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Abstract. Lucas sequence is one of the most studied binary recurrence sequence defined by the relation Ln+2 = Ln+1 +

Ln; L0 = 2, L1 = 1. In this paper, we investigate all the sums and differences of two Lucas numbers that are powers of a
odd prime p satisfying p < 103.
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1. Introduction

The Fibonacci and Lucas numbers are always being studied by many researchers whether as solutions of
Diophantine equations or their existence in the nature. The Fibanacci (Fn) and Lucas (Ln) numbers are the most
common binary recurrence sequences definded by the relations:

Fn+2 = Fn+1 + Fn; Ln+2 = Ln+1 + Ln

with the initial values F0 = 0, L0 = 2, F1 = L1 = 1. Both the sequences have the characteristic equation
x2 − x − 1 = 0 with the characteristic roots α = 1+

√
5

2 and β = 1−
√
5

2 . The closed form or the binet form of
these numbers are given by:

Fn =
αn − βn

α− β
, Ln = αn + βn; n ≥ 0. (1.1)
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Bugeaud et al. [5] investigated the Diophantine equations Fn = yp and Ln = yp and determined all perfect
powers in Fibonacci and Lucas sequences. Similar Diophantine equations have been tackled by many researcher
involving powers of 2, 3, 5 and the recurrence sequences such as Fibonacci, Lucas, Pell and k-Fibonacci numbers
(see [3, 4, 8, 11–13]) .

In this paper, we explore the solutions of the Diophantine equation:

Ln ± Lm = pa, (1.2)

where p is any odd prime and n,m, a are nonnegative integers satisfying n ≥ m.

2. Preliminaries

This section deals with the basic concepts of algebraic numbers, some results concerning the bounds of linear
forms in logarithms and reduction methods from the theory of continued fractions, which plays a vital role during
the proof of our main result.

Let γ be an algebraic number of degree d having the minimal polynomial

a0

d∏
i=1

(x− γi) ∈ Z[x],

where γi are conjugates of γ and a0 > 0. If γ ̸= 0, then its absolute logarithmic height is defined as

h(γ) =
1

d
(log |a0|+

d∑
i=1

logmax{1, |γi}).

The following properties of the logarithmic height holds, which will be used in the forthcoming sections as
and when necessary with or without any further references:

• h(γ ± η) ≤ h(γ) + h(η) + log 2

• h(γη±1) ≤ h(γ) + h(η)

• h(γs) = |s|h(γ); s ∈ Z.

2.1. Inequalities involving the Lucas numbers

Inequalities involving the Lucas numbers In this section, we state and prove important inequalities associated
with the Lucas numbers that will be used in solving the equation 1.2

Proposition 2.1 (P. Tiebekabe and I. Diouf [12]).
For n ≥ 2, we have

0.94αn < (1− α−6)αn ≤ Ln ≤ (1 + α−4)αn < 1.15αn (2.1)

Proof.
This follows directly from the formula Ln = αn + (−1)nα−n. ■

Proposition 2.2. [5]
The only prime powers in Fibonacci and Lucas sequences are

F1 = F2 = 1, F6 = 23, L1 = 1, L3 = 22.
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2.2. Linear forms in logarithms and continued fractions

In order to prove our main result, we have to use a Baker-type lower bound several times for a non-zero linear
forms of logarithms in algebraic numbers. There are many of these methods in the literature like that of Baker and
Wüstholz in [1]. We recall the result of Bugeaud, Mignotte, and Siksek which is a modified version of the result
of Matveev [10]. With the notation of section 2, Laurent, Mignotte, and Nesterenko [9] proved the following
theorem:

Theorem 2.3.
Let γ1, γ2 be two non-zero algebraic numbers, and let log γ1 and log γ2 be any determination of their logarithms.
Put D = [Q(γ1, γ2) : Q]/[R(γ1, γ2) : R], and

Γ := b2 log γ2 − b1 log γ1,

where b1 and b2 are positive integers. Further, let A1, A2 be real numbers > 1 such that

logAi ≥ max

{
h (γi) ,

| log γi|
D

,
1

D

}
, (i = 1, 2).

Then assuming that γ1 and γ2 are multiplicatively independent, we have

log |Γ| > −30.9 ·D4

(
max{log b′, 21

D
,
1

2
}
)2

logA1 · logA2,

where
b
′
=

b1
D logA2

+
b2

D logA1
.

We shall also need the following theorem due to Mantveev, Lemma due to Dujella and Pethő and Lemma due
to Legendre [7, 10].

Theorem 2.4 (Matveev [10]).
Let n ≥ 1 an integer. Let L a field of algebraic number of degree D. Let η1, η2, ..., ηl non-zero elements of L

and let b1, b2, ..., bl integers,
B := max {|b1|, |b2|, ..., |bl|} ,

and

Λ := ηb11 ...ηbll − 1 =

(
l∏

i=1

ηbii

)
− 1.

Let A1, A2, ..., Al reals numbers such that

Aj ≥ max {Dh(ηj), | log(ηj)|, 0.16} , 1 ≤ j ≤ l.

Assume that Λ ̸= 0, so we have

log |Λ| > −3× 30l+4 × (l + 1)5.5 × d2 ×A1...Al(1 + logD)(1 + log nB)

Further, if L is real, then

log |Λ| > −1.4× 30l+3 × (l)4.5 × d2 ×A1...Al(1 + logD)(1 + logB).

During our calculations, we get upper bounds on our variables which are too large, so we have to reduce them.
To do this, we use some results from the theory of continued fractions. In particular, for a non-homogeneous linear
form with two integer variables, we use a slight variation of a result due to Dujella and Pethő, (1998) which is in
itself a generalization of the result of Baker and Davemport [2].

For a real number X , we write ||X|| := min {|X − n| : n ∈ Z} for the distance of X to the nearest integer.
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Lemma 2.5 (Dujella and Pethő, [7]).
Let M a positive integer, let p/q the convergent of the continued fraction expansion of k such that q > 6M and

let A,B, µ real numbers such that A > 0 and B > 1. Let ϵ := ||µq||−M ||κq||. If ϵ > 0 then there is no solution
of the inequality

0 < mκ− n+ µ < AB−m

in integers m and n with
log (Aq/ϵ)

logB
≤ m ≤ M.

Lemma 2.6 (Legendre).
Let τ real number such that x, y are integers such that

|τ − x

y
| < 1

2y2
.

then x
y = pk

qk
is the convergence of τ .

Further
|τ − x

y
| < 1

(qk+1 + 2)y2
.

3. Main Results

This section deals with the main findings of the following Diophantine equation.

Theorem 3.1.
The only solutions (n,m, a) of the exponential Diophantine equation (1.2) in non negative integers n,m, a and

odd prime p are listed in Table 1 and Table 2.

p (n,m, a)

3 (3, 1, 1), (4, 3, 1)(5, 0, 2)

5 (4, 0, 1), (7, 3, 2), (8, 6, 2)

7 (5, 3, 1), (6, 5, 1)

11 (6, 4, 1), (7, 6, 1)

29 (8, 6, 1), (9, 8, 1)

47 (9, 7, 1), (10, 9, 1)

199 (12, 10, 1), (13, 12, 1)

521 (14, 12, 1), (15, 14, 1)

Table 1: Ln − Lm = pa.

p (n,m, a)

3 (1, 0, 1), (4, 0, 2)

5 (2, 0, 1), (3, 1, 1), (6, 4, 2)

7 (3, 2, 1)

11 (4, 3, 1)

29 (6, 5, 1)

47 (7, 6, 1)

199 (10, 9, 1)

521 (12, 11, 1)

Table 2: Ln + Lm = pa.
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Corollary 3.1.
The only solutions (p, a) of the double exponential Diophantine equations Lu − Lv = Ls + Lt in non negative
intergers u, v, s and t with u > v are liste in Table 3.

(p, a) Ln ± Lm

(3, 1) L1 + L0, L3 − L1, L4 − L3

(5, 1) L2 + L0, L3 + L1, L4 − L0

(7, 1) L3 + L2, L5 − L3, L6 − L5

(3, 2) L4 + L0, L5 − L0

(11, 1) L4 + L3, L6 − L4, L7 − L6

(5, 2) L6 + L4, L7 − L3

(29, 1) L6 + L5, L8 − L6, L9 − L8

(47, 1) L7 + L6, L9 − L7, L10 − L9

(199, 1) L10 + L9, L12 − L10, L13 − L12

(521, 1) L12 + L11, L14 − L12, L15 − L14

Table 3: Ln ± Lm = pa.

Solutions in Table 3 are intersections of those in Table 1 and Tabler 2.

Proof of theorem 3.1.
It is obvious that, the case n = m is not possible. Therefore, we assume that n > m. A computation using

SageMath in the range 0 ≤ m < n ≤ 200 reveals that there does not exist any solution of (1.2) other than the
solutions listed in Table 1. Furthermore, it is easy to observe that when 1 ≤ (n − m) ≤ 3, Ln ± Lm results
either in Lk, 2Lk or 5Fk for some values of k and hence, using Proposition 2.2 we obtain the solutions of (1.2).
So from now on, we assume that n > 200 and (n−m) ≥ 4.

Combining (1.1), (1.2) and (2.1) we get:

pa = Ln ± Lm ≤ Ln + Lm ≤ αn+1 + αm+1 < 2αn+1 < 2n+2.

Applying logarithms on both sides of the above inequality, we obtain

a log p ≤ (n+ 2) log 2 =⇒ a ≤ (n+ 2)
log 2

log p
.

It is easy to observe that for any prime p, 0 < log 2
log p < 4/5 and hence, a ≤ n+1. Indeed, for all n > 200 and any

prime p, a < n. Using (1.1) in (1.2) we can obtain the inequality:

Ln ± Lm = αn + βn ± Lm = pa =⇒ αn − pa = −βn ± Lm.

Taking absolute value both sides, we get

|αn − pa| = |βn ± Lm| ≤ |β|n + Lm <
1

2
+ 2αm

∵ |β|n < 1
2 , and Lm < 2αm. Dividing both sides by αn and considering that n > m, we get:

|1− α−n · pa| < α−n

2
+ 2αm−n <

1

αn−m
+

2

αn−m
∵

1

2αn
<

1

αn−m
;n > m.

Hence
|1− α−n · pa| < 3

αn−m
(3.1)
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To apply Theorem 2.4, we take Γ := α−n · pa − 1 with η1 = α, η2 = p, b1 = −n, b2 = a. The logarithm
heights of η1 and η2 are:
h(η1) =

1
2 logα = 0.2406 . . . , h(η2) = log p, thus we can choose

A1 := 0.5 and A2 := 2 log p,B := max{1, n, a} = n

Using Theorem 2.4, we have

log |Γ| > −1.4× 302+3 × 24.5 × 22 × 0.5 · 2 log p · (1 + log 2)(1 + log n),

which when combined with (3.1) gives

(n−m) logα < 6.23 · 109 log p · (1 + log n). (3.2)

We define a second linear form in logarithm by rewriting (1.2) as follows:

αn
(
1± αm−n

)
− pa = −βn ∓ βm.

Taking absolute values in the above relation with the fact that |β| < 1, we get

|αn
(
1± αm−n

)
− pa| < 2, ∀n > 200,m ≥ 0.

Dividing both sides of the above inequality by αn (1 + αm−n), we obtain

|1− paα−n
(
1± αm−n

)−1 | < 2

αn
. (3.3)

We define
Λ := paα−n

(
1± αm−n

)−1 − 1

and take
t := 3, γ1 := p, γ2 := α, γ3 := 1 + αm−n, b1 := a; b2 := −n, b3 = −1.

As before, K = Q(
√
5) contains γ1, γ2, γ3 and has D := [K : Q] = 2. If Λ = 0, then

pa = αn ± αm,

which is not possible for n > m. Therefore Λ ̸= 0.
Let us now estimate h(γ3) where γ3 = 1± αm−n

γ3 = 1± αm−n < 2 and γ−1
3 =

1

1 + αm−n
<

5

2

so | log γ3| < 1. Notice that

h(γ3) ≤ |m− n|
(
logα

2

)
+ log 2 = log 2 + (n−m)

(
logα

2

)
Proceeding as before, we take

A1 := 2 log p, A2 := 0.5

and we can take

A3 := 2 + (n−m) logα since h(γ3) := log 2 + (n−m)
(

logα
2

)
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Recalling, a < (n+2) log 2
log p < n, it follows that, B = max{1, n, a}. Thus we can take B = n. The Matveev’s

theorem gives the lower bound on the left hand side of (3.3) by replacing the data. We get:

exp (−C (1 + log n) · 2 log p · 0.5 · (2 + (n−m) logα)) < |Λ| < 2

αn

which leads to

n logα− log 2 < C((1 + log n) · log p · (2 + (n−m) logα) < 2C log n · log p · (2 + (n−m) logα),

where C := 1.4× 303+3 × 34.5 × 22(1 + log 2) < 9.7× 1011. Then

n logα− log 2 < 1.94× 1012 log n log p · (2 + (n−m) logα) (3.4)

where we used inequality 1+ log n < 2 log n, which holds for n > 200. Now, using (3.2) in the right term of the
above inequality (3.4) and doing the related calculations, we get

n < 5.05× 1022 log2 n log2 p. (3.5)

Hence,
n < 2.1× 1026 log2 p.

All the calculations done so far can be summarized in the following lemma.

Lemma 3.2.
If (n,m, p, a) is a solution in positive integers of (1.2) with conditions n > m and n > 200, then inequalities

a ≤ n+ 2 < 2.11× 1026 log2 p

hold.

4. Reducing of the bound on n

Rewriting (3.1) as

|1− ea log p−n logα| < 3

αn−m

and using the fact that |Λ| < 2|eΛ − 1| whenever |eΛ − 1| < 1
2 , we obtain the inequality

0 < |a log p− n logα| < 3

αn−m

for all (n−m) ≥ 4. Dividing the above inequality by logα, we get

0 < |aγp − n| < 7

αn−m
; where γp :=

log p

logα
(4.1)

We run a computer program to find the continued fraction [a0, a1, a2, ...] of the irrational number γp. Let
pk/qk denotes the kth convergent of γp. For each prime p, we compute the denominators qk(p) and qk+1(p) of
the convergents of γp such that qk(p) < 2.11 × 1026 log2 p < qk+1(p) and find
aM (p) := max {ai|i = 0, 1, ..., k + 1}. Therefore, taking aM to be the maximum of all aM (p), we get
aM = 130620.

Now applying Lemma 2.6 and properties of continued fractions, we obtain

|aγp − n| > 1

(aM + 2)a
. (4.2)
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Combining equation (4.1) and (4.2), we get

1

(aM + 2)a
< |aγp − n| < 7

αn−m
=⇒ 1

(aM + 2)a
<

7

αn−m

=⇒ αn−m < 7 · (aM + 2)a < 1.93× 1032 log2 p < 9.21× 1033.

Applying log above and divide by logα, we get:

(n−m) ≤ log (9.21× 1033)

logα
< 163.

To improve the upper bound on n, let consider

z := a log p− n logα− log ρ(u) where ρ = 1± α−u. (4.3)

From (3.3), we have

|1− ez| < 2

αn
. (4.4)

Since Λ ̸= 0, then z ̸= 0. Two cases arise: z < 0 and z > 0. for each case, we will apply Lemma 2.5.

• Case 1: z > 0 From (4.4) , we obtain 0 < z ≤ ez − 1 < 2
αn . Replacing (4.3) in the above inequality, we

get :
0 < a log p− n logα− log ρ(n−m) ≤ paα−nρ(n−m)−1 − 1 < 2α−n

hence
0 < a log 3− n logα− log ρ(n−m) < 2α−n

and by dividing above inequality by logα

0 < a

(
log p

logα

)
− n− log ρ(n−m)

logα
< 5 · α−n. (4.5)

Taking, γp := log p
logα , µ := − log ρ(n−m)

logα , A := 5, B := α, inequality (4.5) becomes

0 < aγp − n+ µ < AB−n.

Since γp is irrational, we are now ready to apply Lemma 2.5 of Dujella and Petho on (4.5) for n − m ∈
{4, 5, ..., 163}. Since a ≤ 2.11× 1026 log2 p from Lemma 3.2, we can take M = 2.55× 1027, and we get

n <
log (Aqp/ϵ)

logB

where qp > 6M and qp is the denominator of the convergent of the irrational number γp such that ϵp :=

||µqp|| −M ||γqp|| > 0.

With the help of SageMath, with conditions z > 0, and (n,m, a) a possible zero of (1.2) , we get n < 143

which contradicts our assumption n > 200. Then it is false.

• Case 2: z < 0 Since n > 200, then 2
αn < 1

2 . Hence (4.4) implies that |1− e|z|| < 2. Also, since z < 0, we
have

0 < |z| ≤ e|z| − 1 = e|z||e|z| − 1| < 4

αn
.

Replacing (4.3) in the above inequality and dividing by log p, we get:

0 < n

(
logα

log p

)
− a+

ρ(n−m)

log p
<

4

log p
· α−n < 4 · α−n (4.6)

In order to apply Lemma 3.2 on (4.6) for n−m ∈ {4, 5, ..., 111}, we take M = 2.55× 1027 . With the help of
SageMath, with conditions z < 0, and (n,m, a) a possible zero of (1.2), we get n < 143 which contradicts our
assumption n > 200. Then it is false.

This completes the proof of our main result. ■
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