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Abstract. The aim of this work is to study the dynamics of a reaction-diffusion SIR epidemic model with a nonlinear general
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1. Introduction

Reaction-diffusion equations model a variety of physical and biological phenomena. These equations
describe how the concentration or density distributed in space varies under the influence of two processes: local
interactions of species, and diffusion which causes the spread of species in space. In population dynamics,
diffusion terms correspond to a random motion of individuals and reaction terms describe their reproduction.
Recently, reaction-diffusion equations have been used by many authors in epidemiology as well as virology.
Wang and Wang [11] proposed a mathematical model to simulate the hepatitis B virus (HBV) infection with
spatial dependance. They introduced the random mobility of viruses into the basic model proposed by Nowak et
al [7] and they assume that the motion of virus follows a Fickian diffusion, that is to say, the population flux of
the virus is proportional to the concentration gradient and the proportionality constantis taken to be negative.
They also neglected the mobility of susceptible cells and infected cells. Wang et al [12] introduced into [11] an
intracellular time delay between the infection of a cell and the production of new virus particles. They
considered the initial conditions in a one-dimensional interval with Neumann boundary conditions. The authors
neglected the diffusion by assuming that the space is homogeneous in order to establish the global stability of
equilibrium solutions. When the space is inhomogeneous, the effects of diffusion and intracellular time delay
are obtained by computer simulations. Xu and Ma [14] introduced the saturation response response to the model
[12], and obtained sufficient conditions for the global stability of the infected steady rate. In [13], Shaoli et al
proposed a diffused HBV model with CTL immune response and nonlinear incidence for the control of viral
infections. They Showed that the free diffusion of the virus has no effect on the global stability of such HBV
infection problem with Neumann homogeneous boundary conditions. In their work, Yang et al [16] considered
the SIR epidemic model with time delay, nonlinear incidence rate was also presented and studied by Xu and Ma
[15]. They introduced spacial diffusion in these models and assumed that the three diffusion coefficients are
equal in order to prove the existence of traveling waves solutions for the models. They discussed the local
stability of a disease-free steady state and an endemic steady state to these models under homogeneous
Neumann boundary conditions. Hattal et al [6] take account of the term e−µt the probability of surviving from
t− τ to time t in their diffusion model.
Our work is derived from the following SIR epidemic model with a general incidence function described by

Ṡ = B − µ1S − f(S, I),

İ = f(S, I)− (µ2 + γ)I,

Ṙ = γI − µ3R,

(1.1)

where S, I and R are susceptible, infectious, and recovered classes, respectively. B is the recruitment rate of the
population, µ1 is the natural death rate of the population, µ2 is the death rate due to disease, γ is the recovery rate
of the infective individuals. f(S, I) is the rate of transmission.

On the other hand, the spatial content of the environment has been ignored in the model (1.1). However, due
to the large mobility of people within a country or even worldwide, spatially uniform models are not sufficient to
give a realistic picture of disease diffusion. For this reason, the spatial effects cannot be neglected in studying the
spread of epidemics.
This paper is organized as follows. The global existence, positivity and boundedness of solutions is described in
Section 2. In Section 3, we give the Qualitative analysis of the spatial model (2.2) in which we determine the
local and the global stability of the models. In addition, we present the numerical simulation to illustrate our
results in Section 4. Finally, the conclusion of this paper is given in Section 5.
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2. Presentation of the model

We consider the following SIR epidemic model with general incidence function and spatial diffusion:

∂S

∂t
(x, t) = dS∆S(x, t) +B − µ1S(x, t)− f(S(x, t), I(x, t)),

∂I

∂t
(x, t) = dI∆I(x, t) + f(S(x, t), I(x, t))− (µ2 + γ)I(x, t),

∂R

∂t
(x, t) = dR∆R(x, t) + γI(x, t)− µ3R(x, t),

(2.1)

where S(x, t), I(x, t), and R(x, t) represent the numbers of susceptible, infected, and removed individuals at
location x and time t, respectively. The positive constants dS , dI , and dR denote the corresponding diffusion
rates for these three classes of individuals.
The aim of this work is to investigate the global dynamics of the reaction-diffusion system (2.1). Note that R
does not appear in the first two equations; this allows us to study the system

∂S

∂t
(x, t) = dS∆S(x, t) +B − µ1S(x, t)− f(S(x, t), I(x, t)),

∂I

∂t
(x, t) = dI∆I(x, t) + f(S(x, t), I(x, t))− (µ2 + γ)I(x, t),

(2.2)

with homogeneous Neumann boundary conditions

∂S

∂ν
=
∂I

∂ν
= 0, on ∂Ω× (0,+∞), (2.3)

and initial conditions
S(x, 0) = ψ1(x) ≥ 0, I(x, 0) = ψ2(x) ≥ 0, x ∈ Ω̄. (2.4)

Here, Ω is a bounded domain in Rn with smooth boundary ∂Ω.
∂S

∂ν
and

∂S

∂ν
are , respectively, the normal

derivatives of S and I on ∂Ω.

Remark 2.1. The Neumann condition is used to ensure the mobility of people in bounded domain Ω.

Let us put
f(S, I) = g(S, I)I

The incidence function f(S, I) is assumed to be continuously differentiable in the interior of R2
+ and satisfies

the following hypotheses:

H1: f(0, I) = f(S, 0) = 0 for all S ≥ 0 I ≥ 0.

H2:
∂f

∂S
(S, I) > 0 for all S > 0 and I > 0.

H3:
∂f

∂I
(S, I) > 0 for all S > 0 and I > 0.

H4: f(S, I) ≥ f2(S0, 0)I for all S > 0 and I > 0.

Let us denote by f1 and f2 the partial derivatives of f with respect to the first and to the second variable.
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3. Global existence, positivity and boundedness of solutions

n this section, we establish the global existence, positivity, and boundedness of solutions of problem (2.2)-(2.4).
Hence, the population should remain nonnegative and bounded.

Proposition 3.1. For any given data satisfying the condition (2.4), there exists a unique solution of problem
(2.2)-(2.4) defined on [0,+∞[ and this solution remains nonnegative and bounded for all t ≥ 0.

Proof. The system (2.2)-(2.4) can be written abstractly in the Banach space X = C(Ω̄)× C(Ω) of the form:

u′(t) = Au(t) +G(u(t))

u(0) = u0 ∈ X, (3.1)

where u =

(
S

I

)
, u0 =

(
ψ1

ψ2

)
, Au(t) =

(
dS∆S

dI∆I

)
and

G(u(t)) =

(
B − µ1S − f(S, I)

f(S, I)− (µ2 + γ)I

)
=

(
G1

G2

)
. (3.2)

G is locally Lipchitz in X . From [8], we deduce that system (3.1) admits a unique local solution on [0, Tmax],
where Tmax is the maximal existence time for solution of system (3.1).
In addition, system (2.2) can be written in the form:

∂S

∂t
− dS∆S = G1(S, I) (3.3)

∂I

∂t
− dI∆I = G2(S, I).

The functions G1(S, I) and G2(S, I) are continuously differentiable and satisfy G1(0, I) = B ≥ 0 and
G2(S, 0) = f(S, 0) ≥ 0 for all S, I ≥ 0. Since initial data of system (2.2) are nonnegatives, we deduce the
positivity of the local solution (see [10]).
Now, we show the boundedness of solutions. So from (2.2)-(2.4) we have

∂S

∂t
− dS∆S ≤ B − µ1S,

∂S

∂ν
= 0, (3.4)

S(x, 0) = ψ1(x) ≤ ‖ψ1‖∞ = max
x∈Ω̄

ψ1(x).

By the comparison principle [9], we have S(x, t) ≤ S1(t),

where S1(t) = ψ1(x)e−µ1t +
B

µ1
(1− e−µ1t) is the solution of the problem

dS1

dt
= B − µ1S1,

S1(0) = ‖ψ‖∞. (3.5)

Since S1(t) ≤ max{ B
µ1
, ‖ψ1‖∞} for t ∈ [0,∞), we have that

S(x, t) ≤ max{ B
µ1
, ‖ψ1‖∞},∀(x, t) ∈ Ω̄× [0, Tmax). (3.6)
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From Theorem 2.1 given by Alikakos in [1], to establish the L∞ uniform boundedness of I(x, t), it is sufficient
to show the L1 uniform boundedness of I(x, t).
Since

∂S

∂ν
=
∂I

∂ν
= 0

and
∂

∂t
(S + I)−∆(dSS + dII) ≤ B − µ1(S + I),

we get

∂

∂t

(∫
Ω

(S + I)dx

)
≤ mes(Ω)B − µ1

(∫
Ω

(S + I)dx

)
. (3.7)

Hence, ∫
Ω

(S + I)dx ≤ mes(Ω) max{ B
µ1
, ‖ψ1 + ψ2‖∞}, (3.8)

which implies that

sup
t≥0

∫
Ω

I(x, t)dx ≤ K = mes(Ω) max{ B
µ1
, ‖ψ1 + ψ2‖∞}.

Using the Theorem 3.1 of [1], we deduce that there exists a positive constant K∗ that depends on K and ‖ψ1 +

ψ2‖∞ such that

sup ‖I(., t)‖∞ ≤ K∗. (3.9)

From the above, we have proved that S(x, t) and I(x, t) are L∞ bounded on Ω̄× [0, Tmax).
Therefore, it follows from the standard theory for semilinear parabolic systems(see [4]) that Tmax = +∞. This
completes the proof of the proposition. �

4. Qualitative analysis of the spacial model

Considering (1.1), we get that the basic reproduction number of disease in the absence of spatial dependence is
given by

R0 =
f2(S0, 0)

µ2 + γ
. (4.1)

This describes the average number of secondary infections produced by a single infectious individual during the
entire infectious period. It is not hard to show that the system (2.2) is always a disease-free equlibrium of the

form E0 = (
B

µ1
, 0) when R0 ≤ 1. Further, if R0 > 1, the system (2.2) has an endemic stationary state

E∗ = (S∗, I∗).

4.1. Local stability of the equilibria

The purpose of this part is to determine the local stability for reaction-diffusion equations (2.2)-(2.4) by applying
the method of Hattaf presented in [5].
First, we linearize the dynamical system (2.2) around arbitrary spatially homogeneous fixed point Ē(S̄, Ī) for a
small space and time dependent fluctuations and expand them in Fourier space. For this, let

S(−→x , t) ∼ S̄eλtei
−→
k .−→x ,

I(−→x , t) ∼ Īeλtei
−→
k .−→x , (4.2)
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where −→x = (x, y) ∈ R2 and
−→
k .
−→
k :=<

−→
k ,
−→
k >:= k2.

−→
k and λ are the wavenumber vector and frequency,

respectively. Then, we can obtain the corresponding characteristic equation as follows:

det(J − k2D − λI2) = 0, (4.3)

where I2 is the identity matrix, D = diag(dS , dI) is the diffusion matrix, and J is the Jacobian matrix of (2.2)
without diffusion (dS = dI = 0) at Ē which is given by

J =

(
−µ1 − f1(S̄, Ī) −f2(S̄, Ī)

f1(S̄, Ī) f2(S̄, Ī)− (µ2 + γ)

)
(4.4)

The characterization of the local stability of disease-free equilibrium E0 is given by the following result.

Theorem 4.1. The disease-free equilibrium E0 is locally asymptotically stable if R0 ≤ 1 and it is unstable if
R0 > 1.

Proof. Evaluating (4.3) at E0, we have the following equation,

(−µ1 − f1(S0, 0)− k2dS − λ)(f2(S0, 0)− (µ2 + γ)− k2dI − λ)

+f1(S0, 0)f2(S0, 0) = 0. (4.5)

By developping (4.5), we get

λ2+(µ1 + f1(S0, 0)− f2(S0, 0) + µ2 + γ + k2dS + k2dI)λ− µ1f2(S0, 0)

+µ1(µ2 + γ) + f1(S0, 0)(µ2 + γ) + µ1k
2dI + f1(S0, 0)k2dI + k4dIdS

+k2dS(µ2 + γ − f2(S0, 0)) = 0. (4.6)

Since R0 ≤ 1, we obtain
−f2(S0, 0) + µ2 + γ > 0.

Therefore, by the Routh-Hurwitz criterion all the roots of equation (4.5) have a negative real parts. This shows
that equilibrium E0 is locally asymptotically stable.
�

Next, we focus on the local stability of the endemic equilibrium E∗.

Theorem 4.2. The endemic equilibrium E∗ is locally asymptotically stable if R0 > 1.

Proof. Evaluating (4.3) at E∗(S∗, I∗), we get

λ2+(µ1 + f1(S∗, I∗)− f2(S∗, I∗) + µ2 + γ + k2dS + k2dI)λ− µ1f2(S∗, I∗)

+µ1(µ2 + γ) + f1(S∗, I∗)(µ2 + γ) + µ1k
2dI + f1(S∗, I∗)k2dI + k4dIdS

+k2dS(µ2 + γ − f2(S∗, I∗)) = 0. (4.7)

By using H3, we conclude that E∗ is locally asymptotically stable. �

4.2. Global stability of the equilibria

The purpose of this subsection is to determine the global stability for reaction-diffusion equations (2.2)-(2.4) by
constructing Lyapunov functionals proposed in [2] and applying the method of Hattaf presented in [3].

Theorem 4.3. If R0 ≤ 1, the disease-free equilibrium E0 of (2.2)-(2.4) is globally asymptotically stable for all
diffusion coefficients.
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We define

g(S, I) =
f(S, I)

I
.

Proof. Consider the following Lyapunov functional

V1(t) = S(t)− S0 −
∫ S(t)

S0

g(S0, 0)

g(X, 0)
dX + I,

where S0 =
B

µ1
. Calculating the time derivative of V along the positive solution of system (1.1), we get

V̇1(t) = (1− g(S0, 0)

g(S, 0)
)Ṡ + İ

= (1− g(S0, 0)

g(S, 0)
)(B − µ1S) +

g(S0, 0)

g(S, 0)
)f(S, I)− (µ2 + γ)I

= µ1S
0(1− g(S0, 0)

g(S, 0)
)(1− S

S0
) + (µ2 + γ)I

(
g(S0, 0)

g(S, 0)
g(S, I)

1

f2(S0, 0)
R0 − 1

)
.

By using g(S, I) =
f(S, I)

I
which implies g(S0, 0) = f2(S0, 0), so we have

V̇1(t) ≤ µ1S
0(1− g(S0, 0)

g(S, 0)
)(1− S

S0
) + (µ2 + γ)I

(
g(S, I)

g(S, 0)
R0 − 1

)
.

By H4, we get

V̇1(t) ≤ µ1S
0(1− g(S0, 0)

g(S, 0)
)(1− S

S0
) + (µ2 + γ)I(R0 − 1).

By using H2 we obtain the following inequalities

1− g(S0, 0)

g(S, 0)
≥ 0 for S ≥ S0,

1− g(S0, 0)

g(S, 0)
< 0 for S < S0.

Thus, we have

(1− S

S0
)(1− g(S0, 0)

g(S, 0)
) ≤ 0,

then,
dV1

dt
≤ 0

Now, From [3], we construct the Lyapunov functional for system (2.2) at E0 as follows

W1 =

∫
Ω

V1(S(x, t), I(x, t))dx
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Calculating the time derivative of W1 along the solution of system (2.2)-(2.4), we have

dW1

dt
=

∫
Ω

{
µ1S

0(1− g(S0, 0)

g(S, 0)
)(1− S

S0
) (4.8)

+ (µ2 + γ)I

(
g(S0, 0)

g(S, 0)

f(S, I)

I

1

f2(S0, 0)
R0 − 1

)}
dx

− dSg(S0, 0)

∫
Ω

g1(S, 0)

(g(S, 0))2
| ∇S |2 dx

≤
∫

Ω

{
µ1S

0(1− g(S0, 0)

g(S, 0)
)(1− S

S0
) + (µ2 + γ)I(R0 − 1)

}
dx

− dSg(S0, 0)

∫
Ω

g1(S, 0)

(g(S, 0))2
| ∇S |2 dx.

Since R0 ≤ 1, we have
dW1

dt
≤ 0.

Thus, the disease-free equilibrium E0 is stable, and

dW1

dt
= 0,

if and only if S = S0 and I(R0 − 1) = 0. �

Theorem 4.4. If R0 > 1, the endemic equilibrium E∗ of (2.2)-(2.4) is globally asymptotically stable for all
diffusion coefficients.

Proof. Consider the following Lyapunov functional

V2(t) = S(t)− S∗ −
∫ S(t)

S∗

g(S∗, I∗)

g(X, I∗)
dX + I∗Φ(

I(t)

I∗
),

where Φ(x) = x − 1 − lnx, x ∈ R∗+. Obviously, Φ : R∗+ −→ R+ attains its global minimum at x = 1 and
Φ(1) = 0.

The function ψ : x 7−→ x − x∗ −
∫ x

x∗

g(x∗, I∗)

g(X, I∗)
dX has the global minimum at x = x∗ and ψ(x∗) = 0. Then,

ψ(x) ≥ 0 for any x > 0.

Hence, V2(t) ≥ 0 with equality holding if and only if
S(t)

S∗
=
I(t)

I∗
= 1 for all t ≥ 0.

Finding the time derivative of V2(t) along the positive of system (2.1) gives

dV2

dt
= (1− g(S∗, I∗)

g(S, I∗)
)Ṡ + (1− I∗

I
)İ

= (1− g(S∗, I∗)

g(S, I∗)
)(B − µ1S − f(S, I)) + (1− I∗

I
)(f(S, I)− (µ2 + γ)I)

Note that B = µ1S
∗ + f(S∗, I∗) and f(S∗, I∗) = (µ2 + γ)I∗.
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Hence;

dV2

dt
= µ1S

∗(1− g(S∗, I∗)

g(S, I∗)
)(1− S

S∗
)

+ f(S∗, I∗)

[
(1− f(S∗, I∗)

f(S, I∗)
)((1− f(S, I)

f(S∗, I∗)
) + (1− I∗

I
)(

f(S, I)

f(S∗, I∗)
− I

I∗
)

]
= µ1S

∗(1− S

S∗
)(1− g(S∗, I∗)

g(S, I∗)
) + f(S∗, I∗)

[
2− g(S∗, I∗)

g(S, I∗)
+

I

I∗
g(S, I)

g(S, I∗)

− I

I∗
− g(S, I)

g(S∗, I∗)

]
= µ1S

∗(1− S

S∗
)(1− g(S∗, I∗)

g(S, I∗)
) + f(S∗, I∗)

[
3− g(S∗, I∗)

g(S, I∗)
− g(S, I)

g(S∗, I∗)

− g(S, I∗)

g(S, I)
+

(
I

I∗
× g(S, I)

g(S, I∗)
− I

I∗
− 1 +

g(S, I∗)

g(S, I)

)]

By adding and substracting ln
g(S∗, I∗)

g(S, I∗)
+ ln

g(S, I)

g(S∗, I∗)
+ ln

g(S, I∗)

g(S, I)
,

we get,

dV2

dt
= µ1S

∗(1− S

S∗
)(1− g(S∗, I∗)

g(S, I∗)
)

+ f(S∗, I∗)

[
− Φ

(
g(S∗, I∗)

g(S, I∗)

)
− Φ

(
g(S, I)

g(S∗, I∗)

)
− Φ

(
g(S, I∗)

g(S, I)

)
+

(
I

I∗
× g(S, I)

g(S, I∗)
− I

I∗
− 1 +

g(S, I∗)

g(S, I)

)]
= µ1S

∗(1− S

S∗
)(1− g(S∗, I∗)

g(S, I∗)
)

+ f(S∗, I∗)

[
− Φ

(
g(S∗, I∗)

g(S, I∗)

)
− Φ

(
g(S, I)

g(S∗, I∗)

)
− Φ

(
g(S, I∗)

g(S, I)

)
+

1

I∗g(S, I∗)g(S, I)

(
g(S, I)− g(S, I∗)

)(
g(S, I)I − g(S, I∗)I∗

)]
By using H2, we have the following trivial inequalities

1− g(S∗, I∗)

g(S, I∗)
≥ 0 for S ≥ S∗,

1− g(S∗, I∗)

g(S, I∗)
< 0 for S < S∗.

Thus, we have

(1− S

S∗
)(1− g(S∗, I∗)

g(S, I∗)
) ≤ 0

By using H4, we have g(S, I) is monotonically decreasing for I and by H3 g(S, I)I is monotocally increasing
for I , and so (

g(S, I)− g(S, I∗)

)(
g(S, I)I − g(S, I∗)I∗

)
≤ 0.

On the other hand, the function Φ is always positive.
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Now, we construct the Lyapunov functional for system (2.2) at E∗ as follows

W2 =

∫
Ω

V2(S(x, t), I(x, t))dx

Calculating the time derivative of W2 along the solution of system (2.2)-(2.4), we have

dW2

dt
=

∫
Ω

{
µ1S

∗(1− S

S∗
)(1− g(S∗, I∗)

g(S, I∗)
)

+ f(S∗, I∗)

[
− Φ

(
g(S∗, I∗)

g(S, I∗)

)
− Φ

(
g(S, I)

g(S∗, I∗)

)
− Φ

(
g(S, I∗)

g(S, I)

)
+

1

I∗g(S, I∗)g(S, I)

(
g(S, I)− g(S, I∗)

)(
g(S, I)I − g(S, I∗)I∗

)]}
dx

− dSg(S∗, I∗)

∫
Ω

g1(S, I∗)

(g(S, I∗))2
|∇S|2dx

Since the function Φ is monotone on each side of 1 and is minimized at 1 and(
g(S, I)− g(S, I∗)

)(
g(S, I)I − g(S, I∗)I∗

)
≤ 0,

then
dW2

dt
≤ 0.

Thus, the endemic equilibrium E∗ is globally asymptotically stable. �

5. Numerical simulations

In this section, we present the numerical simulations to illustrate our theoretical results. To simplify, we consider
system (2.2) under Neumann boundary conditions.

∂S

∂ν
=
∂I

∂ν
= 0, t > 0, x = 0, 1, (5.1)

and initial conditions

S(x, 0) =


1.1x, 0 ≤ x < 0.5,

1.1(1− x), 0, 5 ≤ x ≤ 1,

I(x, 0) =


0.5x, 0 ≤ x < 0.5,

0.5(1− x), 0, 5 ≤ x ≤ 1,

(5.2)

We choose the following data set of system (2.2): dS = 0.1, γ = 0.5, µ1 = 0.1, β = 0.2, dI = 0.1, µ2 =

0.6, B = 0.5. By calculation, we have R0 < 1. In this case, system (2.2) has a disease-free equilibrium E0.
Hence, by Theorem 3.3, E0 is globally asymptotically stable. Numerical simulation illustrates our result (see
Figure 1).
In Figure 2, we choose β = 0.8 and do not change the other parameters values. By calculation, we have R0 > 1

which satisfy Theorem 3.4; the system (2.2) has a unique endemic equilibrium E∗. Therefore, by Theorem 3.3,
E∗ is globally assymtotically stable. Numerical simulation illustrates well this result (see Figure 2).
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Figure 1: The temporal solution found by numerical of problem (2.2) with the Neumann boundary conditions (5.1) and initial conditions (5.2)
when R0 ≤ 1.

Figure 2: The temporal solution found by numerical of problem (2.2) with the Neumann boundary conditions (5.1) and initial conditions (5.2)
when R0 > 1.

6. Conclusion

In this paper, we investigated the dynamics of a reaction-diffusion epidemic model with general incidence
function. The global dynamics of the model are completely determined by the basic reproduction number R0.
We proved that the disease-free equilibrium is globally asymptotically stable if R0 ≤ 1, which leads to the
eradication of disease from population. When R0 > 1 then disease-free equilibrium becomes unstable and a
unique endemic equilibrium exists and is globally asymptotically stable, which means that the disease persists in
the population.
From our theoretical and numerical results, we conclude that the spatial diffusion has no effect on the stability
behavior of equilibria in the case of Neumann conditions and spatially constant coefficients.
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