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Abstract. In this manuscript, we establish the existence and stability of solutions for fractional differential equations with
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1. Introduction

The concept of the Deformable derivative was introduced by F. Zulfeqarr, A. Ujlayan, and P. Ahuja in 2017
[23]. It continuously deforms a function to a derivative, hence the name deformable derivative. This derivative is
linearly related to the usual derivative. There are a few manuscripts pertaining to this fractional derivative. For
more information, the reader could consult manuscripts such as [9, 10, 16–18, 23]. In [9], we established the
existence and uniqueness of solutions to impulsive Cauchy problems involving the deformable derivative with
local and nonlocal conditions.
In [10], we studied the existence of solutions for functional differential equations with infinite delay in the sense
of the deformable derivative:{
Dαy(t) = f(t, yt), for t ∈ J = [0, b], α ∈ (0, 1);

y(t) = ϕ(t), t ∈ (−∞, 0]

In this paper, we study the existence, uniqueness and the Ulam-Hyers type stability of solutions for the
following fractional order differential equation:{

Dαu(t) = f(t, u(t), u(ϕ(t))) t ∈ J = [0, T ]

u(t) = µ(t) t ∈ [−h, 0],
(1.1)
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where 0 < α < 1, Dα is the deformable derivative, f ∈ C([0, T ] × R2,R), µ(t) ∈ C([−h, 0],R), ϕ ∈
C([0, T ], [−h, T ]); let ϕ(t) ≤ t.

The main motivation for this paper was the work of Develi and Duman (see [8]).

2. Preliminaries

In this section, X := C([−h, T ],R) stands for the Banach space of all continuous functions with the Bielecki
norm:

∥u∥B := max{|u(t)|e−κt : t ∈ [−h, T ]}.

Definition 2.1. ([23]) Let f be a real valued function on [a,b], α ∈ [0,1]. The Deformable derivative of f of
order α at t ∈ (a, b) is defined as:

Dαf(t) = lim
ϵ→0

(1 + ϵβ)f(t+ ϵα)− f(t)

ϵ
,

where α+ β = 1. If the limit exists, we say that f is α-differentiable at t.

Remark 2.2. If α = 1, then β = 0, we recover the usual derivative. This shows that the deformable derivative
is more general than the usual derivative.

Definition 2.3. ([23]) For f defined on [a, b], α ∈ (0, 1], the α-integral of the function f is defined by

Iαa f(t) =
1

α
e

−β
α t

∫ t

a

e
β
αxf(x)dx, t ∈ [a, b],

where α+ β = 1. When a = 0 we use the notation

Iαf(t) =
1

α
e

−β
α t

∫ t

0

e
β
αxf(x)dx.

Remark 2.4. If α = 1, then β = 0, we recover the usual Riemann integral. This also shows that the α-integral
is more general than the usual Riemann integral.

Theorem 2.5. ([23]) A differentiable function h at a point t ∈ (a, b) is always α-differentiable at that point for
any α. Moreover, we have

Dαh(t) = βh(t) + αDh(t).

Corollary 2.6. ([23]) An α - differentiable function f defined in (a, b) is differentiable as well.

Theorem 2.7. ([17],[23]) The operators Dα and Iαa possess the following properties:
Let α, α1, α2 ∈ (0, 1] such that α+ β = 1, αi + βi = 1 for i = 1, 2.

1. Let f be differentiable at a point t for some α. Then it is continuous there.

2. Suppose f and g are α-differentiable. Then

Dα(f ◦ g)(t) = β(f ◦ g)(t) + αD(f ◦ g)(t)
= β(f ◦ g)(t) + αf ′(g(t))g′(t).

3. Let f be continuous on [a,b]. Then Iαa f is α- differentiable in (a,b), and we have

Dα(Iαa f(t)) = f(t), and

Iαa (D
αf(t)) = f(t)− e

β
α (a−t)f(a).
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4. Dα

(
f

g

)
=

gDα(f)− αfDg

g2
.

5. Linearity : Dα(af + bg) = aDαf + bDαg.

6. Commutativity : Dα1 ·Dα2 = Dα2 ·Dα1 .

7. For a constant c,Dα(c) = βc.

8. Dα(fg) = (Dαf)g + αfDg.

9. Linearity : Iαa (bf + cg) = bIαa f + cIαa g.

10. Commutativity : Iα1
a Iα2

a = Iα2
a Iα1

a .

Definition 2.8. Problem (1.1) is Ulam-Hyers stable if there exists a real number ζ > 0 such that for each ϵ > 0

and for each solution θ ∈ C([−h, T ],R) of the inequality

|Dαθ(t)− f(t, θ(t), θ(ϕ(t)))| ≤ ϵ, t ∈ [0, T ], (2.1)

there exists a solution u in C([−h, T ],R) to problem (1.1) with

|θ(t)− u(t)| ≤ ζϵ, t ∈ [−h, T ].

Remark 2.9. A function θ ∈ C([0, T ],R) is a solution of the inequality (2.1) if and only if there exists a function
Ω ∈ C([0, T ],R) such that
(i)|Ω(t)| ≤ ϵ for all t ∈ [0, T ],
(ii)Dαθ(t) = f(t, θ(t), θ(ϕ(t))) + Ω(t) for all t ∈ [0, T ].

Remark 2.10. It can readily be seen that using Definition 2.3 and Theorem 2.7, a solution θ ∈ C([0, T ],R) of
inequality (2) is also a solution to the following integral inequality:∣∣∣∣θ(t)− θ(0)e

−β
α t − 1

α
e

−β
α t

∫ t

0

e
β
α sf(s, θ(s), θ(ϕ(s)))

∣∣∣∣ ds ≤ ϵ

β

for all t ∈ [0, T ].

We derive the following inequality for our subsequent results:
For κ > 0, 0 ≤ s ≤ t, t ∈ [0, T ],

1

α
e

−β
α t

∫ t

0

e
β
α seκsds =

1

α

∫ t

0

e
−β
α (t−s)eκsds

≤ 1

α

∫ t

0

eκsds

≤ eκt

κα
.

Definition 2.11. [21, 22]Let (X, d) be a metric space. An operator A : X → X is said to be a Picard operator
if there exists x∗ ∈ X such that

(i) FA = {x∗} where FA = {x ∈ X : A(x) = x} is the fixed point set of A;
(ii) The sequence (An(x0))n∈N converges to x∗ for all x0 ∈ X.

Lemma 2.12. [21, 22]Let (X, d,≤) be an ordered metric space and A : X → X be an increasing Picard
operator (FA = {x∗}). Then, for x ∈ X,x ≤ A(x) =⇒ x ≤ x∗ while x ≥ A(x) =⇒ x ≥ x∗.
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Lemma 2.13. [6] If

x(t) ≤ h(t) +

∫ t

t0

k(s)x(s)ds, t ∈ [t0, T ),

where all functions involved are continuous on [t0, T ), T ≤ +∞, and k(t) ≥ 0, then x(t) satisfies

x(t) ≤ h(t) +

∫ t

t0

h(s)k(s) exp

[∫ t

s

k(ω)d(ω)

]
ds, t ∈ [t0, T ).

3. Existence and Uniqueness

In this section, we prove the existence and uniqueness of solutions for problem (1.1).

Definition 3.1. A function u ∈ C([−h, T ],R) is said to be a mild solution of problem (1.1) if

u(t) =

µ(t), t ∈ [−h, 0]

µ(0)e
−β
α t +

1

α
e

−β
α t

∫ t

0

e
β
α sf(s, u(s), u(ϕ(s)))ds, t ∈ [0, T ].

We investigate problem (1.1) with the following assumptions:
(H1) f ∈ C([0, T ]× R2,R), ϕ ∈ C([0, T ], [−h, T ]) and ϕ(t) ≤ t on [0, T ],

(H2) There is a constant L > 0 such that
|f(t, u1, θ1)− f(t, u2, θ2)| ≤ L(|u1 − u2|+ |θ1 − θ2|) for all ui, θi ∈ C([−h, T ],R) and t ∈ [0, T ].

Theorem 3.2. Under the asumptions (H1)-(H2), if κ > 2L
α , then problem (1.1) has a unique mild solution.

Proof. We first transform problem (1.1) into a fixed point problem.
Define F : C([−h, T ],R) → C([−h, T ],R) such that

Fu(t) =

µ(t), t ∈ [−h, 0]

µ(0)e
−β
α t +

1

α
e

−β
α t

∫ t

0

e
β
α sf(s, u(s), u(ϕ(s)))ds, t ∈ [0, T ].

(3.1)

Then we find a unique fixed point of F , which is the unique solution. We consider the Banach space
X := C([−h, T ],R) endowed with following norm

∥u∥B = max
t∈[−h,T ]

|u(t)|e−κt. (3.2)

Using Remark 2.10, we show that F is a contraction mapping on (X, ∥ · ∥B). For all u(t), θ(t) ∈ X,Fu(t) =

Fθ(t) if t ∈ [−h, 0]. For t ∈ [0, T ], we have

|Fu(t)−Fθ(t)|

≤ 1

α
e

−β
α t

∫ t

0

e
β
α s|f(s, u(s), u(ϕ(s)))− f(s, θ(s), θ(ϕ(s)))|ds

≤L

α
e

−β
α t

∫ t

0

e
β
α seκs

(
max

−h≤s≤T
|u(s)− θ(s)|e−κs + max

−h≤s≤T
|u(ϕ(s))− θ(ϕ(s))|e−κs

)
≤2L

α
e

−β
α t∥u− θ∥B

∫ t

0

e
β
α seκsds

≤2L

κα
∥u− θ∥Beκt.

46



Existence and Stability Analysis of FDE

Thus

∥Fu−Fθ∥B ≤ η∥u− θ∥B,where η =
2L

κα
.

Since η < 1, we find a unique fixed point F by the Banach contraction principle. ■

Remark 3.3. For a constant delay τ > 0, and ϕ(t) = t− τ , problem (1.1) becomes

{
Dαu(t) = f(t, u(t), u(t− τ)), t ∈ [0, T ]

u(t) = µ(t), t ∈ [−τ, 0].
(3.3)

The proof for the existence and uniqueness of solutions for the above fractional differential equation is obtained
using the following three steps. To that end, we introduce the following Lipschitz condition.

Theorem 3.4. Let f : [0, T ]× R2 → R be a continuous function. Assume that there exists a positive constant L
such that

|f(t, u1, θ)− f(t, u2, θ)| ≤ L|u1 − u2|

for all ui, θ ∈ C([0, T ],R), (i = 1, 2, ...) and t ∈ [0, T ]. And in addition, assume that κ > L
α .Then (3.3) has a

unique solution.

Proof. Problem (3.3) is equivalent to:

u(t) =

µ(t), −τ ≤ t ≤ 0

µ(0)e
−β
α t +

1

α
e

−β
α t

∫ t

0

e
β
α sf(s, u(s), u(s− τ)ds, 0 ≤ t ≤ T .

We partition the interval [0,T] into n sub-intervals of equal length S. And have the following for 0 < S < τ and
nS = T : 0 = S0 < S1 < · · · < Sn = T, Si − Si−1 = S.

We see that t ≤ Si+1 =⇒ t− τ ≤ Si using this argument:
t ≤ Si+1 =⇒ t− τ ≤ Si+1 − τ ≤ Si+1 − S = Si.

Step 1. let (E1, ∥ · ∥1) be a Banach space of continuous functions u : [−τ, S1] → R with the following norm :

∥u∥1 = max
t∈[−τ,S1]

|u(t)|e−κt,

and u(t) = µ(t) for −τ ≤ t ≤ 0. Define a mapping F1 : E1 → E1 by:

F1u(t) =

µ(t), −τ ≤ t ≤ 0

µ(0)e
−β
α t +

1

α
e

−β
α t

∫ t

0

e
β
α sf(s, u(s), u(s− τ)ds, 0 ≤ t ≤ S1.

For u(t), θ(t) ∈ E1,F1u(t) = F1θ(t) if t ∈ [−τ, 0], For t ∈ [0, S1], we have

|F1u(t)−F1θ(t)| ≤
1

α
e

−β
α t

∫ t

0

e
β
α sf(s, u(s), u(s− τ)− f(s, θ(s), θ(s− τ)))|ds.
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Since 0 ≤ s ≤ S1 implies (s− τ) ∈ [−τ, 0], and the definition of E1, we have

|F1u(t)−F1θ(t)|

≤ 1

α
e

−β
α t

∫ t

0

e
β
α s|f(s, u(s), u(s− τ))− f(s, θ(s), θ(s− τ))|ds

≤ L

α
e

−β
α t

∫ t

0

e
β
α seκs[ max

−h≤s≤s1
|u(s)− θ(s)|e−κs]ds

≤ L

α
e

−β
α t∥u− θ∥1

∫ t

0

e
β
α seκsds

≤ L

κα
∥u− θ∥1eκs.

Therefore,
∥F1u−F1θ∥1 ≤ η∥u− θ∥1.

Since η = L
κα < 1, we get that F1 is a contraction mapping, and so there exists a unique fixed point µ1 ∈ E1 that

satisfies (3.3) on [−τ, s1].

Step 2: In this step, we extend the interval of step 1 into [−τ, S2]. Let (E2, ∥ · ∥2) be a complete normed space of
continuous functions u : [−τ, S2] → R with the following norm

∥u∥2 = max
t∈[−r,S2]

|u(t)|e−κs.

Let u(t) = µ1(t) for −τ ≤ t ≤ S1. Continuing in like manner, define a mapping F2 : E2 → E2 by

F2u(t) =

µ1(t), −τ ≤ t ≤ S1

µ(0)e
−β
α t +

1

α
e

−β
α t

∫ t

0

e
β
α sf(s, u(s), u(s− τ))ds, S1 ≤ t ≤ S2.

For u(t), θ(t) ∈ E2, F2u(t) = F2θ(t) if t ∈ [−τ, S1]; else we take t ∈ [S1, S2]. Thus

|F2u(t)− F2θ(t)| ≤
1

α
e

−β
α t

∫ t

0

e
β
α s|f(s, u(s), u(s− τ))− f(s, θ(s), θ(s− τ))|ds.

Observe that 0 ≤ s ≤ S2 =⇒ (s − r) ∈ [−τ, S1]. Based on the the definition of E2, we may derive the
following inequality:

|F2u(t)−F2θ(t)|

≤ 1

α
e

−β
α t

∫ t

0

e
β
α s|f(s, u(s), µ1(s− τ))− f(s, θ(s), µ1(s− τ))|ds

≤ L

α
e

−β
α t

∫ t

0

e
β
α seκs( max

−h≤s≤S2

|u(s)− θ(s)|e−κs)ds

≤ L

α
e

−β
α t∥u− θ∥2

∫ t

0

e
β
α seκsds

≤ L

κα
∥u− θ∥2eκt.

Thus, ∥F2u− F2θ∥2 ≤ η∥u− θ∥2, where η < 1 as aforementioned. Therefore, F2 has a unique fixed point µ2

in E2 that satisfies (3.3) on [−τ, S2].

Step 3: By following this method up to the the nth step, we can find that Fn has a unique fixed point µn in En
satisfying (3.3) on [−τ, Sn] = [−τ, T ]. ■
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4. Ulam-Hyers stability.

Theorem 3.5. Assume that conditions H1 and H2 are fulfilled. Then the first equation of problem (1.1) is Ulam-
Hyers stable.

Proof. Let θ be a solution to (2.1) and u be a unique solution to the following problem:{
Dαu(t) = f(t, u(t), u(ϕ(t)) t ∈ [0, T ]

u(t) = θ(t) t ∈ [−h, 0].

Then

u(t) =

θ(t) t ∈ [−h, 0]

θ(0)e
−β
α t +

1

α
e

−β
α t

∫ t

0

e
β
α sf(s, u(s), u(ϕ(s))ds t ∈ [0, T ].

Observe that we have the following inequality from Remark 2.10:

|θ(t)− θ(0)e
−β
α t − 1

α
e

−β
α t

∫ t

0

e
β
α sf(s, θ(s), θ(ϕ(s)))ds| ≤ ϵ

β

for all t ∈ [0, T ], and |θ(t)− u(t)| = 0 for all t ∈ [−h, 0]. For t ∈ [0, T ] we obtain from H2 that

|θ(t)− u(t)| ≤ |θ(t)− θ(0)e
−β
α t − 1

α
e

−β
α t

∫ t

0

e
β
α sf(s, θ(s), θ(ϕ(s)))ds|

+
1

α
e

−β
α t

∫ t

0

e
β
α s|f(s, θ(s), θ(ϕ(s))− f(s, u(s), u(ϕ(s))|ds

≤ ϵ

β
+

L

α
e

−β
α t

∫ t

0

e
β
α s(|θ(s)− u(s)|+ |θ(ϕ(s))− u(ϕ(s))|)ds. (3.4)

We define an operator for v ∈ C([−h, T ],R+):

A := C([−h, T ],R+) → C([−h, T ],R+),

given by

A(v)(t) =

0 t ∈ [−h, 0]

ϵ

β
+

L

α
e

−β
α t

∫ t

0

e
β
α s (v(s) + v(ϕ(s))) ds t ∈ [0, T ].

We show that A is a Picard operator via the contraction mapping principle. For v, ṽ ∈ C([−h, T ],R+), one
estimates

|Av −Aṽ| ≤ L

α
e

−β
α t

∫ t

0

e
β
α s(|v(s)− ṽ(s)|+ |v(ϕ(s))− ṽ(ϕ(s))|)ds

≤ 2L

α
∥v − ṽ∥Be

−β
α t

∫ t

0

e
β
α seκsds

≤ 2L

κα
∥v − ṽ∥Beκtds,

which means
∥Av −Aṽ∥B ≤ η∥v − ṽ∥B where η = 2L

κα .
For κ > 2L

α > 0 , we observe that η < 1, and consequently we get that A is a contraction mapping with respect
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to the Bielecki norm ∥·∥B on C([−h, T ],R+). Thus, A is a Picard operator such that FA = {v∗} and the Banach
Contraction principle gives the equality:

v∗(t) =
ϵ

β
+

L

α
e

−β
α t

∫ t

0

e
β
α s(v∗(s) + v∗(ϕ(s)))ds

for t ∈ [0, T ]. To show that v∗ is increasing, let m := mint∈[0,T ][v
∗(t) + v∗(ϕ(t))] ∈ R+. For 0 ≤ t1 < t2 ≤ T,

we have

v∗(t2)− v∗(t1)

=
L

α
e

−β
α t2

∫ t2

0

e
β
α s(v∗(s) + v∗(ϕ(s)))ds− L

α
e

−β
α t1

∫ t1

0

e
β
α s(v∗(s) + v∗(ϕ(s)))ds

=
L

α

∫ t2

0

e
−β
α t2e

β
α s(v∗(s) + v∗(ϕ(s)))ds− L

α

∫ t1

0

e
−β
α t1e

β
α s(v∗(s) + v(ϕ(s)))ds

=
L

α

∫ t1

0

(e
−β
α t2 − e

−β
α t1)e

β
α s(v∗(s) + v∗(ϕ(s)))ds+

L

α

∫ t2

t1

e
−β
α t2e

β
α s(v∗(s) + v∗(ϕ(s)))ds

≥ mL

α

∫ t1

0

(e
−β
α t2 − e

−β
α t1)e

β
α sds+

mL

α

∫ t2

t1

e
−β
α t2e

β
α sds

=
mL

α
(e

−β
α t2 − e

−β
α t1)

∫ t1

0

e
β
α sds+

mL

α
e

−β
α t2

∫ t2

t1

e
β
α sds

=
mL

β

[
e

−β
α (t2−t1) − e

−β
α t2 − 1 + e

−β
α t1
]
+

mL

β

[
1− e

−β
α (t2−t1)

]
=

mL

β

[
e

−β
α t1 − e

−β
α t2
]
> 0.

Therefore, v∗ is an increasing function, and so v∗(ϕ(t)) ≤ v∗(t) because ϕ(t) ≤ t. It follows that

v∗(t) ≤ ϵ

β
+

2L

α
e

−β
α t

∫ t

0

e
β
α s(v∗(s))ds.

Using Lemma 2.13, one derives the following inequality

v∗(t) ≤ ϵ

β
+

2L

α

∫ t

0

e
−β
α te

β
α s ϵ

β
exp

[∫ t

s

e
−β
α te

β
αωdω

]
ds

≤ ϵ

β
+

2Lϵ

αβ

∫ t

0

e
−β
α te

β
α s exp

[
α

β

]
ds

≤ ϵ

β
+ exp

[
α

β

]
2Lϵ

β2

[
1− e

−β
α t
]

≤ ϵ

β

[
1 +

2e
α
β

β
L

]
for t ∈ [−h, T ]. If v = |θ − u| in (3.4), then v ≤ Av. So, we have v < v∗ because A is an increasing Picard
operator. Consequently, we have

|θ(t)− u(t)| ≤ ζϵ

where

ζ =
1

β

1 + 2

β
Le

α

β

 .

Thus the first equation of problem (1.1) is Ulam-Hyers stable. The proof is complete. ■
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