanishes

5i(a1b2 + agbl) —3i(a1b2 + agbl)

A = B =
(e1) 3aias — biby + 3cico’ (e1) 3aias — biby + 3cica
A(ez) =0, B(e) =0
(e2) | (e2) | ©.12)
A (6‘ ) _ 5Z(b102 =+ bgcl) B (el ) _ —3Z(b102 =+ bgcl)
3 3aias — b1by + 3C1027 3 3aiaz — bibsy + 3cico
at any point x € M. From (1.1), we have
(De,S) (X,Y) = [A(e;) + B(e;)]S(X,Y) + B(ej)g(X,Y), j=1,2,3. (9.13)

It can be easily seen that the Riemannian manifold with 1-forms satisfies relation (9.13). Hence the manifold
under consideration is a nearly Ricci recurrent manifold (M3, g), which is neither Ricci recurrent nor Ricci
symmetric. Thus we have the following theorem:

Theorem 9.1. There exist a nearly Ricci recurrent manifold (M3, g), which is neither Ricci recurrent nor Ricci
symmetric.
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