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Abstract

In this paper, using Hadamard fractional integral, we establish two main new result on fractional integral inequalities
by considering the extended Chebyshev functional in case of synchronous function. The first result concerns with some

inequalities using one fractional parameter and other with two parameter.
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1 Introduction

In recent years, many authors have worked on fractional integral inequalities and its application which
plays important role in classical differential and integral equations, see [3], 5] 6] [7, 8, [@, [10]. Dahmani gave the
following fractional integral inequalities, using the Riemann-Liouville fractional integral for extended Chebyshev
functional, see for instance [6].

Theorem 1.1. Let f and g be two synchronous function on [0,00[ and let r,p,q : [0,00[— [0,00[ for all
t>0,a>0 and then

2J% () [Jp(t)J*(af9)(t) + J%q(t) T (pfg) ()] + 2] “p(t) J*q(t) J*(r fg)(t) >
Jort) [T (pf) ()T *(qg)(t) + T (af ) ()T (pg) ()] T p()[J* (rf)(t) T*(qg)(t) + J*(af)(t)J*(rg)(t)]  (1.1)
+ J%q(t) [T*(r f) () T (pg)(t) + J*(pf)() J*(rg)(t)] -

Theorem 1.2. Let f and g be two synchronous function on [0,00[ and let r,p,q : [0,00[— [0,00[ for all
t>0,a>0 08>0 then we have,

Jor(t) [J%q(t) I (pfg)(t) + 20 p(t) ] (af9)(t) + J”
+ [Jp()I%q(t) + Tp(t) T q(t)] T (rfg)(t) =
Jor(t) [T*(pf) ()T (q9)(t) + J7(af) ()T (pg) (t)] T*p(t)[J* (r ) ()T (ag)(t) + J° (af ) (£)J*(rg)(t)]
+J%(t) [T (r£)() TP (pg) (t) + T (pf) (1) T (rg)(t)] -

a(t)J*(pfg)(t)]

(1.2)

The main objective of this paper is to establish some inequalities for the extended Chebyshev functional
given in [6], using Hadamard fractional integrals. The paper has been organized as follows. In Section 2, we
define basic definitions and proposition related to Hadamard fractional derivatives and integrals. In Section 3,
we give the main results.
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2 Preliminaries

Recently many authors have studied integral inequalities on fractional calculus using Riemann-Liouville,
Caputo derivative, see [3| 5] 6] [7, [8, @, [10]. The necessary background details are given in the book A.A. Kilbas
[1], and in book of S.G. Samko et al. [4], here we present some definitions of Hadamard derivative and integral
as given in [2] p.159-171].

Definition 2.1. The Hadamard fractional integral of order o € RY of function f(x), for all x > 1 is defined
as,

WD) = s [ WG (2.1)

where T'(a) = [;° e "u*"'du.

Definition 2.2. The Hadmard fractional derivative of order o € [n — 1,n), n € ZT, of function f(z) is given
as follows

DY, f(z) = P(nl_a)(a:di)" /j ln(%)"_a_lf(t)%. (2.2)

From the above definitions, we can see obviously the difference between Hadamard fractional and Riemann-
Liouville fractional derivative and integrals, which include two aspects. The kernel in the Hadamard integral
has the form of In(%) instead of the form of (x —t), which is involves both in the Riemann-Liouville and Caputo
integral. The Hadamard derivative has the operator(a:%)", whose construction is well suited to the case of the

half-axis and is invariant relation to dilation [4, p.330], while the Riemann-Liouville derivative has the operator

(&)™

We give some image formulas under the operator (2.1) and (2.2), which would be used in the derivation of
our main result.

Proposition 2.1. [2] If 0 < a < 1, the following relation hold:

uDy 5 (In z)P1 = F(Iﬂ‘(f_)a)(lnx)ﬂ+o‘l, (2.3)
HDf‘ym(lnx)ﬂ*1 = %(lnx)ﬁal, (2.4)

respectively.
For the convenience of establishing the result, we give the semigroup property,

(#D1)(a D) f(a) = D) f(2). (2.5)

3 Main Results

In this section, we present and prove the main results.

Lemma 3.1. Let f and g be two synchronous function on [0,00[. and x,y : [0,00) — [0,00). Then for all
t >0, a>0, we have,

aDyx()a Dy (yf9)(t) +u Dy fy()u Dy i (zfg)(t) =

3.1
aDT (@ f) () a Dy (yg)(t) +a Dy (yf)(t)n Dy (xg)(L). -1

Proof. Since f and g are synchronous on [0, co| for all 7 > 0, p > 0, we have
(f(m) = F(p))(g(T) —g(p)) 2 0 (3.2)

From (3.2),
f()9(m) + f(p)-9(p) = f(T)g(p) + f(p)g(T). (3.3)
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Now, multiplying both side of (3.3) by W, 7 € (0,t), t > 0. Then the integrating resulting identity

with respect to 7 from 1 to ¢ we obtain

1 oot o 7' 1 t dr
i [ @000+ s [0 T > -
1 ot 7' 1 t dr .
s [ e T + o [ msean L.
Consequently,
aD (@ fg)(t) + f(p)-9(p)aDyy (2)(t) > g(p)uDyy (xf)(t) + f(p)a Dy (xg)(t). (3.5)
Multiplying both side of (3.5) b %}:;y(p), p € (0,t), t > 0. Then integrating resulting identity with
respect to p from 1 to ¢ we obtain
K d K d
WDl iy [ G w0+ D@ g [ W o) folal) L
. . (3.6)
1 o dp —a 1 o— dp
> D) Oy [ 1) w000 L+ Dif o) O s [ W)yl ()L
and this ends the proof of inequality 3.1. O

Now, we gave our main result here.

Theorem 3.2. Let f and g be two synchronous function on [0,00[, and r,p,q : [0,00) — [0,00). Then for all
t >0, a>0, we have

r(t) [#D1ep(t)u Dy (af9)(t) +u Drfat) DI (pfg)(t)] +

)t

)
)uDia)uDyy(rfg)(t) >
D1 (pf)(t)u Dy f(ag)(t) +m Dif (af)(t)r Dy (pg)(t)] + (3.7)
a Dy (rf) () uDy i (q9)(t) +u D1 2af)®)uDif (rg)(t)] +
(rf)(®)u Dy (pg)(t) +u Dy (pf)(t) a Dy g (rg)(t)]
Proof. To prove above theorem, putting x = p, y = ¢, and using lemma 3.1, we get
Dy p(t)n Dy (afg)(t) +u Difat)uDy g (pfo)(t) >
w D)) uDyiy (a9)(t) +u Dy i (af) () u Dy (pg)(t).
Now, multiplying both side of (3.8) by x Dy ;'r(t), we have
uDyfr(t) [aD1fp(t)uDyf (afg)(t) +r Dy fat)n Dy (pfo)(t)] =
Dy gr(t) [uDy g (pf) () n D1 g (a9)(t) +u Dy g (af) () uDrf (pg)(t)]
putting x = r,y = ¢, and using lemma 3.1, we get
oDy () e Dy (afg)(t) +18 ¢ aDy{(rfg)(t) =
a D (rf) ) D1y (a9)(t) +u Dy (¢f)(t)u Dy (rg)(t),
multiplying both side of (3.10) by gDy {'p(t), we have
oDy ip(t) [mDygr(t)uDyy (afg)(t) +17 a(t)m Dy (rfg)(t)] =
wDyp(t) [m Dy g (rf) () u Dy g (a9)(t) +u Dig(af)(t)u Dy (rg)(t)] -
With the same arguments as before, we can write
uDT{a() [aDrir(t)1s (pf9)(t) +r Diipt)uDif (rfg)(t)] =
Dy a(t) [uDy g (rf) () mDy g (pg)(t) +u D1 g (pf)(t)uDyf (rg)(t)] -
Adding the inequalities (3.9), (3.11) and (3.12), we get required inequality (3.7). O

(3.10)

(3.11)

(3.12)
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Lemma 3.3. Let f and g be two synchronous function on [0,00[. and x,y : [0, 00[— [0,00[. Then for allt > 0,
a > 0, we have

u D) u DT (yf9)(t) +1 Dy Lyt uDi (2 fg)(t) >

(3.13)
DT f) () uD1y (yg)(t) +1 DIY (yf)(t)uDyg (zg)(t).
Proof. Now multiplying both side of (3.5) by W, p € (0,t), t > 0 we obtain:
()"~ ty(p) (In(£))7 = y(p)
pF—(ﬁ)'HD“ (xfg)t) + pF—(ﬁ)'f(p) 9(p)uDy {x(t) > 510
In p-1 In p-1 '
BLI gounizene + Pl iz
then integrating (3.14) over (1,t), we obtain
uDi3 o) O [ WP 0L DO [ W e a0)
. ! . (3.15)
>0 DN [ W o)L i DO gg [ G000 L
this ends the proof of inequality (3.13). O

Theorem 3.4. Let f and g be two synchronous function on [0,00], and r,p,q : [0,00) — [0,00). Then for all
t>0, >0, we have

aDyir(t) [HDf,?q(t)Hfo(pfg)( )+ 25 Dy p(t) Dy} (afg)(t) +r Difq(t)HDi?(pfg)(t)}

+ {HDf,?p(t)HD;fq(t) +H D;,tp( HDltq } 1t i (rfg)t) >

H
# D) [a D52 () () D1 (a9)(®) +a Dy (af)(OuDif (0g)(8)] + (3.16)
1 DLp(t) |u D)@ u D1 (a9)(t) +u Dif (af) (O Dig (rg)()] +
uDLEa(t) [wDe () ()n Dy (o) (1) +u Dif () (Ou D1 (rg)(1)]
Proof. To prove above theorem, putting z = p, y = ¢, and using lemma 3.3 we get
HD;,fpa)HD;f(qu)( )+ Dy a(t)uDi g (pfg)(t) = 317
u DL 0 Dr ) (99)(t) +1 D17 (af) () u Dy (pg)(t).
Now, multiplying both side of (3.16) by Dy {7(t), we have
aDyir(t) [HDL?‘ p(t)uD; [ (af9)(t) +u D5 a(t)u Dy} (pfg)(t)} > 519
uDLr(t) (DT (0N Dr (a9)(t) +1 Di(af)(Ou DI (0g)(1)] |
putting © = r, y = ¢, and using lemma 3.3, we get
uDir(0uDy) (af9)(t) +17 a®)uDif (rfa)(t) > (3.10)
u DL (r ) () n Dy (a9)(t) +1 Dy (af) (0)u Dy f (rg) (1),
multiplying both side of (3.19) by 5Dy p(t), we have
u DL [ DEgr()u Dy (af9)(®) +1 Dy fat)u D (rfo)(t) =] 0
DiEp() [ D1 () (D5 (a9) (8) +1 D (a) (O Dis (rg) ()] |
With the same argument as before, we obtain
#DLa(t) [uDTEr(t)] (f9)(8) +1 D) n DL (rfg)(1)] = o

#DLa(t) [uDEe (nf) ()DL} (9) (1) +a Dy () (Ou D (rg)(1)]
Adding the inequalities (3.18), (3.20) and (3.21), we follows the inequality (3.16). O
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Remark 3.1. Applying theorem 3.4 for a = 3, we obtain Theorem 3.2.
Remark 3.2. If f,g,r,p and q satisfies the following condition,

1. The function f and g is asynchronous on [0, 00).

2. The function r,p,q are negative on [0,00).

3. Two of the function r,p,q are positive and the third is negative on [0, c0).

then the inequality 3.7 and 3.16 are reversed.
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