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Exact solutions to interfacial flows with kinetic undercooling in a
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SAHAR ALMASHAAN1 AND XUMING XIE*1

1 Department of Mathematics, Morgan State University, Baltimore, MD 21251, USA.

Received 22 April 2023 ; Accepted 14 July 2023

This paper is dedicated to the occasion of Professor Gaston M. N’Guérékata’s 70th birthday

Abstract. Hele-Shaw cells where the top plate is moving uniformly at a prescribed speed and the bottom plate is fixed
have been used to study interface related problems. This paper focuses on interfacial flows with linear and nonlinear kinetic
undercooling regularization in a radial Hele-Shaw cell with a time dependent gap. We obtain some exact solutions of the
moving boundary problems when the initial shape is a circle, an ellipse or an annular domain. For the nonlinear case, a linear
stability analysis is also presented for the circular solutions. The methodology is to use complex analysis and PDE theory.
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1. Introduction and Background

There have been a huge number of studies in the problem of a less viscous fluid displacing a more viscous
fluid in a Hele-Shaw cell since Saffman and Taylor’s seminal papers [28, 35] in the 1950s. Neglecting the
surface tension, Saffman and Taylor [28] found an one-parameter family of exact steady solutions,
parameterized by width λ. This theoretical shape are usually referred to in the literature as the Saffman-Taylor
finger. It was found [28] experimentally that an unstable planar interface evolves through finger competition to a
steady translating finger, with relative finger width λ close to one half. However, in the zero-surface-tension
steady-state theory, λ remained arbitary in the (0, 1) interval. The selection problem of λ was solved by
incorporating the surface tension regularization, numerical and formal asymptotic calculations [22], [39],
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[19],[7, 8], [31], [17], [32, 33], [4] Rigorous results were later obtained in [34, 40].

The Hele-Shaw problem is similar to the Stefan problem in the context of melting or freezing. Besides
surface tension, the physical effect most commonly incorporated in regularizing the ill-posed Stefan problem is
kinetic undercooling [2, 14, 20], where the temperature on the moving interface is proportional to the normal
velocity of the interface. For the Hele-Shaw problem, kinetic undercooling regularization first appeared in
[26, 27]. Since then, results in different aspects were obtained ([1, 5, 9, 15, 24, 25, 41]).

Besides the classical Hele-Shaw setup, there are several variants related to the viscous fingering problem
[3, 11, 12, 16]. One of the variants is interfacial flows in a Hele-Shaw cell where the top plate is lifted uniformly
at a prescribed speed and the bottom plate is fixed (lifting plate problems) [6, 13, 23, 29, 30, 36, 37, 44]. In the
lifting plate problem, the gap b(t) between the two plates is increasing in time but uniform in space. As the plate
is pulled, an inner viscous fluid shrinks in the center plane between the two plates and increases in the z-direction
to preserve volume. An outer less viscous fluid invades the cell and generates fingering patterns. The patterns are
visually similar to those in the classical radial Hele-Shaw problem, but the driving physics is different. In [29],
the authors derived the governing equations for the lifting problem and they established the existence, uniqueness
and regularity of solutions for analytic data when the surface tension is zero. Some exact solutions were also
constructed, both with or without surface tension. Analytic results were also be generalized to higher dimensions
in [38]. Numerical simulation and the pattern formation of the interface were presented in [29, 44].

Very recently, local existence of analytic and classical solutions was obtained in [42, 43] for the Hele-Shaw
problem with time dependent gap where the kinetic undercooling regularization is used instead of the surface
tension. In this paper we obtain some exact solutions of the moving boundary problem when the initial data is a
circle or an ellipse. The methodology is to use complex analysis and Schwarz function.

2. Mathematical formulation

Our studies center on the free interface problem in a Hele-Shaw cell with a time dependent gap b(t); see
Figure 1. The upper plate is lifted or compressed perpendicular to the cell, while the lower plate stays fixed. We
assume that

b(t) ∈ C1([0,∞)), b(t) ≥ b0 for some positive constants b0.

We consider the displacement of a viscous fluid by another fluid of negligible viscosity. Let Ω(t) in the (x, y)
plane be the more viscous fluid domain with free boundary ∂Ω. Following M. Shelley, F. Tian, and K. Wlodarski
[29], we have the following governing equations: The fluid velocity is

u = −b2(t)

12µ
∇p(x, y, t), (2.1)

where p is the pressure and µ is the viscosity of the fluid. Conservation of mass equation is

∇ · u = − ḃ(t)

b(t)
in Ω(t). (2.2)

The kinematic boundary condition is

−b2(t)

12µ

∂p

∂n
= Vn on ∂Ω(t), (2.3)

where ∂
∂n denotes the derivative in the direction of the outward normal n to ∂Ω, and Vn is the velocity of the

∂Ω(t) in the direction of outward normal vector n; and the dynamic boundary condition is

p = τVn on ∂Ω(t), (2.4)
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Figure 1: The Hele-Shaw flow with time dependent gap

or
p = τ(Vn)

β on ∂Ω(t), (2.5)

where τ is a kinetic undercooling coefficient and β > 0 is a real constant.

Non-dimensionalizing the length and time and the pressure, the nondimensional version of (2.1), (2.2), (2.3,
(2.4) and (2.5) is

u = −b2(t)∇p(x, y, t) in Ω(t), (2.6)

∇ · u = − ḃ(t)

b(t)
in Ω(t), (2.7)

−b2(t)
∂p

∂n
= Vn on ∂Ω(t), (2.8)

p = cVn on ∂Ω(t); (2.9)

or
p = c(Vn)

β on ∂Ω(t); (2.10)

where c is the nondimensional kinetic undercooling coefficient; β is a positive number and β ̸= 1.
Plugging (2.6) into (2.7), we obtain

∇2p =
ḃ(t)

b3(t)
in Ω(t). (2.11)

We are going to consider the following two problems:
Problem one consists of the equations (2.8), (2.9) and (2.11) and
Problem Two consists of the equations (2.8), (2.10) and (2.11) with β > 0 and β ̸= 1.
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Let p̃ = p− ḃ(t)
4b3(t) (x

2 + y2), then p̃ satisfies

∇2p̃ = 0, in Ω(t) (2.12)

Vn = −b2(t)
∂p̃

∂n
− ḃ(t)

2b(t)
(x, y) · n on ∂Ω(t), (2.13)

p̃ = cVn − ḃ(t)

4b3(t)
(x2 + y2), on ∂Ω(t), (2.14)

or

p̃ = c(Vn)
β − ḃ(t)

4b3(t)
(x2 + y2), on ∂Ω(t), (2.15)

So equivalently, Problem one consists of the equations (2.12), (2.13) and (2.14) and Problem Two consists of the
equations (2.12), (2.13) and (2.15) with β ̸= 1.

3. Exact solutions of Problem One

It is noted in [42] that Problem One has a radially symmetric solution Ω(t) = {(x, y) : r =
√

x2 + y2 <

R(t)}, where
˙R(t)

R(t)
= −

˙b(t)

2b(t)
, R(t) =

R(0)
√

b(0)√
b(t)

; (3.1)

p(t, r) = −
cR(0)

√
b(0)ḃ(t)

2b(t)
√

b(t)
− R2(0)b(0)ḃ(t)

4b4(t)
+

ḃ(t)

4b3(t)
r2. (3.2)

It was also obtained in [42] that the linear perturbation of solution (3.1) and (3.2) grows when ḃ(t) is positive
while the perturbation decays when ḃ(t) is negative.
Next we are going to re-establish (3.1) and 3.2) using Schwarz function approach. We refer to [10] for properties
of Schwarz function, we first give some preliminary lemmas.

Lemma 3.1. Assume that ∂Ω(t) is an analytic curve, and S(t, z) is the Schwarz Function of ∂Ω(t), where
z = x+ iy; then the outward normal velocity is

Vn = − i∂tS(t, z)

2
√
Sz(t, z)

. (3.3)

The proof of the lemma can be found in [18, 21].
Let W (z) = p̃ + iq̃, where q̃ is a harmonic conjugate of p̃. The analytic function W (z) is called the complex
velocity potential for Problem One. Let us obtain an equation for Wz in terms of the Schwarz function S(t, z).We
introduce s to be the arc length variable along ∂Ω(t). Using the properties of S(z),(2.14) and (3.3), we have

∂sp̃ =
∂p̃

∂z
· ∂z
∂s

+
∂p̃

∂z̄
· ∂z̄
∂s

=
∂p̃

∂z
· 1√

Sz(z)
+
√

Sz(z)
dp̃

dz̄

=
1√
Sz(z)

(
−1

4

ḃ(t)

b3(t)
z̄ +

∂

∂z
c (Vn)

)
+
√
Sz(z)

(
−1

4

ḃ(t)

b3(t)
z +

∂

∂z̄
cVn

)

=
1√
Sz(z)

(
−1

4

ḃ(t)

b3(t)
z̄ − c

∂

∂z

(
i

2

∂tS√
Sz

))
+
√
Sz(z)

(
−1

4

ḃ(t)

b3(t)
z

)

= −1

4

ḃ(t)

b3(t)

(
S(z)√
Sz(z)

+ z
√
Sz(z)

)
− ci

2

1√
Sz(z)

∂

∂z

(
∂tS√
Sz

)

(3.4)
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and

∂p̃

∂n⃗
= − Vn

b2(t)
− 1

4

ḃ(t)

b3(t)

∂

∂n
(zz̄)

= +
i

2

∂tS

b2
√
Sz

− 1

4

ḃ(t)

b3(t)

(
z̄
∂z

∂n
+ z

∂z̄

∂n

)
= +

i

2

∂tS

b2
√
Sz

− 1

4

ḃ(t)

b3(t)

(
S · −i√

Sz(z)
+ iz

√
Sz(z)

)

= +
i

2

∂tS

b2
√
Sz

− i

4

ḃ(t)

b3(t)

(
−S√
Sz(z)

+ z
√
Sz(z)

)
(3.5)

Using (3.4) and (3.5), we have

Wz =
∂sW

∂sz
=

∂s(p̃+ iq̃)

∂sz

=
∂sp̃+ i∂sq̃

∂sz
=

∂sp̃+ i∂np̃

∂sz

= −1

4

ḃ

b3
(S(z) + zSz(z))−

ci

2

∂

∂z

(
∂tS√
Sz

)
+ i

(
i

2

∂tS

b2
− i

4

b(t)

b3(t)
(−S + zSz(z))

)
=− ci

2

∂

∂z

(
∂tS√
Sz

)
− ∂tS

2b2
− 1

2

ḃ

b3
S

(3.6)

From (2.13), (2.14) and (3.3), we have on ∂Ω(t):

−b2(t)
∂p̃

∂n
=

1

4

ḃ(t)

b3(t)
zS(z)− i∂tS(t, z)

2
√

Sz(t, z)
(3.7)

and

p̃ = −1

4

ḃ(t)

b3(t)
zz̄ + cVn = −1

4

ḃ(t)

b3(t)
zz̄ − ic∂tS(t, z)

2
√

Sz(t, z)
. (3.8)

Now we look at the following cases:

(1) Circular solutions: If the initial shape is circle, Ω(0) = {(x, y) : x2 + y2 ≤ a20}, then we are seeking
circular solution for all t > 0, Ω(t) = {(x, y) : x2 + y2 ≤ a(t)2}. The Schwarz function is S(z, t) = a2(t)

z , so

∂tS = 2a ȧ(t)
z , Sz = −a2(t)

z2 . From (3.6), we have

Wz = −a(t)

b2z

(
ȧ+

ḃa

2b

)
; (3.9)

Let A(t) be the area of Ω(t), then

d

dt
A(t) =

d

dt

x

Ω(t)

1dxdy =

∮
∂Ωt

Vnds

=

∮
∂Ω(t)

−b2(t)
∂p

∂n
ds = −b2(t)

∮
∂Ω(t)

∂p

∂n
ds

= −b2(t)
x

Ω(t)

∆pdxdy = −b2(t) · ḃ(t)

b3(t)
A(t) =

−ḃ(t)

b(t)
A(t).

(3.10)
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Since A(t) = πa2(t), we have

2ȧ = −a(t)

b(t)
ḃ(t) (3.11)

(3.9) implies Wz = 0, so W (t, z) = W (t) is independent of z, consequently p̃(t, z) = p̃(t) is independent of z.
Using (3.8) we have

p̃ = −1

4

ḃ(t)

b3(t)
· a2(t) + cVn = −1

4

ḃ(t)

b3(t)
a2(t)

= −1

4

ḃ(t)

b3(t)
a2(t) + cȧ(t) = −1

4

ḃ(t)a2(t)

b3(t)
− ca(t))ḃ(t)

2b(t)
.

(3.12)

We note that (3.11) and (3.12) are equivalent to (3.1) and (3.2) respectively.

(2) Solutions of Ellipse shape: If Ω(0) = {(x, y) : x2

a2
0
+ y2

h2
0
⩽ 1}, where a0 > h0.

Let us seek ellipse solution for t > 0, Ω(t) = {(x, y) : x2

a2(t) +
y2

h2(t) ⩽ 1}, then the Schwarz function is

S(z, t) =
a2 + h2

d2(t)
z − 2a(t)h(t)

d(t)2

√
z2 − d2, (3.13)

where d(t) =
√
a(t)2 − h(t)2.

Taking derivative in above, we have

∂tS(z, t) = z
∂

∂t

(
a2 + h2

d2

)
−
√

z2 − d2
∂

∂t

(
2ah

d2

)
+

1√
z2 − d2

ah

d2
∂

∂t

(
d2
)

(3.14)

and

Sz(z, t) =

(
a2 + h2

)√
z2 − d2 − 2ahz

d2
√
z2 − d2

(3.15)

Plugging (3.13), (3.14) and (3.15) into (3.6) and integrating we obtain,

W (t, z) =

(
−ci

2

) d
[
z ∂
∂t

(
a2+h2

d2

)√
z2 − d2 −

(
z2 − d2

)
∂
∂t

(
2ah
d2

)
+ ah

d2
∂
∂t

(
d2
)]

(z2 − d2)
1
4
(
(a2 + h2)

√
z2 − d2 − 2ahz

)1/2
− z2

4b2

[
∂t

(
a2 + h2

d2

)
−
(
a2 + h2

)
∂t(ah)

ahd2

]

− z
√
z2 − d2

ah∂t(d
2)

2b2d4
+ q(t)

(3.16)

We examine the singularity of W (t, z) in (3.16), W has to be analytic in Ω(t) = x2

a2 + y2

h2 ⩽ 1.

We note that the zero of
(
a2 + h2

)√
z2 − d2 − 2ahz = 0 are z = ±a2+h2

d(t) = ± a2+h2
√
a2−h2

, which are outside of

Ω(t). So
((
a2 + h2

)√
z2 − d2 − 2ahz

)1/2
is analytic in Ω(t). That means that the singularities of the first term

and the third term can not be canceled out to make W (t, z) analytic. Hence we have the following result:

Proposition 3.2. If the initial shape of Problem One is an ellipse, then for any T > 0, there is no solution of
Problem One on [0, T ] which is of ellipse shape.
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(3) Solutions on annular domain:
If Ω(t) = {(x, y) : r(t) <

√
x2 + y2 < R(t)} is an annular domain, then the problem will consist of the

following equations:

∆p =
ḃ

b3
in Ω(t); (3.17)

p = cṘ on x2 + y2 = R2(t) (3.18)

p = −cṙ on x2 + y2 = r2(t) (3.19)

−b2
∂p

∂r
= Ṙ on x2 + y2 = R2(t) (3.20)

−b2
∂p

∂r
= ṙ on x2 + y2 = r2(t). (3.21)

The general solution of (3.17) is given by

p(r, θ) =
1

4

b

b3
(x2 + y2) + α(t) log

√
x2 + y2 + γ(t) (3.22)

where α(t) and γ(t) with R(t) and r(t) are to be determined. Plugging above into (3.18)- (3.21) to obtain

cṘ =
1

4

ḃ

b3
R2 + α(t) logR+ γ(t), (3.23)

−cṙ =
1

4

ḃ

b3
r2 + α(t) log r + γ(t), (3.24)

−1

2

ḃ

b
R− α(t)b2

R
= Ṙ, (3.25)

−1

2

ḃ

b
r − α(t)b2

r
= ṙ. (3.26)

From (3.25) and (3.26) we have

−1

2

ḃ

b
(R2 − r2) =

1

2

d

dt
(R2 − r2). (3.27)

Solving (3.27) we derive

R2 − r2 =
b(0)

(
R2(0)− r2(0)

)
b(t)

(3.28)

which implies

R(t) =

√
r(t)2 +

b(0)
(
R2(0)− r2(0)

)
b(t)

(3.29)

To solve α(t) we subtract (3.24) from (3.23), then use (3.25) and (3.26) to derive

α(t) =
− c

2
ḃ
b (R+ r)− 1

4
ḃ
b3

b(0)
(
R2(0)−r2(0)

)
b[

log
(

R
r

)
+ c
(

1
R + 1

r

)] (3.30)

Now plugging (3.30) into (3.26), we derive

ṙ = −1

2

ḃ

b
r +

c
2 ḃb(R+ r) + 1

4

ḃb(0)
(
R2(0)−r2(0)

)
b2

r

[
log
(

R
r

)
+ c
(

1
R + 1

r

)] (3.31)
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Plugging (3.29) into (3.31), we obtain an ODE for r(t)

ṙ = −1

2

ḃ

b
r +

cbḃ
2

(√
r2 +B(t) + r

)
+ 1

4
ḃB(t)

b

r

[
1
2 log

(
1 + B(t)

r2

)
+ c

(
1√

r2+B(t)
+ 1

r

)] , (3.32)

Where

B(t) =
b(0)

(
R2(0)− r2(0)

)
b(t)

. (3.33)

Once r(t) is solved from (3.32), we solve R(t) from (3.29), α(t) from (3.30) and γ(t) from (3.24). In Figure
2, using MATLAB, we have numerically solved r(t), R(t), α(t) and γ(t) from (3.32), (3.29), (3.30) and (3.24)
when we take b(t) = (1 + t)/(2 + t), c = 0.1, r(0) = 1, R(0) = 2.

4. Exact solutions of Problem Two

Parallel to (3.6), (3.8) and Problem One, we have the following equations for Problem Two:

Wz = c

[
− i

2

∂

∂z

(
∂tS√
Sz

)]β
− ∂tS

2b2
− 1

2

ḃ

b3
S (4.1)

p̃ = −1

4

ḃ(t)

b3(t)
zz̄ + c(Vn)

β == −1

4

ḃ(t)

b3(t)
zz̄ + c

[
− i∂tS(t, z)

2
√

Sz(t, z)

]β
. (4.2)

(1) Circular solutions: If the initial shape is circle, Ω(0) = {(x, y) : x2 + y2 ≤ a20}, then we are seeking
circular solution for all t > 0, Ω(t) = {(x, y) : x2 + y2 ≤ a(t)2}. Parallel to (3.9), (3.11) and (3.12) we have the
following radially symmetric solution for Problem Two:

˙a(t)

a(t)
= −

˙b(t)

2b(t)
, a(t) =

a0
√

b(0)√
b(t)

; (4.3)

p̃ = −1

4

ḃ(t)

b3(t)
· a2(t) + c[Vn]

β = −1

4

ḃ(t)

b3(t)
a2(t) + c[ȧ(t)]β

= −1

4

ḃ(t)a2(t)

b3(t)
− c

[
a(t))ḃ(t)

2b(t)

]β
.

(4.4)

Now we will discuss the linear stability of the circular solution (4.3) and (4.4). The perturbed interface is{
r(θ, t) = a(t) + εδ(t) cos(kθ)

}
= ∂Ω(t), then we have

−→n =
< ∂θr sin θ + r cos θ,−rθ cos θ + r sin θ >√

r2θ + r2

=
< a(t) cos θ, a(t) sin θ >

a(t)
√

1 + 2εδ(t) cos(kt)
a(t) +O(ε2)

+
εδ(t)⟨−k sin θ sin(kθ) + cos(kθ) cos θ, k cos θ sin(kθ) + cos(kθ) sin θ⟩

a(t)
√

1 + 2εδ(t) cos(kt)
a(t) +O(ε2)

=< cos θ, sin θ > −εδ(t)k sin(kθ)

a(t)
< sin θ,− cos θ > +O(ε2)
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and

Vn =< ẋ(t), ẏ(t) > ·−→n

=
( ˙a(t) + εδ̇(t) cos(kθ)

)
< cos θ, sin θ >

·
[
< cos θ, sin θ > −εδ(t)k sin(kθ)

a(t)
< sin θ,− cos θ > +O(ε2)

]
= ȧ(t) + εδ̇(t) cos(kθ) +O(ε2)

(4.5)

Let
p̃(t, r, θ) = p̃0(t, r) + εp̃1(t, r, θ) + .... (4.6)

then

p̃(t, r, θ)
∣∣∣
∂Ω(t)

= p̃(t, r, θ)
∣∣∣
r=a(t)

+
(∂p̃
∂r

∣∣∣
r=a(t)

)
(εδ cos(kθ)) +O(ε2) (4.7)

from (2.15) and (4.5), we have on ∂Ω(t)

p̃ = c(ȧ+ εδ̇ cos(kθ))β − ḃ(t)

4b3(t)
(x2 + y2)

= c(ȧ)β + cβ(ȧ)β−1(εδ̇ cos(kθ))− ḃ(t)

4b3(t)
(x2 + y2) +O(ε2)

(4.8)

From (4.6),(4.7) and (4.8) , we have

p̃1

∣∣∣
r=a(t)

= cβ(ȧ)β−1δ̇ cos(kθ)− ḃ

2b3(t)
a(t)δ(t) cos(kθ); (4.9)

From (2.13) and (4.5) we have

δ̇(t) cos(kθ) = −b2(t)
∂p̃1
∂r

∣∣∣
r=a(t)

=
δ(t)ḃ

2b
cos(kθ) (4.10)

(
Note :

ḃ

2b
< x, y > ·−→n =

ḃ(t)

2b(t)
a(t) +

εδ(t)ḃ

2b
cos(kθ) +O(ε2) using (36).

)
From (12), we have

∆p̃1 = 0 in {r < a(t)} (4.11)

Now using separation of variables. We solve the boundary value problem of (4.9) and (4.11), we have

p̃1(r, θ, t) =
cβ(ȧ)β−1δ̇ − ḃ

2b3 a(t)δ(t)

(a(t))k
rk cos(kθ) (4.12)

From (4.12) we have

∂p̃1
∂r

∣∣∣
r=a(t)

=
k
(
cβ(ȧ)β−1δ̇ − ḃ

2b3 a(t)δ(t)δ(t)
)
cos(kθ)

a(t)
(4.13)

Now using (4.10) and (4.13) we obtain

δ̇(t) = −
kb2
[
cβ(ȧ)β−1δ̇ − ḃ

2b3 a(t)δ(t)
]

a(t)
− δḃ

2b
(4.14)

We rewrite (4.14) as
δ̇(t)

δ(t)
=

ḃ(t)

2b(t)

(k − 1)a(t)[
a(t) + kcβb2(ȧ)β−1

] (4.15)
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Using ȧ = − ḃ

2b
a , we can rewrite (4.15) as

δ̇(t)

δ(t)
=

ḃ(t)

2b(t)

(k − 1)a(t)[
a(t) + kcβb2

(
− ḃ

2ba
)β−1

] (4.16)

So when ḃ < 0,
δ̇(t)

δ(t)
< 0, the solution is stable

If ḃ > 0, when β = 2m+ 1 is positive odd numbers then
δ̇(t)

δ(t)
> 0, the solution is unstable

If ḃ > 0, and β = 2m is positive even numbers , then

δ̇(t)

δ(t)
=

ḃ(t)

2b(t)

(k − 1)a(t)[
a− 2kcmb2

(
ḃ
2b

)2m−1
a2m−1

]
=

ḃ(t)

2b(t)

(k − 1)[
1− 2kcmb2

(
ḃ
2b

)2m−1(a0

√
b(0)√
b

)2m−2
]

=
ḃ(t)

2b(t)

(k − 1)[
1− 22−2mkcm(a0

√
b(0))2m−2(ḃ)2m−1b−(2m−4)

]
the linear stability in this case will depend on the wave number k and the gap function b(t).

(2) ellipse shape case: If there is an elliptic shape solution Ω(t) = (x, y) : x2

a2(t) +
y2

h2(t) = 1, then from
(3.10) with A(t) = πa(t)h(t)

a(t)h(t) =
πa(0)h(0)b(0)

b(t)
. (4.17)

Parallel to (3.13)-(3.16), we have

W (t, z) = c

(− i

2

) d
[
z ∂
∂t

(
a2+h2

d2

)√
z2 − d2 −

(
z2 − d2

)
∂
∂t

(
2ah
d2

)
+ ah

d2
∂
∂t

(
d2
)]

(z2 − d2)
1
4
(
(a2 + h2)

√
z2 − d2 − 2ahz

)1/2
β

− z2

4b2

[
∂t

(
a2 + h2

d2

)
−
(
a2 + h2

)
∂t(ah)

ahd2

]

− z
√
z2 − d2

ah∂t(d
2)

2b2d4
+ q(t)

(4.18)

It is clear that singularities at z = ±d can not be removed in the case where β is an odd integer. It looks that from
(4.18) that singularities can be removed for the case where β is positive even integer if a(t) and h(t) are properly
chosen. However, by examining the case β = 2, we found that a(t) and h(t) must satisfies two independent
ODEs which have no solution that also satisfies (4.18). Hence we have the following result.

Proposition 4.1. If the initial shape of Problem Two is an ellipse, then for any T > 0, there is no solution of
Problem Two which is of ellipse shape on [0, T ].

(3) Solution on annular domain: For the nonlinear problem 2 on a annular domain, we have the same
equations (32) (35) and (36) as for the linear problem 1, but instead of (33) and (34), the pressure conditions are

p = cṘβ on x2 + y2 = R2, (4.19)
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and
p = c(−ṙ)β on x2 + y2 = r2. (4.20)

We also note that (40)-(47) also hold for Problem 2. To solve for α(t), we use (37), (4.19) and (4.20) to obtain:

c(Ṙ)β =
1

4

ḃ

b3
R2 + α(t) logR+ γ(t), (4.21)

c(−ṙ)β =
1

4

ḃ

b3
r2 + α(t) log r + γ(t), (4.22)

Subtracting (4.21) and (4.22), and using (35)-(37), we have

c
(
− 1

2

ḃ

b
R− α(t)b2

R

)β
− c
(1
2

ḃ

b
r +

α(t)b2

r

)β
=

1

4

ḃ

b3
B(t) + α(t) log

R

r
; (4.23)

Where B(t) is given by (3.33). We need to solve for α(t) from (4.23). We consider the case β = 2, then (4.23)
becomes a quadratic equation

α2(t)cb4
(

1

r2
− 1

R2

)
+ α(t)

[
log

R

r

]
+

ḃ

4b2

(
−cḃ+

1

b

)
B(t) = 0 (4.24)

Solving (4.24) we have

α(t) =
− log R

r +
√
log2 R

r − cbḃ
(

1
r2 − 1

R2

)
B(t) + c2b2ḃ2

(
1
r2 − 1

R2

)
B(t)

2cb4
(

1
r2 − 1

R2

) (4.25)

In (4.25), the expression under the square root is positive for sufficiently small c, and we take the positive square
root because of

lim
c→0

α(t) = − ḃ

4b3
B(t)

log R
r

. (4.26)

Plugging the above into (3.26), we obtain

ṙ = −1

2

ḃ

b
r +

b2

r

log R
r −

√
log2 R

r − cbḃ
(

1
r2 − 1

R2

)
B(t) + c2b2ḃ2

(
1
r2 − 1

R2

)
B(t)

2cb4
(

1
r2 − 1

R2

) (4.27)

Now using (3.28), (3.29) and (3.33) we have

ṙ = −1

2

ḃ

b
r +

b2

r

log
√
1 + B(t)

r2

2cb4
(

1
r2 − 1

r2+B(t)

)

− b2

r

√
log2

√
1 + B(t)

r2 − cbḃ
(

1
r2 − 1

r2+B(t)

)
B(t) + c2b2ḃ2

(
1
r2 − 1

r2+B(t)

)
B(t)

2cb4
(

1
r2 − 1

r2+B(t)

) (4.28)

Once we have solved r(t) from (4.28), we obtain R(t) from (3.29), α(t) from (4.25) and γ(t) from (4.22), so
we have the problem for the case β = 2. In Figure 3, using MATLAB, we have numerically solved r(t), R(t),
α(t) and γ(t) from nonlinear problem (4.28), (3.29), (4.22) and (4.25) when we take b(t) = (1 + t)/(2 + t), c =

0.1, r(0) = 1, R(0) = 2.

Comparing Figure 2 to Figure 3, we note that the solution to the nonlinear problem 2 is qualitatively very
similar to that to the linear problem 1, only the limit values of R(t) and r(t) as t → ∞ are slightly different.
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5. Conclusion and discussion

In this paper, we are concerned with exact solutions to some interfacial problems with kinetic undercooling
regularization in a Hele-Shaw cell with time-dependent gap b(t). For both linear and nonlinear regularization,
using Schwarz function, we first recovered the circular solutions for the linear case obtained in [42], and we did
linear stability analysis of circular solution for the nonlinear case. Then we found that the solution of the initial
ellipse shape of the free boundary could not keep elliptic shape for any small time interval for both linear and
nonlinear regularization. Using PDE theory, we obtained exact solutions for the linear case and some nonlinear
cases.

In [42], the existence of analytic solution of the problem with linear regularization was obtained for any initial
analytic shape of simply connected domain. We are going to study the existence and uniqueness of analytic
solution to the problem with nonlinear regularization when the initial free boundary is analytic.

6. Acknowledgement

This paper is dedicated to the occasion of Professor Gaston M. N’Guerekata’s 70th birthday. The authors
would like to thank Professor N’Guerekata for his support over the years.

References

[1] P. H. A. ANJOS, E. O. DIAS AND J. A. MIRANDA, Kinetic undercooling in Hele-Shaw flows, Phys. Rev. E, 92
(2015), 043019.

[2] J. M. BACK, S. W. MCCUE, M. N. HSIEH, AND T. J. MORONEY, The effect of surface tension and kinetic
undercooling on a radially-symmetric melting problem, Appl. Math. Comp., 229 (2014), 41-52.
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Figure 2: Numerical solution of r(t), R(t), α(t) and β(t) from the linear problem 1 (3.23) - (3.26), when we take b(t) = (1+t)/(2+t), c =
0.1, r(0) = 1, R(0) = 2.
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Figure 3: Numerical solution of r(t), R(t), α(t) and γ(t) from the nonlinear problem 2 in a annular domain, when we take β = 2, b(t) =
(1 + t)/(2 + t), c = 0.1, r(0) = 1, R(0) = 2.
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