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Abstract

Irreducible cyclic codes are well-known classes of block codes. These codes have wide range of applications
specifically in deep space. Their weight distribution of Irreducible cyclic codes is known in only a few cases
specifically they are known for binary cyclic codes. Previously, it has been shown that irreducible binary cyclic
codes of even dimension and their duals are either proper or not good for error detection. In this correspondence
it has been established that irreducible cyclic codes in number of cases are proper when transmitted over q-ary
symmetric channel. The nonzero weights of the codes treated with in this paper vary between one and four.
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1 Introduction

Irreducible cyclic codes are the most useful block codes. These codes have numerous applications in space
such as (32, 6) first-order binary Reed-Muller code was used on Mariner flight projects and the (24, 12)
binary Golay code which has been proposed for a Mariner Jupiter/Saturn 1977 (MJS’77) are both (essentially)
irreducible cyclic codes. These missions are part of the Mars Exploration Program of NASA. Non-binary
irreducible cyclic codes could be used to conserve bandwidth for low rate, deep-space telemetry.

Irreducible cyclic codes are binary and non-binary block codes whose encoders are linear feedback shift
registers, such that the polynomial that represents the feedback logic is irreducible. The weight enumerator of
a block code of length n is the polynomial

A(x) =
n∑

i=0

Aix
i (1.1)

where Ai denotes the number of words of weight i in the code. The enumerator A(Z) provides valuable
information about the performance of the code, and is needed to compute the error probability associated with
proposed decoding algorithms.

C is called an (n, k) irreducible cyclic code over Fp. It had been supposed that q = ps and r = qm, where
p is a prime, s and m are positive integers. A linear [n, m, d] code over GF (q) is a m-dimensional subspace of
GF (q)n with minimum (Hamming) distance d. Let N > 1 be an integer dividing r − 1, and put

n =
(r − 1)

N
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Let ω be primitive element of GF (r) and ε = ωN . The set

C(r, N) =
{
Tr r

q
(α), T r r

q
(αε), T r r

q
(αεn−1) : α ∈ GF (R)

}
is called an irreducible cycle code [n, M ] over GF (r), where Tr r

q
is trace function from GF (r) onto GF (q) and

M divides m.
Baumert and Mykkeltveit (1974) allowed to compute the weight enumerator of all (n, k)p-ary irreducible

codes for which the integer N = (pk−1)
n is a prime congruent to 3 (mod 4) for which p has order (N−1)

2 .
Properness of a linear error detecting code is a property which in a certain sense makes the code more

appropriate for error detection over a symmetric memoryless channel than a non-proper one. This property
is related to the undetected error probability of the code, which is a function of the channel symbol error
probability, involving the code weight distribution. Number of authors (Leung and Hellman, 1976; Wolf et al
1982; Kasami et al 1983 and Kasami and Lin, 1984) had discussed the undetected error probability, Pu(ε), of
linear [n, k] block codes used solely for error detection on a binary symmetric channel (BSC) with bit error rate
ε. Most of the work reported in the literature regarding the undetected error probability is restricted to binary
linear codes. Although research related to the undetected error probability on the binary symmetric channel
is very important but its practical value is restricted by the fact that the binary symmetric channel does not
always adequately describe real communication channels (Kana and Sastry, 1978).

Error detection is used extensively in communication and computer systems to combat noise. Detection
is accomplished by examining the received word. If it is a codeword, the word is accepted as error-free. If it
is not a codeword, the word is rejected as being erroneous. The undetected error occurs if an error-detecting
scheme fails to detect an error i.e. if the received word is a codeword different from the transmitted codeword.
The probability of undetected error is given by (MacWilliams and Sloane, 1977)

Pu(ε) =
n∑

i=1

Ai

( ε

q − 1
)
(1− ε)n−i (1.2)

where 0 ≤ ε ≤ q−1
q , Ai is the number of code words of weight i in code. For i = 0, A0 = 1.

Also the weight enumerator given in (1.1) can be written as

A(x)− 1 =
n∑

i=0

Aix
i.

Probability of undetected error Pu(ε) (1.2) of linear (n, k) code can be expressed as

Pu(ε) =
n∑

i=1

Ai

( ε

q − 1
)
(1− ε)n−i

= (1− ε)n
[
A

( ε

(1− ε)(q − 1)

)
− 1

]
.

Code C is called good if

Pu(ε) ≤ Pu

(q − 1
q

)
=

(M − 1)
qn

(1.3)

for all ε ∈
[
0, q−1

q

]
, where M is number of information and a code is proper if Pu(ε) is an increasing function

for ε ∈
[
0, q−1

q

]
. Proper codes are fine for error detection. If

Pu(ε) ≤ q(−(n−k)) for 0 ≤ ε ≤ q − 1
q

, (1.4)

the code is called satisfying q−(n−k) bound. The code not satisfying q−(n−k) bound is not fine for error detection
(Kasami et al 1983). Upper bound on undetected error probability for optimal linear codes is also studied by
Wolf et al (1982) and Klove, (1984).

Earlier it was believed that this upper bound holds for all codes since it was assumed that Pu(ε) is increasing
for ε ∈

[
0, q−1

q

]
and Pu(ε) attains its maximum value at ε = q−1

q . However, this assumption was shown to be
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wrong by some codes that do not obey the upper bound (Leung and Hellman, 1976) some classes of codes are
known to obey this bound.

To classify codes as proper, non proper but good, or not good, often turns out to be complicated, and such a
classification has been done so far for relatively few codes. Many codes which are known to be optimal or close
to optimal in one sense or other, turn out to be proper, such as Maximum Distance Separable (MDS) codes,
the Hamming codes, the Maximum Minimum Distance codes and their duals etc (Dodunekova et al 2008).

Our study of the codes C(r, N) in this manuscript will reveal that the following irreducible cyclic codes are
proper

whose length is qm−1
N and for any q satisfying the condition q − 1 = N

2 (modN).
whose length is qm−1

3 and for any q satisfying the condition q = 1(mod3).
whose length is qm−1

4 and for any q satisfying the condition q = 3(mod4) .
In this correspondence, we study the error-detecting performance of the irreducible binary cyclic codes

C(r, N) introduced by Delsarte and Goethals (1970) by calculating probability of undetected error Pu(ε). The
probability has been evaluated by using weight distribution of irreducible cyclic codes derived by Ding (2009).
First, we derive a new formula on the probability of undetected error for irreducible cyclic codes. Second, using
this new formula, we calculated the table which shows that the Pu(ε) is monotonic function w.r.t error rate
ε. The rest of this correspondence is organized as follows. In Section 2, we review some basic properties of
the weight distribution of irreducible cyclic codes. In Section 3, we derive a new formula on the probability
of undetected error for irreducible cyclic code. This formula plays an important role in establishing that
irreducible cyclic are proper for error detection.

2 Weight distribution of irreducible cyclic codes

Determining the weight distribution of the irreducible cyclic codes in general is difficult. However, in certain
special cases the weight distribution is known. Delsarte and Goethals (1970) and Baumert and McEliece (1972)
have determined this polynomial in many of the simpler cases. In particular, when k = φ(N)

2 they indicate
methods that can be used to solve the problem (at least for those cases with

(pk − 1)
(p− 1)

= 0 (2.1)

modulo N , as it always is for p = 2). Here, when N is a prime number of the form 4t + 1 the code weight
distributions are particularly nice. When N is a prime of the form 4t + 3, things are a bit more difficult.

Baumert and Mykkeltveit (1973) determined the weight distribution for prime values of N with N =
3(mod4) and ordq(N) = N−1

2 .
McEliece and Rumsey (1972) also generalized these results and showed that the weights of an irreducible

cyclic code can be expressed as a linear combination of Gauss sums via the Fourier transform. Helleseht, et al
(1977) investigated the weight distribution of some irreducible cyclic codes. Schmidt and White (2002) gave a
characterization of irreducible cyclic codes with at most two weights. Aubry and Langevin (2005) studied the
divisibility of weights in binary irreducible cyclic codes. Segal and Ward computed the weight distributions
of some irreducible cyclic codes Segal and Ward (1986). Moisio and Vaananen (1999) developed two recursive
algorithms for computing the weight distribution of certain irreducible cyclic codes. Van der Vlugt (1995)
investigated the weight hierarchy of irreducible cyclic codes.

However, weight distribution of only a few classes of irreducible cyclic codes is known. In contrast, little has
been done on the determination of the weight distribution of the duals of irreducible cyclic codes. Ding et al
(2002) determine the minimum distance and some weights of the duals of certain classes of binary irreducible
cyclic codes. Ding et al (2002) show that the weight distribution of the duals of binary irreducible cyclic codes is
totally determined by the cyclotomic numbers of certain order. Prior to this Niederreiter, (1977) determined the
weight distribution by applying the semiprimitive cases, cyclotomy and exponential sums. Numerical examples
of the weight distribution of certain minimal cyclic codes are given by MacWilliams and Seery (1981). In
the semiprimitive cases and several special cases, the weight distribution of irreducible cyclic codes has been
determined (Baumert and McEliece, (1972), Delsarte and Goethals, (1970), Helleseth et al (1977).

Ding (2009) described the weight distribution of the irreducible cyclic codes for all N with 2 ≤ N ≤ 4 and
a few other cases. The number of distinct nonzero weights in the irreducible cyclic codes dealt with in this
paper varies between one and four.
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3 Undetected error probability for irreducible cyclic codes

This section analyzes the properness of irreducible cyclic codes by finding undetected error probability over
q-ary symmetric channel. The probability has been found from the weight distribution of irreducible cyclic
codes which is given by Ding (2009).

Theorem 3.1. Let gcd(n,N)=1, where N is even. If q−1 = N
2 (modeN) and gcd

(
r−1
q−1modN, N) = 2, then the

set C(r, N) is a
[

qm−1
N ,m, (q−1)(r−

√
r)

Nq

]
two-weight code with weight distribution

A(x) = 1 +
r − 1

2
x

(q−1)(r−
√

r)
Nq +

r − 1
2

x
(q−1)(r−

√
r)

Nq . (3.1)

Theorem 3.2. Irreducible cyclic codes C(r, N) of length qm−1
N are proper for any q satisfying the condition

q − 1 = N
2 (modN).

Proof. Pu(ε) = (1− ε)n
[
A

(
ε

(1−ε)(q−1)

)
− 1

]
. Using the weight distribution by (3.1), we get

Pu(ε) = (1− ε)n
[
1 +

r − 1
2

( ε

(1− ε)(q − 1)

) (q−1)(r−
√

r)
Nq

+
r − 1

2

( ε

(1− ε)(q − 1)

) (q−1)(r−
√

r)
Nq − 1

]
(3.2)

= (1− ε)n
[r − 1

2

{( ε

(1− ε)(q − 1)

) (q−1)(r−
√

r)
Nq

+
( ε

(1− ε)(q − 1)

) (q−1)(r−
√

r)
Nq

}]
=

r − 1
2

( 1
1− ε

) (q−1)(r−
√

r)
q(r−1)

( ε

q − 1
) (q−1)(r−

√
r)

Nq

[
1 +

( ε

(1− ε)(q − 1)

) 2
√

r(q−1)
qN

]
(3.3)

Following tables has been derived by putting different values of r, ε, q and N in (3.3).
Table 1 and Table 2 shows that undetected error probability Pu(ε) is a monotonic function and increases

with the error rate ε and it should obey the q−(n−k) bound, which proves that the codes are irreducible cyclic
codes are proper for error detection.

Theorem 3.3. Let q = 1(mod3), p = 2(mod3), and m = 0(mod3). Let r − 1 = nN , where N = 3. If
sm = 0(mod4), then C(r, 3) is an [(r− 1)/3,m, ((q− 1)(r−

√
r))/3q] code over GF (q) with weight distribution

A(x) = 1 +
2(r − 1)

3
x

(q−1)(r−
√

r)
3q +

r − 1
3

x
(q−1)(r+2

√
r)

3q (3.4)

If sm = 2(mod4) then C(r, 3) is an [(r−1)/3,m, ((q−1)(r−2
√

r))/3q] code over GF (q) with weight distribution

A(x) = 1 +
(r − 1)

3
x

(q−1)(r−2
√

r)
3q +

2(r − 1)
3

x
(q−1)(r+

√
r)

3q . (3.5)

Theorem 3.4. Irreducible cyclic codes C(r, 3) of length qm−1
3 are proper for any q satisfying the condition

q = 1(mod3).

Proof. Proof of this theorem is on the same pattern as that of Theorem 3.2.
Case I: If sm = 2(mod4),

Pu(ε) = (1− ε)n
[
1 +

2(r − 1)
3

( ε

(1− ε)(q − 1)

) (q−1)(r−
√

r)
3q

+
r − 1

3

( ε

(1− ε)(q − 1)

) (q−1)(r+2
√

r)
3q − 1

]
(3.6)

=
r − 1

3
( 1
1− ε

) (q−1)(r−
√

r)
q(r−1)

( ε

q − 1
) (q−1)(r−

√
r)

3q

[
2 +

( ε

(1− ε)(q − 1)

)√r(q−1)
q

]
Case II: If sm = 2(mod4),

Pu(ε) = (1− ε)n
[
1 +

(r − 1)
3

( ε

(1− ε)(q − 1)

) (q−1)(r−2
√

r)
3q

+
2(r − 1)

3

( ε

(1− ε)(q − 1)

) (q−1)(r+
√

r)
3q − 1

]
(3.7)

=
r − 1

3
( 1
1− ε

) (q−1)(r−2
√

r)
q(r−1)

( ε

q − 1
) (q−1)(r−2

√
r)

3q

[
1 + 2

( ε

(1− ε)(q − 1)

)√r(q−1)
q

]
The values listed in Table 3 and Table 4 illustrates that undetected error probability Pu(ε) increases with error
rate ε. This proves are theorem that irreducible cyclic codes C(r, 3) are proper.
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Theorem 3.5. Let q = 3(mod4), and let r − 1 = nN , where N = 4. If m = 0(mod4), then C(r, 4) is an
[(r − 1)/4,m, ((q − 1)(r −

√
r))/4q] code over GF (q) with weight distribution

A(x) = 1 +
3(r − 1)

4
x

(q−1)(r−
√

r)
4q +

r − 1
4

x
(q−1)(r+3

√
r)

4q (3.8)

If m = 2(mod4) then C(r, 4) is an [(r−1)/4,m, ((q−1)(r−3
√

r))/4q] code over GF (q) with weight distribution

A(x) = 1 +
(r − 1)

4
x

(q−1)(r−3
√

r)
4q +

3(r − 1)
4

x
(q−1)(r+

√
r)

4q . (3.9)

Theorem 3.6. Irreducible cyclic codes C(r, 4) of length qm−1
4 are proper for any q satisfying the condition

q = 3(mod4).

Proof. Case I: If m = 0(mod4),

Pu(ε) = (1− ε)n
[
1 +

3(r − 1)
4

( ε

(1− ε)(q − 1)

) (q−1)(r−
√

r)
4q

+
r − 1

4

( ε

(1− ε)(q − 1)

) (q−1)(r+3
√

r)
4q − 1

]
(3.10)

=
r − 1

4
( 1
1− ε

) (q−1)(r−
√

r)
q(r−1)

( ε

q − 1
) (q−1)(r−

√
r)

4q

[
3 +

( ε

(1− ε)(q − 1)

)√r(q−1)
q

]
Case II: If m = 2(mod4),

Pu(ε) = (1− ε)n
[
1 +

(r − 1)
4

( ε

(1− ε)(q − 1)

) (q−1)(r−3
√

r)
4q

+
3(r − 1)

4

( ε

(1− ε)(q − 1)

) (q−1)(r+
√

r)
4q − 1

]
(3.7)

=
r − 1

4
( 1
1− ε

) (q−1)(r−3
√

r)
q(r−1)

( ε

q − 1
) (q−1)(r−3

√
r)

4q

[
1 + 3

( ε

(1− ε)(q − 1)

)√r(q−1)
q

]
The values listed in Table 5 and Table 6 illustrates that undetected error probability Pu(ε) increases with error
rate ε. This proves are theorem that irreducible cyclic codes C(r, 3) are proper.

4 Conclusion

Irreducible cyclic codes are of practical interest as they have been used in transmission of data. In this
work we had examined the performance of these codes in terms of probability of undetected error when codes
are transmitted through q-ary symmetric channel. It has been substantiated that C(r, N) for 2 ≤ N ≤ 4
irreducible cyclic codes are proper codes.
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Table 1: Undetected Error Probability Pu(ε) of [39, 2, 36] cyclic irreducible code

r ε q N Pu(ε)
625 0.1 25 16 7.05972E-84
625 0.2 25 16 5.40861E-73
625 0.3 25 16 1.3363E-66
625 0.4 25 16 4.84733E-62
625 0.5 25 16 1.76756E-58
625 0.6 25 16 1.53968E-55
625 0.7 25 16 5.16578E-53
625 0.8 25 16 9.22568E-51
625 0.9 25 16 1.27255E-48

Table 2: Undetected Error Probability Pu(ε)of [21, 2, 18] cyclic irreducible code

r ε q N Pu(ε)
169 0.1 13 8 3.45333E-36
169 0.2 13 8 1.00144E-30
169 0.3 13 8 1.65956E-27
169 0.4 13 8 3.35991E-25
169 0.5 13 8 2.18149E-23
169 0.6 13 8 7.04171E-22
169 0.7 13 8 1.45259E-20
169 0.8 13 8 2.34179E-19

Table 3: Undetected Error Probability Pu(ε)of [21, 3, 14] cyclic irreducible code

r ε q Pu(ε)
64 0.2 4 1.67E-15
64 0.3 4 5.33E-13
64 0.4 4 3.31E-11
64 0.5 4 8.51E-10
64 0.6 4 1.28E-08
64 0.7 4 1.48E-07
64 0.8 4 4.3E-06
64 0.9 4 0.003408

Table 4: Undetected Error Probability Pu(ε)of [21, 3, 12] cyclic irreducible code

r ε q Pu(ε)
64 0.2 4 1.83866E-13
64 0.3 4 5.32745E-13
64 0.4 4 3.31373E-11
64 0.5 4 8.51366E-10
64 0.6 4 1.27745E-08
64 0.7 4 1.47605E-07
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Table 5: Undetected Error Probability Pu(ε)of [20, 4, 12] cyclic irreducible code

r ε q Pu(ε)
81 0.1 3 8.66909E-20
81 0.2 3 6.85958E-11
81 0.3 3 4.33931E-12
81 0.4 3 4.7521E-10
81 0.5 3 1.89687E-08
81 0.6 3 4.33238E-07

Table 6: Undetected Error Probability Pu(ε)of [12, 4, 6] cyclic irreducible code

r ε q Pu(ε)
49 0.1 7 1.59094E-20
49 0.2 7 7.11832E-17
49 0.3 7 1.02086E-14
49 0.4 7 3.61778E-13
49 0.5 7 6.03604E-12
49 0.6 7 6.36294E-11
49 0.7 7 5.0283E-10
49 0.8 7 3.52614E-09
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