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Abstract. In this work, we consider a Nonlinear Timoshenko system with distributed delay-time. We prove the polynomial
stability of the system for the case of nonequal speeds of wave propagation. This is after verifying the exponential stability in
the opposite one.
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1. Introduction

In this work, we consider a nonlinear Timoshenko system with distributed delay term,

{p1¢tt - k((b% + w)% =0,

paties — Db+ k(e + ) + by + [ m(7) e (56, 6 — T + F(1) =0, a-b

where (5¢,t) € (0,1) x RT. The system (1.1) with 1 = 170 = f = 0, was first proposed by Timoshenko [24]
as a model that describes the impact of vibrations on a thin elastic beam of length. The functions ¢ = ¢(, t)
and ¥ = 9 (5, t) describe the small transverse displacement of the beam and the rotation angle of the beam’s
filament. The parameters p1,p2, k and b are positive constants. The function f (1)) is a forcing term and 1)
designate a frictional damping. The distributed delay is given by [ f 2(7) e (3¢, t — 7)dT, where, 11, L5 > 0.
We provide the system (1.1) with the initial data

{¢(%a 0) = ¢05 ¢t(%30> = d)la ZZ)(% 0) = 1;[}07 1/Jt(%70) = d)l (1 2)
'(/)t(%a _t) = fo(%,t), S (071)7 '
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and the boundary conditions

¢(07t) = ¢(1vt) = "/}(Ovt) = w(lﬂt) =0. (1.3)
We remember that Timoshenko system without delay has been considered by many authors. Their goal was to
achieve the asymptotic behaviour of the solutions of these systems by introducing different types of damping.
See for instance [1-3, 9, 11, 12, 15, 19] and references therein.
In recent years, including the delay term makes the problems of EDPs more interesting. In fact, delays can cause
destabilization of a system which is stable without the delays. Datko et al. [7] studied the the destabilizing
effect of arbitrarily small delays in the boundary control of a wave equation. In [17], the authors proved an
exponential decay result of the solution under suitable assumptions of the delayed wave equation where the delay
is considered both in the boundary condition and in the internal feedback. Later [18] the same authors introduced
a distributed delay on a part of the boundary, and they proved an exponential stability under some assumptions,
they also studied the following problem with internal feedback

ugy — Au + poug + ff a(se)p(T)ug(t — 7)dT

u=0 on  Ty(0,)

0

a—z =0 on TI1(0,a) (1.4)
u(s¢,0) = ug(s) and  ug(s2,0) = uq(sc) in Q

ug (3¢, —t) = fo(3¢, —t) in (0,2)

where a € L?(() is a function satisfies

o > Jlalla / p(r)dr.

L1

They obtained an exponential decay result for the energy.
In [22], the authors discussed the stability of a linear Timoshenko system with a constant delay

p1¢tt - k(¢% + 7/1)% = Oa (1 5)
P2t — b + k(s +0) + 1t + m2tpe (36,6 — 1) = 0.
a necessary condition which made the solutions of (1.5) exponentially stable is
k b
—=— (1.6)
P1 P2

It is most important to report that most of results on Timoshenko types systems is based on the above condition,
otherwise, only a polynomial stability was proved for the case of nonequal speeds (see [2, 9, 11, 12, 15]).
For a non linear Timoshenko system , Feng and Pelicer [8] added to (1.5) a forcing term f(¢)) in the second
equation and proved an exponential decay under an appropriate condition between the weights of the the delay
term and frictional damping, their result was extended by Hao and Wei [12] to nonlinear heatTimoshenko system
of based on the energy method. In the case where the speeds are nonequal, they established a polynomial decay
estimate.

System (1.1) was recently investigated by Bouzettouta et al. [4] and they proved an exponential decay result
of the energy when (1.6) holds, in this paper our goal is to complete their study for the case of non equal wave
speeds.

2. Preliminaries

The necessary assumptions and transformations needed to obtain the desired results were presented in this section.
As in [17], we use the following notation

X (3¢, p,7,8) =y (3,6t — p7), € (0,L), p€(0,L), t,7 € (11,12).
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Nonlinear Timoshenko system with distributed delay-time

The new variable  satisfies the following differential equation
TXt (%7 P Tat) + Xp (%7 P T7t') = 07 (%a 12 Tvt) € (07 L) X (05 L) X (Lla LQ) X (07 +OO) .
Therefore, the problem (1.1) becomes

Pt — k(s + 1) =0, € (0,L), t >0,

ptht - bw%% + k(¢% + 7/)) + uﬂl)t (2 1)
+fLL12 n2(T)x (52,1, 7,t)dT + f(¢) =0, € (0,L), t >0, '
Xt (22,0, 7,8) + X, (22,0, 7,8) =0, pe (0,L), T € (t1,L2), t >0,

with the initial data and boundary conditions

¢(%’O):¢Oa ¢t( ) ¢17 %6(0 L))
1/)(%70) = 1p07 1/%(%,0) 1/117 FAS ( 7L)7 (2 2)
X(%apaTaO) :fO(%apT)a ( )a P ( ) )a TE (O’LQ)v .
¢(0,t) = ¢(1,t) = ¥(0,t) = (1,t) =0, t > 0.
In what follows, we assume that ,
[ @l < 3
We assume that f : R — R satisfies
£ = F@)] < ko (] = [u2]”) [ - 2] 24)
for all Yo', 42 € R, where kg > 0, § > 0. Also
< f(y) < f(¥)Y, forall ¢ € R, (2.5)
with
- Yy
0= [ fear
Let H the Hilbert space,

H=H}(0,L) x L?(0,L) x H} (0, L) x L* (0, L) x L*((0, L) x (0, L) x (11,12)),

and for any U = (¢, u, ¥, v, X)t eH, U = (qb, z/;, v X) €H, we equip the spaceH with the inner product

<U,U> = /OL {pluﬂ—kpgvﬁ—i— k(¢ + 1) (&% —|—1Z) + bw%{ﬁv,,] dsx

/ / T n2 (7 |/ 2,0, T, %) X (32, p,7,t) dpdrds.

By introducing the variables ¢y = u and 1y = v, then the system (2.1)-(2.2) is equivalent to

U =AU+ F, t>0 2.6)

U (56,0) = U° (32) = (6%, 6", 4%, 9", fo)", '

and
m
AU = v : @2.7)
9%7/)%% - ((b% +9) — pz - % fLle n2 (1) x (56, p, 7, t) dT
_7XP( 7p77—7t)
S
T
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=1
2

(¥)

0

0

F = 0
=5

0

with the domain

D(4) = {(¢,u,v,0,)" € Hi |,

with

H,; = (H?(0,L) N H{ (0,L)) x H (0, L) x (H*(0,L) N H{ (0, L))
x H{ (0, L) x L* ((0,L) x (0, L) x (t1,2)) .

We state the following well-posedness result (see [8]).

Theorem 2.1. Let Uy €H and suppose that(2.3)-(2.5) hold. Then, the problem (2.1)-(2.2) has a unique weak
solution U € C (R, H). If Uy € D(A), then

UeC(RT,D(A)NC (RT, H).

3. Decay result

We exploit the multipliers technique, we show that the solution of (2.1)—(2.2) decays exponentially. First, we
present the following lemmas.

Lemma 3.1. The energy E of (2.1)—(2.2), defined by

1t 2 2 1t 2 2
EO)=; [ (e + o) et 5 [ {K (6t ) + 002} d
0 0
L (L o L
s [ @ ety drdpier [ i 6D
o Jo Ju 0
satisfies
L
B <, | wiax<o (32)
0
where my = g — ff |n2 (7)| dr.

Proof. Multiplying (2.1); by ¢¢, (2.1)2 by 14, integrating and combining the results, we get

1d [F 1d [F

375 | (ot ot et 5 [ {K (0t o) + 002}
L L L Lo

= / WRdoe— iy / f (@) de — / / Yema () X (36, 1,7, t) drde. (3.3)
0 0 0 L1

Multiplying (2.1)3 by |n2 (7)| x (3¢, p, 7, t), integrating over (0, L) x (0, L) X (¢1,t2), summing the result with
(3.3) and applying Young’s inequality, we have (3.1) and (3.2). |

Lemma 3.2. The functional

L L
B(©) == [ oo+ prowde = [t G4
S
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Nonlinear Timoshenko system with distributed delay-time

satisfies
dl (t L L L
L o [t mittt o [ it [ (o0
0 0 0
/14 L L2
+7 / / In2 ()| X2 (6,1, 7, t)drde, (3.5)
0 L1

Proof. Differentiating I; (t) with (2.1)1, (2.1)2 and Young’s and Poincaré inequalities, we obtain (3.5). ]

Now, we introduce the following problem
—Wiise = Y, w(0) =w (1) =0, (3.6)

where w the solution of the above problem is given by

__/0%1/,(2,1;)6124-%</OL1/)(z,t)dz>.

Lemma 3.3. The solution of (3.6) satisfies

L L L L
/ widrx < / Y2 dse and / widrx < / Yidse.
0 0 0 0

Proof. Multiplying (3.6) by w, integrating and introduce the Holder inequality, we arrive at

L L
/ wid% < / wzd%
0 0

Next, we differentiate (3.6) and using the same above technique, we get

L L
/ widse < / Yidse. (3.7)
0 0

Lemma 3.4. Let © = (¢, 1), x) be the solution of the system (2.1)—~(2.2). Then, for any o > 0, the functional

L
I (t) == /0 (P2¢t"/} + p1oew + %1/12) ds, (3.8)

satisfies

L
Al (¢) < *g/ VEdse + <+P2>/ 1/)td%+/71€2/ prdse (3.9)
0

dt
ul L L2
4+ — (/ |n2(7)|x(%17tdr)d% / f
452 0 11

Proof. By differentiation I5 (t) and using(2.1)4, (2.1)2, we obtain

dIQ /7/)td%—b/ ¢2d%+P1/ prwidsc — k/ 1/1d%—|-k/ w?dsx

- /0 F(b)uode — /0 of / e (1) X 1,7 ) (3.10)
;%
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Using (3.7), Young’s, Cauchy-Schwarz, Poincaré inequalities, we have
L
pl/ Prwidsxe < p1€2/ ¢td%+ d%
< /7152/ ¢%d%+ / PPz,
0

/w(/ nz(T)x(%,l,T,t)ldT> ds

L L2
< 61/ 1/12d + = 45 (/ |72 (’7’)|X2(%, 1,T,t)d7’) dx,

t

L L 0
/ \f<w)w|d%§/ 1?14 o] doe

0 0
1% 1 5001) 1% llago41) 101

L
¢l / Y2idse.
0

By substituting (3.11), (3.12), (3.13) in (3.10), recalling (2.5) and letting d;

A

IA

Lemma 3.5. The functional

L L
I3(t) = po /O V(e + ) + 2 /O Vrebudse,

satisfies

dr. AN ko[t
28 <otpeodiant (o B) [ utan=§ [ 0s i

+(M)/ Ve (b 4+ ) d

where c1 is a positive constant.

Proof. By differentiation I5 (t) and exploiting (2.1)1, (2.1)2, we have

+P2/ Vo Perdse
0

L L L
— [l + po /0 Wedse— k /O (60 + )50 — 1 /O Vel + )3t

L Lo L
- / / 2 (1) (6 + 0)x (52, 1, 7, t)drdoe — / F@) (e + )t
0 L1 0

198

= 9, we obtain (3.9).

L L iz L _
+01/ ¢id%+ﬂ// \772(7)|X2(%,1,T,t)d7d%7/0 F)dse

d13 ,,)2/ Yt (G0 + 1 d%+p2/ V(b + 1) d%+p2/ roird

(3.11)

(3.12)

(3.13)

(3.14)
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By functional inequalities, we arrive at

L
/ [t0¢ (d,e + 20)| dae < k/ (e + 1) d%+“1/ Y2ds, (3.16)

L '
/0 (¢ + ) / |2 (1) x (3¢, 1, 7, t)| dTd>s«

L1

L
§§/ (s + )2 doe + 51 / / In2 (1) x? (52, 1, 7, t)drdsx, (3.17)
0
and
L b2 L )
<
| rwioae < 5 / e+ 5 / Vi
£0 2 b2 L )
< —= » d d
<q [ (ot Pt 2 / vt g [t
L0 o L
< =L 2 dse. 1
<g | Gt w) d%+(2A b2+2pw)/o W (3.18)
1
Inserting (3.16)-(3.18) in (3.15) and letting pg = §kb2, we obtain (3.14). |

To manipulate the boundary terms appeared in (3.14), we introduce the function
q(s) = —4x+2, »x€(0,1).
So, we were able to find the following result.

Lemma 3.6. For any e, > 0, we have

boy d [T e d L
ety <~ 5 | v B2L q¢t¢~%d%+361 /O 02 dse

+(2P151 bp2 / Yidse +(k451+47)2)/ (s + ) ?doe

k 251
// 7 ()] X2 (5 1,7 6) doe
AR v mb 2+s /wzd (3.19)
A .
261 4)\1[)2 861/\1 451 !

Proof. Young’s inequality gives easily for e; > 0,

2

bty < €1 [0 (1) + 62 (0)] + 46—51 (W2 (1) + 92 (0)], (3.20)

we need the following fact

L

d L L
G | tosaviie =ton | quicinadoebpa [ v
0 0 0

e

199



Lamine Bouzettout!, Houssem Eddine Khochemane? and Fahima Hebhoub?

On the other hand

0

L L L
bos / Wethedse = B / Wotbedse— kb [l + O)budse
0 0

—b/ / qsema (1) x (5,1, 7,t) drds — b/ qf (W)d,.dsx

< =07 [ (1) + 2 ( +2b2/wd%

+ (k%1 + bg)/ (6 +9)7d

b2 €1 2

b
+( +2/\b2+ +u1b/wd%

+ b/ / |n2 (7)] 2 (5,1, 7,t) drdse.
0 L1
Therefore
L L
bo [ aveinaedse =200 | v
0 0

Similarly

L

L L
& | o= [ ot v+ [ maio e
< k62 (1) + 2 (0 +3k/ ¢ dox
L
+k/0 wid%+2p1/0 Yids

which gives us (3.19) by exploiting (3.20)-(3.21).

Lemma 3.7. ([13]) For n1 > 0, the functional

L L e
t) = / / / 7€ 7 |02 (1) X2 (3¢, p, 7, t) dTdpd>,
o Jo Ju
L L i
dl, (t) < *7]1/ / / T lna(7) X2 (54, p, 7, ) drdpdse
dt o Jo L

satisfies

L L2 L
—m / / In2 (7)| X2 (5¢,1, 7, %) drdse + 6/ pidse.
0 L1 0

where (3 is a positive constant.

Let L£(t) the Lyapunov functional given by
1
L(t)=NE(t) + gll (t) + N1Ls (t) + I3 (t) + Naly (t),

where N1, No, N > 0.

200

(3.21)

(3.22)

(3.23)




Nonlinear Timoshenko system with distributed delay-time

Lemma 3.8. There exist 1, 2 > 0, such that L(t) verifies

BE(t) < L(t) < BE(t), vt >0, (3.25)
and
L'(t) < -ME((t)+ (M> / Vo (he + ), d (3.26)
Proof. Let L
L(t) = NE (t) + gfl (t) + N1z (t) + I3 (t) + Nody (t),
then

P1 g P2 B H1 v

L) - VB <2 [Tloalder 2 [Cwvdaer [ v
0 0 0

L

L L
+N1P2/ |¢t1/)|d%+N1P1/ |¢tw\d%+N1%/ Ve
0 0 0

L L
o [Pl + )|t [ el
0 0
L L L2
N [ [0 [ re e (0 G ) drdpe
0 0 L1
Exploiting some functional inequalities, we arrive at

L
L) = NE© <0 [ (5340 + 6t + (0.+0)) d

// 7l ()2 %,1,Tt)d7'd%+/ F(b)ds

<CE(t

By (3.2), (3.5), (3.9), (3.14), (3.23) and (3.19), we get

dL (t) i 2p1€ bp
7t :—(le N1<42+02)—N2M1—(p2+k1 _( ]il+2j + p2 / ¢td%

b co b2 1 v b b2 Lo
(=N, = =2 =
( 1- 3 ( 2+4b2+82+4€1+43+51) /ow”d%

k
_ (8 —€1 <k281 + lﬂ)) /0 (¢ + ) 2dse
L L Lo
- 2
N25/0 /0 /L1 T |n2 (7)| x* (3¢, p, 7, t) drdpd

H1 M1
— (N —N—————— 1,7.t)drd
( 2 s 32 451)/ / 2 ()| X (3¢, 1, 7, t)drds«

L
SN ) /0 F(w)dse,

L
+<p2kplb) i Uie (e + 1), doe

f1

e
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we getFirst, we choose €1 small to hold

k 1
g-&‘l <k251+ b2> > 0.

. P1
B tt = —
y setting €2 16N,

Choosing N, large to verify

b Co b2 1 62 ,ulb b2
NS o mo 0.
8 (25%+4b2+ +451 +451 te)>

Choosing NV large such that

2 2p161 b
Ny = Ny (25 4 py ) = Nopr — (o + 5L ) = (B2 4+ 22) 14 > 0,
462 k 2

and so that (3.25) remains valid. We obtain (3.26).

Here is the following polynomial stability result.

Lemma 3.9. Let ® = (9,1, x) be the solution of the system (2.1)—~(2.2) and suppose that %

Therefore, the solution ($,, x) decays in polynomial manner, i.e. there exists a > 0 such that
Et) <2 t>o0.

Proof. Using (3.26) and (1);, we obtain

L
L' (t) < —\ME(t) +</ Y Prrdoe,
0

b
i

k k— p1b
where ¢ = p— (prpl> , and by applying Young’s inequality, we get

1 1

L d L L ) |<|
S| Wxdredrx < *§E (Bset?h — Poctiy) dse + [s] p ¢xd%+ T/Jttd% p>0.
0 0
Because
L L L
R U R Y
0 0 0

we arrive at

L
/ Yo predse < *§jt (¢%t?/1 - ¢u1/1t) d» + Cy |§| pE (t)

Ll / V2 .

By substituting (3.30) in (3.27) and letting p = the inequality becomes as

2C’||

L L
L' (t) + gi/ (Psetth) — Poethy) doe < —1E (t) + Lg/ z/JtQtd%, t1,t2 > 0.
0

dt
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Now, let the functional

L
£o(t) = L(t)+5 / (6sts — bouthe) doe + N (E (8) + Ea (),

where E; (t) is the second order energy of the problem (2.1)—(2.2) and we choice

20 3 12}

N3 > ) ) )
3 max{ K o b o

for that £; (t) be equivalent to E (t) + E; (t). Indeed,

L L
L1 (6) = N (B () + Bo (6))] < AB (8) + | / |Gt doe + I / (6ot doe,

and by using some functional inequalities, we have
<l [* o sl [*
£(6) = Na (B (t) + B2 (6)] < BB(6) + 51 [ oot 5] [
0 0

L L
+ B/ @2 dsx + H/ Pidse.
2 Jo 2 Jo
It’s easily to show that

20l sl 3l

£2(6) - N (B(6) + B2 ()] < max { 2L 5L 26 50 4 4 ).

and by recalling (3.32), we deduce that
L1(t) ~E(t)+Es (t).

By using (3.31) and because E’ (t) < 0, we can conclude that

L
£(6) < ~uB () - (Namy — ) [ v
0
the choice of N3 given in (3.31) leads to
£l (t) < —uB(t).

Integrating the inequation (3.33), we obtain

t t
Ll/ E (t) dt < —/ L1 () dt,
0 0
and because E (t) is decreasing, we have
L1E (t) t S £1 (0) s
£, (0)

L1

which gives (3.33) by taking a = . Which complete the proof.
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