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Abstract

In this paper we study the existence, uniqueness and continuous dependence of solutions of nonlinear
Volterra-Fredholm functional integrodifferential equations with nonlocal condition in Banach space by using the
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1 Introduction

Let X be a Banach space with the norm || - ||. Let C = C([-7,0], X), 0 <r < oo, be the Banach space of
all continuous functions z : [-r,0] — X with the supremum norm

2] = sup{ll=(®)[| : = <t < 0}
We denote the Banach space of all continuous functions y : [—r,T] — X with the supremum norm
loll,, = sup{lly ()] : = < ¢ < T}

by B = C([—r, T, X). For any y € B and t € [0,T] we denote by y; the element of C' = C’([—r, 0], X) given
by y:(0) = y(t + 0) for 6 € [—r,0]. Consider the nonlinear Volterra-Fredholm functional integrodifferential
equations with nonlocal condition of the type

(1) + Az(t) :f(t,xt,/Ota(t,s)h(s,xs)ds,/OTb(t,s)k(s,xs)ds), te 0,7, (1.1)

2(t) + (9(ey, s 2,)) (1) = 6(1), t € [-7,0], (1.2)

and
%[m(t) —w(t,x)] + Az(t) = f(t,:rt,/o a(t,s)h(s,xs)d&/o b(t7s)k(s,xs)ds>, t € 0,17, (1.3)
x(t) + (g(xtl,...,xtp))(t) =¢(t), te[-r0], (1.4)
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where 0<t1 < ...<t, <T,peN, f:[0,T|xCxXxX — X, a,b:[0,T]x[0,T] - R, w,h,k:[0,T]xC —
X are continuous functions, g : CP — C is given, ¢ is a given element of C'. —A is the infinitesimal generator
of a compact analytic semigroup of uniformly bounded linear operators T'(¢) in X.

The study of Cauchy problems with nonlocal conditions is of great significance. It has many applications in
physics and other areas of applied mathematics. Q.Dong et al [14] studied the existence of the nonlocal neutral
functional differential and integrodifferential equations of the form

Sl(0) = gt 2(0), 2] = Axle) + f(t,2(0),), ¢ € (0,8,
o = ¢+ h(x)
and
%[m(t) —g(t,z(t),x:)] = Azx(t) +/O K(t,s)f(s,x(s),xs), t € 10,0,

zo = ¢+ h(z)

using the Hausdorff’s measure of noncompactness. Many authors have investigated the existence, uniqueness
and other properties of solutions of the nonlocal Cauchy problems for functional differential equations with
delay, see [3, [6l [7, [§] and the references cited therein. Balachandran and Park in [3] established existence,
continuous dependence and controllabilty for the functional integrodifferential equation with nonlocal condition
of the form

du(t)

5 + Au(t) = f(t,ut,/o k(t,T,uT)dT), t €10,al,

u(s) + (g(uty, - u,)) (s) = (s), s € [-r,0],

using the Banach fixed point principle. In the present paper we prove the existence, uniqueness, continuous
dependence and controllabilty of the mild solutions of the more general nonlocal problems — and
— using the Hausdorff’s measure of noncompactness and the Darbo-Sadovskii’s fixed point theorem.

The paper is organised as follows. In section 2 we present the preliminaries. Section 3 deals with the
existence of mild solutions of the nonlocal problems — and —. In section 4 we establish
sufficient conditions for the continuous dependence and uniqueness of mild solutions of the nonlocal problems.
In section 5 an application is provided to illustrate the theory.

2 Preliminaries

We setforth some preliminaries from [4] [12] and hypotheses that will be used in our further discussions.
The functions a, b being continuous on compact domains, there are constants A and g such that

la(t, s)| < X and |b(t, s)| < p, for s,t € [0,T]. (2.1)

Since the operator —A is the infinitesimal generator of a compact analytic semigroup of uniformly bounded
linear operators T'(t) in X we have ||T'(¢)|| < U where U > 1. Let 0 € p(A). It is now possible to define the
fractional power A%, 0 < o < 1 as a closed linear operator on its domain D(A%). Further, D(A®) is dense in
X and the expression x|, = ||A%z|| defines a norm on D(A%). If X, is the space D(A%) endowed with the
norm || - ||o then X, is a Banach space and therefore the following Lemma 2.1 obviously holds.

Lemma 2.1. [77] Let 0 < a < 3 < 1. Then the following properties hold:
(1) X3 is a Banach space and Xg — X, is continuous.

(2) The function s — (A)*T(s) is continuous in the uniform operator topology on (0,00) and there exists a

positive constant C,, such that ||A*T(t)]| < %“ for every t > 0.

Definition 2.2. The Hausdorff’s measure of noncompactness x, is defined by x, (S) = inf{r >0, S
can be covered by finite number of balls with radii r} for bounded set S in any Banach space Y.
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Lemma 2.3. [J] Let Y be a real Banach space and B,C C'Y be bounded, then the following properties are
satisfied:

(1) B is precompact if and only if x, (B) = 0;

(2) X, (B)=x, (B) = x, (convB) where B and convB mean the closure and convex hull of B respectively;
(3) %y (B) < x, (C) when B C C;

(4) xy (B+C) < x,(B)+ x,(C) where B+C ={x+y;x € B,y € C};

(5) %y (BUC) < max {x, (B), x» (C)};

(6) Xy (AB) = A x,. (B) for any A € R;

(7) If the map Q : D(Q) CY — Z is Lipschitz continuous with constant k then x,(Q(B)) < kx, (B) for any
bounded set B C D(Q), where Z is a Banach space;

(8) x,(B) = inf{dy(B,C);C CY be precompact}y = inf{dy (B,C);C C Y be finite valued}, where dy (B,C)
means the nonsymmetric (or symmetric) Hausdorff distance between B and C in'Y;

(9) If {W,}22, is a decreasing sequence of bounded, closed nonempty subsets of Y and ngrfwxy (W,) =0,

then N> W,, is nonempty and compact in 'Y .

Definition 2.4. The map Q : W C Y — Y is said to be a x, -contraction if there exists a positive constant
k <1 such that x, (Q(S)) < kx, (S) for any bounded closed subset S C W where Y is a Banach space.

The following lemma known as Darbo-Sadovskii fixed point theorem given in [4] plays a crucial role in our
subsequent discussions.

Lemma 2.5. [J] If W C Y s bounded, closed and convex, the continuous map Q : W — W is a x, —
contraction, then the map @ has atleast one fixed point in W.

In this paper we use the notations y and x, to denote the Hausdorff’s measure of noncompactness of the
Banach space X and that of the Banach space B = C' ([—r, T, X ) respectively.

Lemma 2.6. [JJ] If W C C([a,b], X) is bounded, then

X(W(t) < xc(W)

for allt € [a,b], where W(t) = {u(t);u € W} C X. Furthermore if W is equicontinuous on [a,b], then x(W (t))
is continuous on [a,b] and

Xe(W) = sup {x(W(?)),t € [a, b]}.
Lemma 2.7. [JJ] If W C C([a,b]; X) is bounded and equicontinuous, then x(W(s)) is continuous and

A / W (s)ds) < / (W ()ds

for allt € [a,b], wheref W(s ds—{f s)ds:xz € W}.

Definition 2.8. The Cy semigroup T(t) is said to be equicontinuous if t — {T(t)x : x € S} is equicontinuous
fort >0 for all bounded set S in X.

We know that the analytic semigroup is equicontinuous. The following lemma is obivious.

Lemma 2.9. If the semigroup T'(t) is equicontinuous andn € L(0,b; RT), then the set { fot T(t—s)u(s)ds, ||u(s)]| <
n(s) for a.e.s € [0,b]} is equicontinuous for t € [0, ).

Definition 2.10. Let —A is the infinitesimal generator of a strongly continuous semigroup of bounded linear
operators T(t) in X. A function x € C([—r, T],X) is said to be a mild solution of the nonlocal problem

— if it satisfies the following:

+/O T(t—s)f(s,xs7/0 (l(S,T)h(T,{ET)dT7/O b(s, T)k(T, xT)dT)ds,te [0,T) (2.2)
(1) x(t) + (9(zey, o, we,)) () = G(t), t € [-7,0]. (2.3)
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Definition 2.11. Let —A is the infinitesimal generator of a strongly continuous semigroup of bounded linear
operators T(t) in X. A function x € C’([fr7 T},X) is said to be a mild solution of the nonlocal problem(|1.3))-
(1.4) if for each t € [0,T], the function AT(t — s)w(s,xs), s € [0,t) is integrable and satisfies the following:

(1) a(t) = T(t)[$(0) = (9(1,, s 2,)) (0) — w(0, zo)]
+w(t,z) + /0 AT(t — s)w(s,zs)ds
t s T
—|—/0 T(t— s)f(s,xs,/o a(s, T)h(r, mT)dT,/O b(s, )k(T, J}-,—)dT) ds,t €[0,T] (2.4)
(i6) (t) + (g(@ey, ..o 2e,)) (£) = @(t), t € [—r,0] (2.5)

We shall make use of the following hypotheses to prove our main results :

(H1) There exists a continuous function [ : [0,7] — R4 = [0, c0) such that

£t )| < 1) (Ielle + el + lyl)

for every t € [0,T],¢ € C andz,y € X.

(Hz) There exists a continuous function p : [0,7] — R4 such that

[n(t, )| < ) H(II]c)

for every t € [0,7T],9 € C where H : Ry — (0,00) is a continuous nondecreasing function.

(H3) There exists a continuous function ¢ : [0,7] — R such that

£ 0)]| < a(t) K ([¢llc)

for every t € [0,T],% € C where K : Ry — (0,00) is a continuous nondecreasing function.

(Hy) For each t € [0,T] the function f(¢,.,.,.) : Cx X x X — X is continuous and for each (¢, z,y) € Cx X x X
the function f(.,%,z,y) : [0,T] — X is strongly measurable.

(Hs) For each t € [0,7] the functions h(t,.),k(¢,.) : C — X are continuous and for each ¢ € C' the func-
tions A(., 1), k(.,¢) : [0,T] — X are strongly measurable.

(Hg) There exists a constant p > 0 such that

(9t v,)) (5) = (90005 0,)) )| < [ =l

for u,v € B, s € [-r,0].
(H7) There exist constant G such that
G:I?}leaé(ng(ytm'"aytp)na (26)

(Hg) There exists 0 < 3 < 1 such that w is X3—valued, APw(-) is continuous and there exist positive constants
c1,co and V such that

[A%w(t, )| < crllwll + c2, (2.7
”Aﬁ [U}(t, 1/}1) - w(tv %ﬂ || < VH#& - 1/)2 ”C

[\
oo
=

for t € [0,T] and 9, %, ,%, € C.
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(Hy) Uy + UM*T{l + M*T {hmmf <H(m> + K“’”)] } <1

where T " :
B
U, = {[U—i—l]HA_ﬁH +01_BZ}CI (29)
M* =sup{M(t), t €[0,T7]} and (2.10)
M (t) = max {l(t), A\p(t), pq(t)} for eacht € [0, 7. (2.11)

m— o0 m m

(H1o) UM*T{I + M*T {liminf (HW + K“"))]} <1

(Hi11) There exists integrable functions n,m,,n, : [0,7] — [0,00) such that for any bounded set W C
C([-r,T], X) and s € [0,T] we have

X(T(t —5) f(s, W, /5 a(s, T)h(T, W, )dr, /T b(s, 7)k(T, WT)dT))

0 0
< n(s) (—52£)<0X(W(5 + 9)) + /05 |a(s, T)| 7, (T)_f3£)<ox(W(T + 9))d7’

—l—/o ’b(s,r)‘nz(r) sup X(W(T+9))d7)

—r<6<0
3 Existence of mild solutions

Theorem 3.1. Suppose that the hypotheses (Hy)-(Hz), (Hio) and (Hyi1) holds. Then the nonlocal problem
(1.1)-(L.2) has a mild solution x on [—r,T] if

T s T
{Up+/0 n(s) [1+/0 Am(T)dT+/O pn, (r)dr]ds} < 1. (3.1)

Theorem 3.2. Suppose that the hypotheses (Hy)-(Hg) and (Hy1) holds. Then the nonlocal problem (1.3))-(1.4)
has a mild solution x on [—r,T] if

{,01 —|—/0 n(s) [1 + /OS)\nl (T)dT+/O Mn2(T)dT]dS} <1 (3.2)

where the constant term 5
T
P, :{Up—i—VHA‘ﬂH(U—i—l)—i—VCl_g 6}' (3.3)

Proof. The proofs of the Theorems 3.1 - 3.2 resemble one another. Therefore, we give the details of Theorem
3.2 only and the proof of Theorem 3.1 can be completed by closely looking at the proof of the Theorem 3.2
with slight modifications.

We prove the existence of mild solution of nonlinear mixed integrodifferential equations —, by using the
Darbo-Sadovskii fixed point theorem and the Hausdorff’s measure of noncompactness. Consider the bounded
set By, = {y € B : ||ly|| < m} for each m € N (the set of all positive integers).

Define an operator F': B = C([fr, T, X) — Bby F=F, + F;

o(t) = (g(zey, oy ze,)) (2), —r<t<0

EDO = 70 [600) - (gl oo 21,)) (0) — w(0, 20)] (3.4)
tw(t,ar) + Jy AT( = s)w(s, z,)ds 0<t<T
0, —r<t<0

(Frx)(t) = [Tt~ s) f(sx I3 a(s,7)h(1, 2, )dr, (3.5)
I (s, T)k(T, :ET)dT) ds 0<t<T
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Using lemma 2.1, hypothesis (Hg) and the fact that ||zs]|c < ||z||s for s € (0,¢) and = € B,, we have,

|AT(t — s)w(s, zs)|| = HAl_ﬁT(t - s)Aﬁw(s,xs)H

Ci-

< ggrs@ledo+e)
Ci-

< ﬁ(mﬂz\w +c2)
Ci-

< Goaplamta)

Using this and the fact that the function s — AT (¢t — s) is continuous in the uniform operator topology on
(0,t) we conclude that AT(t — s)w(s,xs) is integrable on (0,t) for every t € (0,T] and = € B,,. Therefore F
is well-defined and with values in B.

From the definition of F it follows that the fixed point of F' is the mild solution of the nonlocal problem
(1.3)-(1.4). We first show that F': B — B is continuous. Let {u,} be a sequence of elements of B converging
to u in B. Consider the case when t € [—r,0], then using hypothesis (Hg) we have

[(Fun) () = (Fu)(®)|| = [|¢() = (9(uny, s n,, ) () = D) + (g(ut, s s ur,)) (1) |
= H(g(utl, ...,utp))(t) — (g(unt1 , ...,ump))(t)H

§pHu—unH—>O as n — oo. (3.6)

Now let ¢ € [0,T] then using hypotheses (Hy4) and (Hs) we have

f(t,um,/Ota(t,s)h(s,uns)ds,/OT b(t,s)k(s,uns)>
- f(t,ut,/ota(t,s)h(s,us)ds,/OT b(t,s)k(s,us)>.

Using the dominated convergence theorem, hypotheses (Hg), (Hg) and lemma 2.1 we have for ¢ € (0,77,

[|(Fun)(t) — (Fu)(t)]]
= |T®)[¢(0)] = T(®)[(9(uny, - tun,,)) (0)] = T(t) [w(0, wn,)]

¢
+w(t, un,) + / AT (t — s)w(s, up,)ds
0

t s T
+ /0 Tt—s)f <5, uns,/o a(s, 7)h(T, unT)dT’/o b(s, 7)k(T, unf)dT) ds
=T [60)] + T(O) (9, s ,)) O)] + T(E) (0, u0)]

—w(t,u) — /0 AT(t — s)w(s,us)ds

_ /O (- s)f<s,us, /O " a(s, 7, ur ), /0 s, (r w)ch)dsH

= HT(t)[(g(ut17 ...7utp))(0) — (g(unt1 , ...7untp))(0)]

+T(t) [w(O7 ug) — w(0, uno)] + w(t, un, ) — w(t, ut)

+ | ATt — s)[w(s, up,) — w(s, u,)]ds

t
+

/O T
/ T(t—s) {f <s,uns,/0S a(s, T)h(T, ’U,n_,_)dT,/O b(s, 7)k(T,up.)dr)

0

- f(s,us,/os a(s, T)h(r,u.)dr, /OT b(s, )k(T, uT)dT>:|d5||
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8
< VAU 0 = v+ s = ) +V o i =l 5
t s T
U - Un y Ungy ahanfdv bakanfd
+ [p”u u||+/0||f(su /0(1(87') (r,u )7'/0 (s, 7)k(T,u )7')
s T
- f(s,us,/ a(s,)h(r, u-,—)dT,/ b(s, 7)k(T, uT)dT)Hds} } —0asn — oo. (3.7
0 0

Since|| (Fuy,) — (Fu)”B = te?EpT] | (Fun)(t) — (Fu)(t)||, inequalities and imply Fu, — Fu in B as

U, — u in B. Therefore F' is continuous.

We shall show that F is a ), — contraction on some bounded closed convex subset B, C B = (C[-r,T], X).
And then by using Darbo-Sadovskii’s fixed point theorem we get a fixed point of F'.

Firstly by using the method of contradiction we obtain a m € N such that Fp_ C B,,. Suppose that for
each m € N there is a y™ € By, and t™ € [—r,T] such that ||[(Fy™)(t™)| > m. If t™ € [—r,0] then using
hypothesis (H7) we obtain

m < [|(Fy™) ™) < ™) + [ (9wi, - wi)) )]
<c+G. (3.8)

where ¢ denotes ||¢||c. Also we know that if ||y™||p < m then

ly*lc < m for all ¢t € [0,T] (3.9)

Using hypotheses (Hy) — (Hs) and conditions (2.1), (2.6), (2.7), (2.11),(2.10) and (3.9) for the case when

t™ € [0,T] we obtain

m < [[(Fy™)(E™)]|
< Ul + [t st O] + [T 0,45 |

m

el + [ 1ATEm = syt s
t™ s T

—|—/ U||f<s,y;",/ a(s,T)h(T,y’T")dT,/ b(S,T)k‘(T,y:n)dT)HdS
0 0 0

< |JAP T(™) A% w(0, ) | + A~ 47 wie, )|

tm
[ AT A% ds + U [c—l—G
0

+f I (s, [ atscrmte g, [ b, b e ) s

< U ||A7|| (exm + e2) + || A7 || (exm + c2)

+C1_g (e1m + ¢2) /Otm (tm — s lds + U [c +G+ /Otm I(s)

(Hygnuc +/OS la(s, )] A, y;n)yydr+/0T 1b(s, )| Hk(T,yT)HdT)ds}
(t’g)ﬁ
+ /O () (m + /0 " M(r)H (m)dr + /O ' M(T)K(m)dr) ds}

< [U + 1] ||A_B H (erm 4 c2) + Ci_g (carm + ¢2)

+U%+G

B
< {[U+ 1| AP + C1—p Tﬁ} (cem + o) +U {chG

+ /0 " M(s) <m + /0 " M(r)H(m)dr + /0 : M(T)K(m)dT) ds}
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T8
< {[U+ 1| AP+ Ci—p ﬁ} (cam +c2) +U [chG
T
+/ M <m+M*H(m)T+M*K(m)T>dS] (3.10)
0
Thus using the fact that U > 1 we combine (3.8]) and (3.10]) so that we obtain
T8
m < {[U—i— | A7+ Cip ﬂ} (crm +c2) + U le+ G|
+UM*T(m+M*H(m)T+M*K(m)T> (3.11)

Dividing by m on both sides of (3.11]) we obtain

1< {[UH] 1A=7]| + 1 1;}(“*:2) +U{cjrﬂ

H K
+UM*T<1 e E e (m)) (3.12)
m m
Now taking liminf as m — oo on both sides of (3.12) we get
H K
1< U + UM*T{I + M*T{liminf <(m) + (m)ﬂ }
m— o0 m m

which contradicts the hypothesis (Hg). Thus there is a m € N such that Fp , C B,,. Hereafter we will consider
the restriction of F' on this B

Now we show that F} is Lipschitz continuous. Let x,y € B, then using hypothesis (Hg) we have for ¢t € [—r, 0]

[(Fr2)(t) = (Fry) ()] < (9@, 22,)) (1) = (925 9,)) ()]
< pllz =yl (3.13)
Now using hypothesis (Hg), condition and lemma 2.1 for ¢ € [0,T] we have

|(Fi) () = (Fuy) ()] = [|T(0) [6(0)] = T()[(g(cxty, s 22,))(0)] = T(t) [w(0, 0)]

+w(t, ) + t AT (t — s)w(s,zs)ds
—T()[6(0)] +T() [(9(yers - ¥1,)) (0)] + T (t) [w(0,50)]
wltou) ~ [ AT puls. vt

= HT [( ytl’ < Yty )(0) - (g(xt;l? 7xtp))(0)]
+T( )[ (07y0) - (0,1‘0)] +w(t7$t) - w(t’yt)

+/0 AT(t—s)[w(s,ﬂfs)—w(svys)]dsu

<Uplly — || + [|[A=P T(t) A® [w(0,y0) — w(0, z0)]||
+ HA_B Aﬁ [’LU(t,J}t) - w(tayt)] H

+ /Ot AP T(t = 5) AP [w(s, zs) — w(s, ys)] || ds
<Uply =l + V4] [0 - zolle + ot = il
+VCalle -l [ -9 as
<Uplly—allp + V4~ (U + 1) ly <],

t
Vgl -l

B
< {UerVHAfBH (U+1)+V01_52}||xy||3 (3.14)
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Since U > 1 and p > 0 we have Up||z —y|| ;, > p||z — y|| ; and so in view of and we obtain

I - Eae] < {0+ v A0 + 1) +v T o= o
for all t € [-r,T] and x,y € B,,. Consequently using we get
[(Fia) = (F)| < 2 =
Thus F, is Lipschitzian with Lipschitz constant p,. Hence using lemma 2.3(7) we now have
Xs (FAW) < pyxs (W) (3.15)

for any bounded set W C B,,.

Further let W be any bounded subset of B,,. We first show that FLW is bounded. Let y €¢ W C B,
then ||ly|lz < m and so |lytl|lc < m, t € [0,T]. Let t € [-r,0] and y € By, then from the definition of F» we
have

| (Fay)(®)]| =0
Now for ¢t € [0,T] and y € B,, we get

t s T
|En ] < /0 UHf(S’yS’/O a(S’T)h(T’?JT)dﬂ/O b(s,T)k(T,yT)dT>Hds

< U[/OQ(S)(H%HC +/OS Jas, )| ||, 90|
# [t o s
< [ (m+ [y + [ v mar )as

¢
< U/ M*(m+M*H(m)s+M*K(m)T>ds
0

TM*H (m)

SUTM*(m—F 5

+ TM*K(m)) (3.16)

The R.H.S. of the inequality (3.16) being constant we conclude that the set {(ng)(t) ryeW,—r <t< T}
is bounded in X and hence F>W is bounded in B . Now we prove that F5W is equicontinuous. For this let
y € W, s1,82 € [-r,T] and consider the following cases :

Case:1 Suppose 0 < s1 < so < T then using hypothesis (H;) — (H3) and conditions (2.11)), (2.10) and
(3.9), we get

| (Foy)(s2) — (Fay)(s1)||

= H/ $2— 8) (sy/o als, )h(r, y,)dr, /OT b(s,r)k(r,yT)dr>ds

_/o T(s1 — 3)f<57ys; /OS a(s, T)h(T,y;)dr, /OT b(s, T)k(r, yr)dT) ds|
< /0 T (52 — 8) — T(s1 — 9)]|

_ 5)(HySHc + H /OS a(s,)h(r, y-,-)dTH + H /OT b(s, 7)k(T, y-,-)dTH): ds
+/ IT(s2 — 5)]
[ s)(HySHCJr||/Osa(s,7)h(7,y7)d7||+||/OTb(s,T)k(T,yT)dTH):ds
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< [" s = o)~ 261 -9

{M(s) <m + /0 M) H(m)dr + /O ! M(T)K(m)cﬁ’)] ds

4 U M(s) <m + /0 M (r)H (m)dr + /O ' M(T)K(m)dT) ds

< | " [(s2 = ) = T(s1 - 9)]| [M* (m M H(m)s + M*K(m)Tﬂ ds

So s T
JrU/ M*<m+M*H(m)/ dT+M*K(m)/ d’r)ds
S1 0

0
s1
S’Y/ ||T(82—8)—T(81—S)Hds—i—U'y’sQ—Sl‘}
0

— 0 as sy — s,

where v = {M* <m + M*H(m)T + M*K(m)T)} . The compactness of T(t) for ¢ > 0 implies the continuity in

the uniform operator topology. Therefore the right hand side of above equation tends to zero as so — s7.

Case:2 Suppose —r < 51 <0 < s9 < T then we get
|(F2y)(s2) = (Foy)(s1)]|

= H /082 T(so — s)f(&ys, /05 a(s, T)h(T,y,)dr, /OT b(s, 7)k(T, yT)dT) ds||
Now proceeding as in Case 1 for the integral on the right hand side of above inequality we further obtain
H(FQy)(SQ) — (ng)(sl)H < U'y|32 — 31’ — 0 as sy — 04 and s; — 0_.
Case:3 Suppose —r < 51 < 85 < 0. In this case we have
|(F2y)(s2) = (Foy)(s1)|| =0 (3.17)
Thus cases (1)-(3) imply that ||(Fay)(s2) — (Fey)(s1)|| — 0 as s1 — s, for all s1,s9 € [—r,T]. Thus we con-

clude that FoW is an equicontinuous family of functions.

Further for a bounded subset W of B,,, we define the notations W(t) = {z(t);z € W} C X and W} = {z4;2 €
W} C C([-r,0], X). Now using lemma 2.3, lemma 2.6-2.7, lemma 2.9 and hypothesis (Hi1) we obtain

X5 (F2W) = sup x(F2W(t))
—r<t<T

= sup x(FW(t))

0<t<T

— sup x( / (- s)f(s, w,, / " als, 7)h(r, W )dr,

0<t<T

/0 ) b(s, 7)k(r, WT)dT> ds)
B UiltlgT /ot (Tt - S)f(s’ W, /OS a(s, 7)h(r, W;)dr,

/0 s k(e WT)d7'> )ds
<sw [ tn(B)( sup (W (s +0))

0<t<T —r<0<0

+ / la(s, ™) m(r) sup x(W(r+0))dr
0 —r<6<0
T

+ /0 ‘b(s, T)| 2 (T)er;%)SOX(W(T + 9))d7'> ds
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< sup /Otn(8)< sup  x(W(s+¥0))

0<t<T s—r<s+60<s

+ /05 Ami(t)  sup  x(W(r +0))dr

T—r<74+0<T
T
—I—/ wna(t)  sup W(r+0)) dT)dS
0 T—TST+9<T
t
= sup /77(8)< sup  x(W +/ Am(r) sup  x(W(m))dr
0<t<T Jo s—r<si1<s 0 T—r<m1<T

N /OT/mQ(T) sup X(W(ﬁ))dT>d8

T—r<m1<T

< sup /017(5)( sup X(W(sl))Jr/Os)\m('r) sup  x(W(r))dr

0<t<T —r<s:<T —r<m <T

—|—/0T;M]2(7') sup X(W(Tl))dT)dS

—r<n <T

< sw [ t (xB<W>+ Osxm (e W+ [ Tunz(T)XB(W)dT>dS

0<t<T

< XB(W)OiggT/Otn(S)(l +/OSM)1 (T)dT+/OTunz(T)dT)ds
<, (W) /0 " (s) (1+ /0 T ()T + /O Tunz(T)dT>ds (3.18)

Therefore using (3.2)), (3.15) and (8.18) we obtain
XB (FW) < Xs (FlW) T Xg (FQW)
T s T
< (ot [ w0+ [amir [ umiras) o 0)
0 0 0
<Xz (W) (3.19)

for any bounded subset W of B,,.

Hence F' is a x,- contraction. Now applying lemma 2.5 we get a fixed point x of F'in B,,. This z is a
mild solution of (1.3)-(1.4)). The proof of the theorem is complete. O

4 Continuous dependence of mild solution

Theorem 4.1. Suppose that the functions f, g, h, k,w satisfy the hypotheses (H1 )-(Hgy) and (H11). Also suppose
that
(Hy2) there exist a constant N such that

1,21, 22) = £t 2 2)l| < N e = wllg + e = 2]+ e = 2l (1)
fort€[0,T], z,y € B andz1,22,23,24 € X.
(Hy3) there exist a constant P such that

|h(t, ) = h(t, )| < Plloe —wel| (4.2)
fort e [0,T) andxy,y: € C.
(Hi4) there exist a constant Q such that

[kt ) = k(t 90| < Qe — e (4.3)
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fort € [0,T) andxs,y; € C.

Then for each ¢1,¢p2 € C and for the corresponding mild solutions x1,xo of the problems

%[z(t) — w(t, )] + Ax(t) = f(t xt,/ alt, $)h(s, 34)ds,

/bts (s,xs) ) t € 0,77, (4.4)

‘r(t) + (g(xtn"'vxtp))(t) = (bi(t)a t E -, 0] (7’ = 172>7 (45)

the following inequality

s~ 22l < Ullor —dallo + [0p+ @ + OV A~ 4V
+UNA{T + AP+ pQ)T?}]||z1 — 22| (4.6)
holds and if
U= [Up+U+1V|[A7"| + vcl_gT; +UN{T+(A\P+pQ)T?}] <1 (4.7)
then
le1 = @allp < 7= llo1 = 2l (4.8)

Proof. Let ¢; (i = 1,2) be arbitrary functions of C' and let z; (i = 1,2) be mild solutions of the nonlocal
problems ([1.3))-(1.4). Then using the hypothesis (Hg) and the fact that U > 1 we have for t € [—r, 0],

1 (t) — 22 (t)]| = umt) - (g<<x1>t1, e (@0)1,)) (1) = B2(t) + (9((@2)1 5 n (2)s,)) (D]
< lea(t) = e2(4)
+ [ (9((@2)er s oor (@2)6,)) () = (9((@1)115 s (21)1,)) (D)
< ||é1 = 2l + w2 — 21|
< Ul|é1 = @2 ¢ + Upllz — 21| 5. (4.9)

Now using hypotheses (Hg), (Hg), (H12) — (H14), lemma 2.1 and condition (2.1) we have for ¢ € [0, T,

le1(8) = w2 < [IT(1) [61(0) = #2(0)]]|
+ ||T [(g((x2 t17 ey (x2)tp))(0) - (g((xl t17 ) ]H
+ (| 7() [w(0, (x2)0) — w(0, (21)0)] || + [, )) wlt, (z2)0)]|

-|-||/ ATt—s w(s,(xl)s)—w(S’(@)s)]dSH

e
/0 b5, (o) ) = f (s o (T, (222
/OT b(s, 7)k(, (:L'Q)T)dT)] ds||
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< Ul — ball + Urllzz —
+ U||AP A8 [w(0, (x2)0) — w(0, (z1)0)]
+ HA*BA'B [w(t, (1)) —w(t, (xQ)t)]H

—|—/ HAlfﬁT(t — s)||||Aﬁ [w(s7 (z1)s) — w(s, (5[32)3)} ||d$

O o
—|—U/0 N[H(ml)s - (xg)SHC—I— H/o a(s, T)h(T, (z1),)dT
—/0 a(S,T)h(T,(.’EQ)-,—)dTH

T T
+H/O b(s, 7)k(r, (osl)T)d'r—/O b(s, T)k(7, (x2)-)dr|| |ds
<U|ér = éall o+ Upllwz = 21|y + UV A7 |22 = 2|
B
VA oz = ]l + VOl =
+UN/0 [||x1 —x2‘|B+)\P/O @1)2) — (@2)2)|| o7
T

#0Q [ e () ] s

T8
< Ulj¢1 — ¢2| o + [Up+ (U +1)V[|A™P|| + Ve

+ UN{T + (AP + pQ)T?}]||z2 — 21| - (4.10)

Thus in view of inequality (4.9) and (4.10) we get

|z1(t) — z2(t)|| S Ul|pr — @2l + [Up+ (U + DV || AP + VCl—ﬂj;
+ UN{T + (AP + pQ)T?}]||z1 — 22| 5, te[—rT] (4.11)
o =l < U1~ dallo + [0+ @ + OVA] 4 VO
+ UN{T + (AP + pQ)T?}] |21 — 22| - (4.12)
Using we get
o~ 2]l < 7161~ bl
Hence the proof is complete. O

Remark 4.2. We remark that the uniqueness of the solution of the nonlocal problem (1.3))-(1.4) follows from
the above continuous dependence theorem.

5 Application
As an application of the Theorem 3.1, we consider the system (1.1)-(1.2)) with control parameter
/ t ¢
x (t)+ Az(t) = Ez(t) + f(twt,/ a(t,s)h(sws)d&/ b(t7s)k(s,x5)ds>7 t €10,¢], (5.1)
0 0

z(t) + (9(xeys s a0,)) () = G(t), t € [-1,0], (5.2)

where E is a bounded linear operator from a Banach space Z to X and z € L?([0,(], Z). In this case the mild
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solution is given by

(1) z(t) =T(t) [d)(O) — (g(mtl, ,mtp))(O)] —|—/O T(t—s)Ez(s)ds

+ /O tT(t—s) f(s,zs, /O (s, Ph(r, . )dr, /0 ‘ b(s,T)k(T,xT)dT>ds,t€ [0,¢] (5.3)

(i1) x(t) + (9(@y, .. me,)) (£) = @(t), t € [—r,0]. (5.4)
We say that the system (5.1)-(5.2)) is controllable to the origin if for any given initial function ¢ € C there
exists a control z € L?([0, (], Z) such that the mild solution z(t) of (5.1)-(5.2)) satisfies x(¢) =

Note:We note that in this section the interval [0, T] is replaced by [0, (] for notational convenience.
To derive the result we need the following additional hypotheses:

(Hiys) The linear operator ¥ from L?([0, (], Z) into X, defined by
¢
Uz = / T(¢ — s)Ez(s)ds
0

2
has an inverse operator ¥~! which takes values in % such that the operator E¥ ! is bounded.

(Hi) UM*C[1+U | E®~||(] {1 + M*C{li@nf(Hf;") + K;:”)] } <1

Theorem 5.1. If the hypotheses (Hy)-(H7), (Hi1)-(Hia)and (His)-(His) are satisfied, then the system (5.1)
with (5.2)) is controllable if

¢ s ¢
{Upg —|—/ n(s) [1 —|—/ An, (T)d7+/ /.LT]Q(T)dT]dS} < 1. (5.5)
0 0 0
where the constant term
p, =Up+U|EV Y [Up+ CUN{1+ AP¢ + nQC}]. (5.6)
Proof. Using hypothesis (H;5) for an arbitrary function z(-), define the control

aoz—w*P«ﬂwm—@mmmwmxm

¢ s ¢
—|—/0 T — s)f(s,xs,/o a(s,T)h(r, .’ET)dT,/O b(s, T)k(T, :L’T)d’7'> ds} (t) (5.7)
for ¢ € [0, (]. Using this control define an operator I" as
T(t)[p(0) = (g(ty, o0y 1, ) )] + [ T(t — s)Ez(s)ds
+fo (t—s f<3 Jis,fo T)h(T, z,)dT,
(FZ)(t) = fOC b(S,T)k(T, xT)dT) ds 0<t< C (58)
o(t) — (9(2eys 0y 21,)) (1), —r<t<0

Substituting z(s) in , we get

T(t) [¢(0) - (g(xtla () xtp))(o)]

T = 9B TQ[6(0) - (atats, e, ) O] + 5 T

f(n,xn,fo n, T)h(T, x,)dT, fo n, 7)k(T, JUT)dT) dn] (s)ds

(Tz)(t) = -|-f0 (t—s) <s7xs,fos a(s, 7)h(r,z;)dr, (5.9)

fOC b(s, T)k(T, x-,-)dT) ds 0<t<(

o(t) — (9(xey s oy 0,)) (1), -r<t<0
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Clearly (I'z)(¢) = 0, which means that the control z steers the system from the initial function ¢ to the origin
in time ( if we can obtain a fixed point of the operator I'. The remaining part of the proof is similar to Theorem

3.1 and hence it is omitted. Thus the system (5.1) with (5.2)) is controllable. O
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