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Abstract

In this paper, we defined a new subclass of uniformly convex functions and corresponding subclass of starlike

functions with negative coefficients and obtain coefficient estimates. Further we investigate extreme points, growth and

distortion bounds, radii of starlikeness and convexity and modified Hadamard products.
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1 Introduction

Denoted by S the class of functions of the form

f(z) = z +
∞∑

n=j+1

anzn (1.1)

that are analytic and univalent in the unit disc U = {z : |z| < 1} and by ST and CV the subclasses of S that
are respectively, starlike and convex. Goodman [5, 6] introduced and defined the following subclasses of CV

and ST.

A function f(z) is uniformly convex (uniformly starlike) in U if f(z) is in CV (ST ) and has the property
that for every circular arc γ contained in U , with center ξ also in U , the arc f(γ) is convex (starlike) with
respect to f(ξ). The class of uniformly convex functions denoted by UCV and the class of uniformly starlike
functions by UST (for details see [5]). It is well known from [8, 11] that

f ∈ UCV ⇔

∣∣∣∣∣zf
′′
(z)

f ′(z)

∣∣∣∣∣ ≤ Re

{
1 +

zf
′′
(z)

f ′(z)

}
.

In [11], Running introduced a new class of starlike functions related to UCV and defined as

f ∈ Sp ⇔

∣∣∣∣∣zf
′
(z)

f(z)
− 1

∣∣∣∣∣ ≤ Re

{
zf

′
(z)

f(z)

}
.

Note that f(z) ∈ UCV ⇔ zf ′(z) ∈ Sp . Further Running generalized the class Sp by introducing a parameter
α, − 1 ≤ α < 1,

f ∈ Sp(α) ⇔

∣∣∣∣∣zf
′
(z)

f(z)
− 1

∣∣∣∣∣ ≤ Re

{
zf

′
(z)

f(z)
− α

}
.
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Motivated by the works of Bharati et al [2], Frasin [3, 4], Murugusundaramoorthy and Magesh [10] and
others [5, 6, 8, 11, 12, 17, 18], we define the following class:

For β ≥ 0, −1 ≤ α < 1 and 0 ≤ λ < 1, we let S(λ, α, β, j) denote the subclass of S consisting of functions
f(z) of the form (1.1) and satisfying the analytic criterion

Re
{

zf ′(z) + (2λ2 − λ)z2f ′′(z)
4(λ− λ2)z + (2λ2 − λ)zf ′(z) + (2λ2 − 3λ + 1)f(z)

− α

}
(1.2)

> β

∣∣∣∣ zf ′(z) + (2λ2 − λ)z2f ′′(z)
4(λ− λ2)z + (2λ2 − λ)zf ′(z) + (2λ2 − 3λ + 1)f(z)

− 1
∣∣∣∣ , z ∈ U . (1.3)

We also let TS(λ, α, β, j) = S(λ, α, β, j)
⋂

T where T, the subclass of S consisting of functions of the form

f(z) = z −
∞∑

n=j+1

anzn, an ≥ 0,∀ n ≥ j + 1 (1.4)

introduced and studied by Silverman [14].
We note that, by specializing the parameters j, λ, α, and β we obtain the following subclasses studied by

various authors.

1. TS(0, α, 0, 1) = T ∗(α) and TS(1, α, 0, 1) = K(α) (Silverman [14])

2. TS(0, α, 0, j) = T ∗(α, j) and TS(1, α, 0, j) = K(α, j) (Srivastava et al. [15])

3. TS(1/2, α, 0, 1) = P(α) (Al-Amiri [1], Gupta and Jain [7] and Sarangi and Uralegaddi [13])

4. TS(λ, α, 0, j) = BT (λ, α, j) (Frasin [3, 4] and Magesh [9])

5. TS(1/2, α, β, 1) = TR(α, β) (Rosy [12] and Stephen and Subramanian [16])

6. TS(0, α, β, 1) = TS(α, β) and TS(1, α, β, 1) = UCV (α, β) (Bharati et al. [2])

7. TS(0, 0, β, 1) = TSp(β) ( Subramanian et al. [17])

8. TS(1, 0, β, 1) = UCV (β) (Subramanian et al. [18])

The main object of this paper is to obtain a necessary and sufficient conditions for the functions f(z) in
the generalized class TS(λ, α, β, j). Further we investigate extreme points, growth and distortion bounds, radii
of starlikeness and convexity and modified Hadamard products for class TS(λ, α, β, j).

2 Coefficient Estimates

In this section we obtain a necessary and sufficient condition for functions f(z) in the classes TS(λ, α, β, j).

Theorem 2.1. A function f(z) of the form (1.1) is in S(λ, α, β, j) if

∞∑
n=j+1

[Mn(1 + β)− (α + β)Fn]|an| ≤ 1− α, (2.1)

where

Mn = (2λ2 − λ)n2 + (1 + λ− 2λ2)n, Fn = (2λ2 − λ)n + (1 + 2λ2 − 3λ) (2.2)

and −1 ≤ α < 1, 1
2 ≤ λ < 1, β ≥ 0.

Proof. It suffices to show that

β

∣∣∣∣ zf ′(z) + (2λ2 − λ)z2f ′′(z)
4(λ− λ2)z + (2λ2 − λ)zf ′(z) + (2λ2 − 3λ + 1)f(z)

− 1
∣∣∣∣

−Re
{

zf ′(z) + (2λ2 − λ)z2f ′′(z)
4(λ− λ2)z + (2λ2 − λ)zf ′(z) + (2λ2 − 3λ + 1)f(z)

− 1
}
≤ 1− α.
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We have

β

∣∣∣∣ zf ′(z) + (2λ2 − λ)z2f ′′(z)
4(λ− λ2)z + (2λ2 − λ)zf ′(z) + (2λ2 − 3λ + 1)f(z)

− 1
∣∣∣∣

− Re
{

zf ′(z) + (2λ2 − λ)z2f ′′(z)
4(λ− λ2)z + (2λ2 − λ)zf ′(z) + (2λ2 − 3λ + 1)f(z)

− 1
}

≤ (1 + β)
∣∣∣∣ zf ′(z) + (2λ2 − λ)z2f ′′(z)
4(λ− λ2)z + (2λ2 − λ)zf ′(z) + (2λ2 − 3λ + 1)f(z)

− 1
∣∣∣∣

≤
(1 + β)

∞∑
n=j+1

(Mn − Fn)|an|

1−
∞∑

n=j+1

|an|
.

This last expression is bounded above by (1− α) if

∞∑
n=j+1

[Mn(1 + β)− (α + β)Fn]|an| ≤ 1− α,

and hence the proof is complete.

Theorem 2.2. A necessary and sufficient condition for f(z) of the form (1.4) to be in the class TS(λ, α, β, j),
is that

∞∑
n=j+1

[Mn(1 + β)− (α + β)Fn] an ≤ 1− α. (2.3)

Proof. In view of Theorem 2.1, we need only to prove the necessity. If f(z) ∈ TS(λ, α, β, j) and z is real then

1−
∞∑

n=j+1

Mn anzn−1

1−
∞∑

n=j+1

Fn anzn−1

− α ≥ β

∣∣∣∣∣∣∣∣
∞∑

n=j+1

(Mn − Fn) anzn−1

1−
∞∑

n=j+1

Fn anzn−1

∣∣∣∣∣∣∣∣ .

Letting z → 1 along the real axis, we obtain the desired inequality

∞∑
n=j+1

[Mn(1 + β)− (α + β)Fn] an ≤ 1− α, −1 ≤ α < 1, β ≥ 0.

Finally, the function f(z) given by

f(z) = z − 1− α

[Mj+1(1 + β)− (α + β)Fj+1]
zj+1, (2.4)

where Mj+1 and Fj+1 as written in (2.2), is extremal for the function.

Corollary 2.3. Let the function f(z) defined by (1.4) be in the class TS(λ, α, β, j). Then

an ≤
1− α

[Mn(1 + β)− (α + β)Fn]
, n ≥ j + 1. (2.5)

This equality in (2.5) is attained for the function f(z) given by (2.4).

3 Growth and Distortion Theorem

Theorem 3.1. Let the function f(z) defined by (1.4) be in the class TS(λ, α, β, j). Then for |z| < r = 1

r − 1− α

[Mj+1(1 + β)− (α + β)Fj+1]
rj+1 ≤ |f(z)| ≤ r +

1− α

[Mj+1(1 + β)− (α + β)Fj+1]
rj+1. (3.1)

The result (3.1) is attained for the function f(z) given by (2.4) for z = ±r.
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Proof. Note that

[Mj+1(1 + β)− (α + β)Fj+1]
∞∑

n=j+1

an ≤
∞∑

n=j+1

[Mn(1 + β)− (α + β)Fn] an ≤ 1− α,

this last inequality follows from Theorem 2.2. Thus

|f(z)| ≥ |z| −
∞∑

n=j+1

an|z|n ≥ r − rj+1
∞∑

n=j+1

an ≥ r − 1− α

[Mj+1(1 + β)− (α + β)Fj+1]
rj+1.

Similarly,

|f(z)| ≤ |z|+
∞∑

n=j+1

an|z|n ≤ r + rj+1
∞∑

n=j+1

an ≤ r +
1− α

[Mj+1(1 + β)− (α + β)Fj+1]
rj+1.

This completes the proof.

Theorem 3.2. Let the function f(z) defined by (1.4) be in the class TS(λ, α, β, j). Then for |z| < r = 1

r − (j + 1)(1− α)
[Mj+1(1 + β)− (α + β)Fj+1]

rj ≤ |f
′
(z)| ≤ r +

(j + 1)(1− α)
[Mj+1(1 + β)− (α + β)Fj+1]

rj . (3.2)

Proof. We have

|f ′(z)| ≥ 1−
∞∑

n=j+1

nan|z|n−1 ≥ 1− rj
∞∑

n=j+1

nan (3.3)

and

|f ′(z)| ≤ 1 +
∞∑

n=j+1

nan|z|n−1 ≤ 1 + rj
∞∑

n=j+1

nan. (3.4)

In view of Theorem 2.2,

[Mj+1(1 + β)− (α + β)Fj+1]
j + 1

∞∑
n=j+1

nan ≤
∞∑

n=j+1

[Mn(1 + β)− (α + β)Fn]an ≤ 1− α, (3.5)

or, equivalently
∞∑

n=j+1

nan ≤
(j + 1)(1− α)

[Mj+1(1 + β)− (α + β)Fj+1]
. (3.6)

A substitution of (3.6) into (3.3) and (3.4) yields the inequality (3.2). This completes the proof.

Theorem 3.3. Let fj(z) = z , and

fn(z) = z − 1− α

[Mn(1 + β)− (α + β)Fn]
zn, n ≥ j + 1 (3.7)

for 0 ≤ λ ≤ 1, β ≥ 0,−1 ≤ α < 1. Then f(z) is in the class TS(λ, α, β, j) if and only if it can be expressed in
the form

f(z) =
∞∑

n=j

µnfn(z), (3.8)

where µn ≥ 0(n ≥ j) and
∑∞

n=j µn = 1.

Proof. Assume that

f(z) = µjfj(z) +
∞∑

n=j+1

µn

[
z − 1− α

[Mn(1 + β)− (α + β)Fn]
zn

]

=
∞∑

n=j

µnz −
∞∑

n=j+1

1− α

[Mn(1 + β)− (α + β)Fn]
µnzn.
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Then it follows that
∞∑

n=j+1

1− α

[Mn(1 + β)− (α + β)Fn]
µn

[Mn(1 + β)− (α + β)Fn]
1− α

=
∞∑

n=j+1

µn ≤ 1,

so by Theorem 2.2, f(z) ∈ TS(λ, α, β, j).
Conversely, assume that the function f(z) defined by (1.4) belongs to the class TS(λ, α, β, j), then

an ≤
1− α

[Mn(1 + β)− (α + β)Fn]
, n ≥ j + 1.

Setting µn = [Mn(1+β)−(α+β)Fn]
1−α an, (n ≥ j + 1) and µj = 1−

∑∞
n=j+1 µn, we have,

f(z) = z −
∞∑

n=j+1

anzn

f(z) = z −
∞∑

n=j+1

1− α

[Mn(1 + β)− (α + β)Fn]
µnzn. (3.9)

Then (3.8) gives

f(z) = z +
∞∑

n=j+1

(fn(z)− z)µn

= fj(z)µj +
∞∑

n=j+1

fn(z)µn

=
∞∑

n=j

µnfn(z)

and hence the proof is complete.

4 Radii of close-to-convexity, Starlikeness and Convexity

In this subsection, we obtain the radii of close-to-convexity, starlikeness and convexity for the class TS(λ, α, β, j).

Theorem 4.1. Let f ∈ TS(λ, α, β, j). Then f(z) is close-to-convex of order σ (0 ≤ σ < 1) in the disc |z| < r1,

where

r1 := inf
[
(1− σ)[Mn(1 + β)− (α + β)Fn]

n(1− α)

] 1
n−1

, n ≥ j + 1. (4.1)

The result is sharp, with extremal function f(z) given by (2.4).

Proof. Given f ∈ T, and f is close-to-convex of order σ, we have

|f ′(z)− 1| < 1− σ. (4.2)

For the left hand side of (4.2) we have

|f ′(z)− 1| ≤
∞∑

n=j+1

nan|z|n−1.

The last expression is less than 1− σ if

∞∑
n=j+1

n

1− σ
an|z|n−1 < 1.

Using the fact, that f ∈ TS(λ, α, β, j), if and only if

∞∑
n=j+1

[Mn(1 + β)− (α + β)Fn]
(1− α)

an ≤ 1.
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We can say (4.2) is true if
n

1− σ
|z|n−1 ≤ [Mn(1 + β)− (α + β)Fn]

(1− α)
.

Or, equivalently,

|z|n−1 =
[
(1− σ)[Mn(1 + β)− (α + β)Fn]

n(1− α)

]
,

which completes the proof.

Theorem 4.2. Let f ∈ TS(λ, α, β, j). Then

(i) f is starlike of order σ(0 ≤ σ < 1) in the disc |z| < r2; where

r2 = inf
[(

1− σ

n− σ

)
[Mn(1 + β)− (α + β)Fn]

(1− α)

] 1
n−1

, n ≥ j + 1, (4.3)

(ii) f is convex of order σ (0 ≤ σ < 1) in the unit disc |z| < r3, where

r3 = inf
[(

1− σ

n(n− σ)

)
[Mn(1 + β)− (α + β)Fn]

(1− α)

] 1
n−1

, n ≥ j + 1. (4.4)

Each of these results are sharp for the extremal function f(z) given by (2.4).

Proof. (i) Given f ∈ T, and f is starlike of order σ, we have∣∣∣∣zf ′(z)
f(z)

− 1
∣∣∣∣ < 1− σ. (4.5)

For the left hand side of (4.5) we have

∣∣∣∣zf ′(z)
f(z)

− 1
∣∣∣∣ ≤

∞∑
n=j+1

(n− 1)an |z|n−1

1−
∞∑

n=j+1

an |z|n−1

.

The last expression is less than 1− σ if

∞∑
n=j+1

n− σ

1− σ
an |z|n−1 < 1.

Using the fact, that f ∈ TS(λ, α, β, j) if and only if

∞∑
n=j+1

[Mn(1 + β)− (α + β)Fn]
(1− α)

an ≤ 1.

We can say (4.5) is true if
n− σ

1− σ
|z|n−1 <

[Mn(1 + β)− (α + β)Fn]
(1− α)

.

Or, equivalently,

|z|n−1 =
[(

1− σ

n− σ

)
[Mn(1 + β)− (α + β)Fn]

(1− α)

]
which yields the starlikeness of the family.
(ii) Using the fact that f is convex if and only if zf ′ is starlike, we can prove (ii), on lines similar to the
proof of (i).
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5 Modified Hadamard Product

Let the functions fi(z)(i = 1, 2) be defined by

fi(z) = z −
∞∑

n=j+1

an,iz
n, an,i ≥ 0; j ∈ N, (5.1)

then we define the modified Hadamard product of f1(z) and f2(z) by

(f1 ∗ f2)(z) = z −
∞∑

n=j+1

an,1an,2z
n. (5.2)

Now, we prove the following.

Theorem 5.1. Let each of the functions fi(z)(i = 1, 2) defined by (5.1) be in the class TS(λ, α, β, j). Then
(f1 ∗ f2) ∈ TS(λ, δ1, β, j), for

δ1 =
[Mn(1 + β)− (α + β)Fn]2 − [Mn(1 + β)− βFn](1− α)2

[Mn(1 + β)− (α + β)Fn]2 − Fn(1− α)2
. (5.3)

The result is sharp.

Proof. We need to prove the largest δ1 such that
∞∑

n=j+1

[Mn(1 + β)− (δ1 + β)Fn]
1− δ1

an,1an,2 ≤ 1. (5.4)

From Theorem 2.2, we have
∞∑

n=j+1

[Mn(1 + β)− (α + β)Fn]
1− α

an,1 ≤ 1

and
∞∑

n=j+1

[Mn(1 + β)− (α + β)Fn]
1− α

an,2 ≤ 1,

by the Cauchy-Schwarz inequality, we have
∞∑

n=j+1

[Mn(1 + β)− (α + β)Fn]
1− α

√
an,1an,2 ≤ 1. (5.5)

Thus it is sufficient to show that

[Mn(1 + β)− (δ1 + β)Fn]
1− δ1

an,1an,2 ≤
[Mn(1 + β)− (α + β)Fn]

1− α

√
an,1an,2, n ≥ j + 1 (5.6)

that is
√

an,1an,2 ≤
[Mn(1 + β)− (α + β)Fn](1− δ1)
[Mn(1 + β)− (δ1 + β)Fn](1− α)

, n ≥ j + 1. (5.7)

Note that
√

an,1an,2 ≤
(1− α)

[Mn(1 + β)− (α + β)Fn]
, n ≥ j + 1. (5.8)

Consequently, we need only to prove that

(1− α)
[Mn(1 + β)− (α + β)Fn]

≤ [Mn(1 + β)− (α + β)Fn](1− δ1)
[Mn(1 + β)− (δ1 + β)Fn](1− α)

, (5.9)

or equivalently

δ1 ≤
[Mn(1 + β)− (α + β)Fn]2 − [Mn(1 + β)− βFn](1− α)2

[Mn(1 + β)− (α + β)Fn]2 − Fn(1− α)2
= ∆(n). (5.10)

Since ∆(n) is an increasing function of n(n ≥ j + 1), letting n = j + 1 in (5.10) we obtain

δ1 ≤ ∆(j + 1) =
[Mj+1(1 + β)− (α + β)Fj+1]2 − [Mj+1(1 + β)− βFj+1](1− α)2

[Mj+1(1 + β)− (α + β)Fj+1]2 − Fj+1(1− α)2
(5.11)

which proves the main assertion of Theorem 5.1. The result is sharp for the functions defined by (2.4).
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Theorem 5.2. Let the function fi(z)(i = 1, 2) defined by (5.1) be in the class TS(λ, α, β, j). If the sequence
{[Mn(1 + β)− (α + β)Fn]} is non-decreasing. Then the function

h(z) = z −
∞∑

n=j+1

(a2
n,1 + a2

n,2)z
n (5.12)

belongs to the class TS(λ, δ2, β, j) where

δ2 =
[Mn(1 + β)− (α + β)Fn]2 − 2[Mn(1 + β)− βFn](1− α)2

[Mn(1 + β)− (α + β)Fn]2 − 2Fn(1− α)2
.

Proof. By virtue of Theorem 2.2, we have for fj(z)(j = 1, 2) ∈ TS(λ, α, β, j) we have

∞∑
n=j+1

[
[Mn(1 + β)− (α + β)Fn]

1− α

]2

a2
n,1 ≤

∞∑
n=j+1

[
[Mn(1 + β)− (α + β)Fn]

1− α
an,1

]2

≤ 1

(5.13)

and
∞∑

n=j+1

[
[Mn(1 + β)− (α + β)Fn]

1− α

]2

a2
n,2 ≤

∞∑
n=j+1

[
[Mn(1 + β)− (α + β)Fn]

1− α
an,2

]2

≤ 1.

(5.14)

It follows from (5.13) and (5.14) that

∞∑
n=j+1

1
2

[
[Mn(1 + β)− (α + β)Fn]

1− α

]2

(a2
n,1 + a2

n,2) ≤ 1. (5.15)

Therefore we need to find the largest δ2, such that

[Mn(1 + β)− (δ2 + β)Fn]
1− δ2

≤ 1
2

[
[Mn(1 + β)− (α + β)Fn]

1− α

]2

, n ≥ j + 1

that is

δ2 ≤
[Mn(1 + β)− (α + β)Fn]2 − 2[Mn(1 + β)− βFn](1− α)2

[Mn(1 + β)− (α + β)Fn]2 − 2Fn(1− α)2
= Ψ(n).

Since Ψ(n) is an increasing function of n, (n ≥ j + 1), we readily have

δ2 ≤ Ψ(j + 1) =
[Mj+1(1 + β)− (α + β)Fj+1]2 − 2[Mj+1(1 + β)− βFj+1](1− α)2

[Mj+1(1 + β)− (α + β)Fj+1]2 − 2Fj+1(1− α)2

which completes the proof.

6 Acknowledgement

The authors are very much thankful to the referee for his/her useful suggestions and comments.

References

[1] H.S. Al-Amiri, On a subckass of close-to-convex functions with negative coefficients, Mathematics,
Tome, 31(1)(54)(1989), 1–7.

[2] R. Bharati, R. Parvatham, and A.Swaminathan, On subclasses of uniformly convex functions and
corresponding class of starlike functions, Tamkang J. Math., 28(1)(1997), 17–32.

[3] B.A. Frasin, On the analytic functions with negative coefficients, Soochow J. Math., 31(3)(2005),
349–359.



26 N. Magesh et al. / Uniformly convex functions ...

[4] B.A. Frasin, Some applications of fractional calculus operators to certain subclass of analytic functions
with negative coefficients, Acta Universitatis Apulensis, 23(2010), 123-132.

[5] A.W. Goodman, On uniformly convex functions, Ann. polon. Math., 56(1991), 87-92.

[6] A.W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl., 155(1991), 364-370.

[7] V.P. Gupta and P.K. Jain, Certain classes univalent analytic functions with negative coefficients II,
Bull. Austral. Math. Soc., 15(1976), 467-473.

[8] W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math., 57(1992), 165-175.

[9] N. Magesh, On certain subclasses of analytic and bi-univalent functions, Preprint.

[10] G. Murugusundaramoorthy and N. Magesh, On certain subclasses of analytic functions associated
with hypergeometric functions, Applied Mathematics Letters, 24(2011), 494-500.

[11] F. Running, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer.
Math. Soc., 118(1993), 189-196.

[12] T. Rosy, Study on subclasses of univalent functions, Thesis, University of Madras, 2002.

[13] S. M. Sarangi and B.A. Uralegaddi, The radius of convexity and starlikeness of certain classes of
analytic functions with negative coefficients I, Atti. Accad. Naz. Lincei rend. Cl. Sci. Fis. Mat. Natur.,
65(8)(1978), 34-42.

[14] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975),
109–116.

[15] H. M. Srivastava, S. Owa and S. K. Chatterjea, A note on certain classes of starlike func- tions, Rend.
Sem. Mat. Univ. Padova, 77(1987), 115–124.

[16] B.A. Stephand and K.G. Subramanian, On a subclass of Noshiro-Type analytic functions with negative
coefficients, Conference Proc. Ramanujan Mathematical Society, 1998.

[17] K.G. Subramanian, T.V. Sudharsan, P. Balasubrahmanyam and H. Silverman, Class of uniformly
starlike functions, Publ. Math. Debercen., 53(4)(1998), 309 - 315.

[18] K.G. Subramanian, G. Murugusundaramoorthy, P. Balasubrahmanyam and H. Silverman, Subclasses
of uniformly convex and uniformly starlike functions, Math. Japonica, 42(3)(1995), 517–522.

Received: October 17, 2012; Accepted: November 30, 2012

UNIVERSITY PRESS


	Introduction
	Coefficient Estimates
	Growth and Distortion Theorem
	Radii of close-to-convexity, Starlikeness and Convexity
	Modified Hadamard Product
	Acknowledgement

