
Malaya Journal of Matematik 4(1)(2013) 123–133

An Intuitionistic fuzzy count and cardinality of Intuitionistic fuzzy

sets

B. K. Tripathya , S. P. Jenab and S. K. Ghoshc,∗

aSchool of Computing Sciences and Engineering, V.I.T. University, Vellore–632014, Tamilnadu, India.

bDepartment of Mathematics, Sailabala Women’s College, Cuttack, Odisha, India.

cDepartment of Mathematics, Revenshaw University, Cuttack–753003, Odisha, India.

Abstract

The notion of Intuitonistic fuzzy sets was introduced by Atanassov [1] as an extension of the concept of
fuzzy sets introduced by Zadeh such that it is applicable to more real life situations. In order to measure the
cardinality of fuzzy sets several attempts have been made [4,6,8]. However, there are no such measures for
intuitionistic fuzzy sets. In this paper we define the sigma count and relative sigma count for intuitionistic
fuzzy sets and establish their properties. Also, we illustrate the genration of quantification rules.

Keywords: Fuzzy set, Intuitionistic Fuzzy set, Intuitionistic fuzzy count, Relative Intuitionistic fuzzy count.

2010 MSC: 57E05. c©2012 MJM. All rights reserved.

1 Introduction

The introduction of the fuzzy concept by Zadeh [7] is considered as a paradigm shift [5]. It introduces the
concept of graded membership of elements instead of the binary membership used in Aristotelian logic. It is
a very powerful modeling language that can cope with a large fraction of uncertainties of real life situations.
Because of its generality it can be well adapted to different circumstances and contexts.

The cardinality of a set in the crisp sense plays an important role in Mathematics and its applications.
Similarly it is worthwhile to think of cardinality of fuzzy sets, which is a measure. The concept of cardinality
of a fuzzy set is an extension of the count of elements of a crisp set. A simple way of extending the concept of
cardinality was suggested by Deluca and Termini [4]. This concept is related to the notion of the probability
measure of a fuzzy set introduced by Zadeh [8] and is termed as the sigma count or the non-fuzzy cardinality
of a set.

According to fuzzy set theory, the non-membership value of an element is one’s complement of its mem-
bership value. However, in practical cases it is observed that this happens to be a serious constraint. So,
Atanassov [1] introduced the notion of intuitionistic fuzzy sets as a generalisation of the concept of fuzzy sets
which does not have the deficiency mentioned above. Unlike, the cardinality of a fuzzy set ([4],[6],[8]) there
are no definitions of the cardinality of an intuitionistic fuzzy set in the literature. In this paper we introduce
the sigma count as an extension of the notion of the corresponding notion for fuzzy sets and establish many
properties. Also, we introduce the notion of relative sigma count and establish some properties. Finally we
illustrate the generation of quantification rules.
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2 Definitions and Notations

In this section we shall provide some definitions and notations to be used in this paper. First we introduce the
notion of a fuzzy set.

Definition 2.1. Let X be a universal set. Then a fuzzy set A on X is defined through a membership function
associated with A and denoted by µA as

µA : X → [0, 1], (2.1)

such that every xεX is associated with its membership value µA(x) lying in the interval [0, 1].
Clearly, the fuzzy set A is completely characterized by the set of points {(x, µA(x)) : xεX}.

Definition 2.2. For any two fuzzy sets A and B in X, we define the relationships between A and B as

A = B iff µA(x) = µB(x),∀xεX (2.2)

A ⊆ B iff µA(x) ≤ µB(x),∀xεX (2.3)

B ⊇ A iff A ⊆ B (2.4)

Definition 2.3. The union of the two fuzzy sets A and B is given by its membership function µA∪B(x) defined
by

µA∪B(x) = max{µA(x), µB(x)},∀xεX. (2.5)

Definition 2.4. The intersection of the two fuzzy sets A and B is given by its membership function µA∩B(x)
defined by

µA∩B(x) = min{µA(x), µB(x)},∀xεX. (2.6)

Definition 2.5. The complement Ā of the fuzzy set A with respect to universal set X is given by its membership
function µĀ(x) defined by

µĀ(x) = 1− µA(x),∀xεX. (2.7)

Definition 2.6. Let X be an universal set. An intiitionistic fuzzy set or IFS A on X is defined through two
functions µA and νA, called the membership and non-membership functions of A defined as

µA : X → [0, 1] and νA : X → [0, 1] (2.8)

such that every xεX is associated with its membership value µA(x) and non-membership value νA(x) such that
0 ≤ µA(x) + νA(x) ≤ 1.

Definition 2.7. If A and B are two IFSs of the set X, then

A ⊂ B iff ∀xεX, µA(x) ≤ µB(x) and νA(x) ≥ νB(x) (2.9)

A ⊂ B iff B ⊃ A (2.10)

A = B iff ∀xεX, [µA(x) = µB(x) and νA(x) = νB(x)] (2.11)

Ā = {〈x, νA(x), µA(x)〉 : xεX} (2.12)

A ∩B = {〈x,min(µA(x), µB(x)),max(νA(x), νB(x))〉 : xεX} (2.13)

A ∪B = {〈x,max(µA(x), µB(x)),min(νA(x), νB(x))〉 : xεX} (2.14)

A + B = {〈x, µA(x) + µB(x)− µA(x) · µB(x), νA(x) · νB(x)〉 : xεX} (2.15)
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A ·B = {〈x, µA(x) · µB(x), νA(x) + νB(x)− νA(x) · νB(x)〉 : xεX} (2.16)

�A = {〈x, µA(x), 1− µA(x)〉 : xεX} (2.17)

∗A = {〈x, 1− νA(x), νA(x)〉 : xεX} (2.18)

C(A) = {〈x, K, L〉 : xεX}, where K = max
xεX

µA(x) and L = min
xεX

νA(x) (2.19)

I(A) = {〈x, k, l〉 : xεX}, where k = min
xεX

µA(x) and l = max
xεX

νA(x) (2.20)

3 Cardinality of Intuitionistic Fuzzy Sets

In this section, we introduce the cardinality of intuitionistic fuzzy sets and establish some properties.

3.1 Definitions

The measure of fuzzy set is the form of its Σ count (sigma count) was introduced by Deluca and Termini [4] as
a simple extension of the concept of cardinality of crisp sets. As mentioned above Intuitionistic fuzzy sets have
better modeling power than those of fuzzy sets, by the way introducing the hesitation part. Here we define the
cardinality of an Intuitionistic fuzzy set by extending the notion of Σ count stated above. Also, we establish
some of their properties, and provide certain examples and application of these results.

Definition 3.1. A fuzzy set A on X to be finite if µA(x) 6= 0 for only a finite number of elements of X.

Definition 3.2. For any finite fuzzy set A on X, the sigma count of A, denoted by Σ count (A) is given by

Σ count (A) =
∑
xεX

µA(x) (3.21)

Definition 3.3. For any IFS A on X we define cardinality of A (denoted by Σcount(A)) as

Σ count (A) =
[ n∑

i=1

µA(xi),
n∑

i=1

1− νA(xi)
]

(3.22)

= [Σ count �A,Σ count ∗A] (3.23)

It may be noted that when A is a fuzzy set on X, νA(x) = 1− µA(x), for all xεX, so that

Σ count (A) =
[ n∑

i=1

µA(xi),
n∑

i=1

µA(xi)
]

=
n∑

i=1

µA(xi)

which is the definition of Σ count of a fuzzy set A defined above.

3.2 Properties of Σ count

We establish some properties of σ count of IFSs in this section.

Theorem 3.1. For any two IFSs A and B on X
(i) Σ count (A ∪B) + Σ count (A ∩B) = Σ count (A) + Σ count(B)
(ii) Σ count (A + B) + Σ count (A ·B) = Σ count (A) + Σ count(B)
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Proof. We have

Σ count (A ∪B) =
[ n∑

i=1

(µA(xi) ∨ µB(xi)),
n∑

i=1

1− (νA(xi) ∧ νB(xi))
]

=
[ n∑

i=1

(µA(xi) ∨ µB(xi)),
n∑

i=1

{(1− νA(xi)) ∨ (1− νB(xi))}
]

and

Σ count (A ∩B) =
[ n∑

i=1

(µA(xi) ∧ µB(xi)),
n∑

i=1

1− (νA(xi) ∨ νB(xi))
]

=
[ n∑

i=1

(µA(xi) ∧ µB(xi)),
n∑

i=1

{(1− νA(xi)) ∧ (1− νB(xi))}
]

So,

Σ count (A ∪B) + Σ count (A ∩B) =
[ n∑

i=1

(µA(xi) + µB(xi)),
n∑

i=1

{(1− νA(xi)) + (1− νB(xi))}
]

=
[ n∑

i=1

µA(xi),
n∑

i=1

1− νA(xi)
]

+
[ n∑

i=1

µB(xi),
n∑

i=1

1− νB(xi)
]

Σ count (A) + Σ count (B)

The proof of (ii) is similar to that of (i).

Theorem 3.2. For any two IFSs A and B on X
(i) Σ count (A ∪B) + Σ count (A ∩B) = Σ count (Ā) + Σ count(B̄)
(ii) Σ count (A + B) + Σ count (A ·B) = Σ count (Ā) + Σ count(B̄)

Proof.
A ∪B = {〈x, µA(x) ∨ µB(x), νA(x) ∧ νB(x)〉 : xεX}

A ∪B = {〈x, νA(x) ∧ νB(x), µA(x) ∨ µB(x)〉 : xεX}

So,

Σ count (A ∪B) =
[ n∑

i=1

(νA(xi) ∧ νB(xi)),
n∑

i=1

1− (µA(xi) ∨ µB(xi))
]

=
[ n∑

i=1

(νA(xi) ∧ νB(xi)),
n∑

i=1

{(1− µA(xi)) ∧ (1− µB(xi))}
]

similarly,

A ∩B = {〈x, µA(x) ∧ µB(x), νA(x) ∨ νB(x)〉 : xεX}

A ∩B = {〈x, νA(x) ∨ νB(x), µA(x) ∧ µB(x)〉 : xεX}

and

Σ count (A ∩B) =
[ n∑

i=1

(νA(xi) ∨ νB(xi)),
n∑

i=1

1− (µA(xi) ∧ µB(xi))
]

=
[ n∑

i=1

(νA(xi) ∨ νB(xi)),
n∑

i=1

{(1− µA(xi)) ∨ (1− µB(xi))}
]
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Hence,

Σ count (A ∪B) + Σ count (A ∩B) =
[ n∑

i=1

(νA(xi) + νB(xi)),
n∑

i=1

{(1− µA(xi)) + (1− µB(xi))}
]

=
[ n∑

i=1

νA(xi),
n∑

i=1

1− µA(xi)
]

+
[ n∑

i=1

νB(xi),
n∑

i=1

1− µB(xi)
]

= Σ count (Ā) + Σ count (B̄)

The proof of (ii) is similar to that of (i)

Next, by using the results of Atanassov [2,3], the following properties of Σ count of IFSs can be obtained.

Theorem 3.3. For any IFSs A, we have:
(i) Σ count �A = Σ count (∗Ā)
(ii) Σ count ∗A = Σ count (�Ā)
(iii) Σ count ��A = Σ count �A

(iv) Σ count � ∗A = Σ count ∗A
(v) Σ count ∗�A = Σ count �A

(vi) Σ count ∗ ∗A = Σ count ∗A
(vii) Σ count ∗Ā = Σ count �A

(viii) Σ count �Ā = Σ count ∗A
(ix) Σ count Ā = Σ count A

It may be noted that from the definition of Σ count of an IFS, it can be obtained directly that if A ⊆ B then it
is not always true that Σ count A ≤ Σ count B. Also

(x) Σcount �A ≤ Σcount∗A

Proof. We have

Σ count �A =
[ n∑

i=1

µA(xi),
n∑

i=1

1− (1− µA(xi))
]

=
n∑

i=1

µA(xi)

and

Σ count ∗A =
[ n∑

i=1

(1− νA(xi)),
n∑

i=1

(1− νA(xi))
]

=
n∑

i=1

(1− νA(xi))

Also, by the definition of an IFS, µA(xi) ≤ 1− νA(xi), i = 1, 2, . . . , n. So the claim follows.

Theorem 3.4. For any two IFSs A and B,
(i) Σcount �(A ∪B) = Σcount (�A ∪�B)
(ii) Σcount ∗(A ∪B) = Σcount(∗A ∪ ∗B)
(iii) Σcount �(A ∩B) = Σcount(�A ∩�B)
(iv) Σcount ∗(A ∩B) = Σcount(∗A ∩ ∗B)
(v) Σcount (A ∪B) = Σcount(Ā ∩ B̄)
(vi) Σcount (A ∩B) = Σcount(Ā ∪ B̄)

Theorem 3.5. For any two IFSs A and B on X,
(i) Σcount �(A ∪B) + Σcount �(A ∩B) = Σcount �A + Σcount �B

(ii) Σcount ∗(A ∪B) + Σcount ∗(A ∩B) = Σcount ∗A + Σcount ∗B
(iii) Σcount �(A + B) + Σcount �(A ·B) = Σcount �A + Σcount �B

(iv) Σcount ∗(A + B) + Σcount ∗(A ·B) = Σcount ∗A + Σcount ∗B
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Proof. (i)Σcount�(A ∪B) = Σcount (�A ∪�B) and Σcount�(A ∩B) = Σcount (�A ∩�B) so,

Σ count �(A ∪B) + Σ count �(A ∩B) = Σ count (�A ∪�B) + Σ count (�A ∩�B)

= Σ count �A + Σ count �B

Similarly (ii) can be established.
(iii) Σcount �(A + B) + Σcount �(A ·B)

Proof.

=
n∑

i=1

(µA(xi) + µB(xi)− µA(xi) · µB(xi)) +
n∑

i=1

µA(xi) · µB(xi)

=
n∑

i=1

µA(xi) +
n∑

i=1

µB(xi) = Σ count �A + Σ count �B

Similarly (iv) can be established.

Note 3.2.1. By using Theorems 3.1, 3.2 and 3.5, we have the following

(i) Σcount(A ∪B) + ΣcountA ∩B = Σcount(A + B) + Σcount(A ·B)

= Σ count A + Σ count B

(ii) Σcount(A ∪B) + ΣcountA ∩B = Σcount(A + B) + Σcount(A ·B)

= Σ count Ā + Σ count B̄

(iii) Σcount�(A ∪B) + Σcount�(A ∩B) = Σcount�(A + B) + Σcount�(A ·B)

= Σ count �A + Σ count �B

(iv) Σcount∗(A ∪B) + Σcount∗(A ∩B) = Σcount∗(A + B) + Σcount∗(A ·B)

= Σ count ∗A + Σ count ∗B

3.3 Relative Σ count

The notion of relative Σ count for fuzzy sets has been introduced by Zadeh [9].

Definition 3.4. If A and B are two fuzzy sets, then we define the relative sigma count of A with respect to B

as rel Σcount (A/B) = (Σcount(A ∩B)) · (Σcount(B))−1, if A and b are two IFSs, then

Σ count (A ∩B) =
[ n∑

i=1

µA(xi) ∧ µb(xi),
n∑

i=1

1− (νA(xi) ∨ νB(xi))
]

(Σ count (B))−1 =
[ n∑

i=1

µB(xi),
n∑

i=1

1− νB(xi)
]−1

=
[

1∑n
i=1(1− νB(xi))

,
1∑n

i=1 µB(xi)

]
Consequently,

(Σ count (A ∩B)) · (Σ count (B))−1 =
[∑n

i=1 µA(xi) ∧ µB(xi)∑n
i=1(1− νB(xi))

,

∑n
i=1 1− (νA(xi) ∨ νB(xi))∑n

i=1 µB(xi)

]

=
[∑n

i=1 µA(xi) ∧ µB(xi)∑n
i=1(1− νB(xi))

,

∑n
i=1{1− νA(xi)) ∧ (1− νB(xi))}∑n

i=1 µB(xi)

]
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It may be noted that the right hand expression of the above interval may be greater than 1. For exam-
ple, taking X = {x1, x2} and A and B two IFSs over X defined by A = {(.8, .1)/x1, (.2, .6)/x2}, B =
{(.6, .2)/x1, (.3, .6)/x2}. Then (1− νA(x1)) ∧ (1− νB(x1)) + (1− νA(x2)) ∧ (1− νB(x2)) = .8 + .4 = 1.2.

In view of the above remark, we define rel Σ count (A/B) for intuitionistic fuzzy sets as

relΣcount(A/B) =
[∑n

i=1 µA(xi) ∧ µB(xi)∑n
i=1(1− νB(xi))

,min

(
1,

∑n
i=1{(1− νA(xi)) ∧ (1− νB(xi))}∑n

i=1 µB(xi)

) ]
3.3.1 Some Pathological Cases

Case I: Suppose A and B are fuzzy sets. Then A = �A,B = �B, 1− νA = µA and 1− νB = µB . So

relΣcount(A/B) =
∑n

i=1 µA(xi) ∧ µB(xi)∑n
i=1(1− νB(xi))

which is same as the Prop (A/B) introduced by Zadeh.

Case II: Suppose A is an IFS and B is a fuzzy set. Then,1− νB = µB . So that

relΣcount(A/B) =
[∑n

i=1(µA(xi) ∧ µB(xi))∑n
i=1 µB(xi)

,

∑n
i=1((1− νA(xi)) ∧ µB(xi)∑n

i=1 µB(xi)

]
1∑n

i=1 µB(xi)
=

[ n∑
i=1

(µA(xi) ∧ µB(xi)),
n∑

i=1

((1− νA(xi) ∧ µB(xi))
]

Also, in this case the right hand limit of the interval is less than or equal to 1. So, we need not impost this
additional restriction.

Case III: If a is a fuzzy set and B is a crisp set, then

rel Σcount(A/B) =
[∑n

i=1 µA(xi)
Card(B)

,min

(
1,

∑n
i=1 µA(xi)
Card(B)

) ]
In particular when B = X = {x1, x2, . . . xn}, we get

rel Σcount(A/B) =
[∑n

i=1 µA(xi)
n

,min

(
1,

∑n
i=1 µA(xi)

n

) ]

=
∑n

i=1 µA(xi)
n

=
1
n

n∑
i=1

µA(xi)

4 Some Applications

Definition 4.1. Let A and B be two IFSs on X. Then the rel
∑

count(A/B) is defined by the interval
[e1, e2], where

e1 =
∑n

i=1(µA(xi) ∧ µB(xi))∑n
i=1(1− νB(xi))

= min

(
1,

∑n
i=1((1− νA(xi)) ∧ (1− νB(xi))∑n

i=1 µB(xi)

)
Here e1 indicates the minimum amount of similarity between A and B and e2 indicates the maximum

amount of similarity between a and B.
Clearly, rel Σcount(A/B) ⊆ [0, 1] and rel Σcount(A/B) 6= relΣcount(B/A) in general.

relΣcount(A/A) =
[ ∑n

i=1 µA(xi)∑n
i=1(1− νA(xi))

, 1
]
.

Definition 4.2. For a given class {Ai}iελ of IFSs on X, the IFS ′S′ on X is said to be the super IFS if
S = {< x, µs(x), νs(x) >: xεX} where

µS(x) = sup
iελ

µAi
(x) and νS(x) = inf

iελ
νAi

(x).

Definition 4.3. Let A and B two IFSs on X. Then we say A dominates B if

mid value(rel Σ count(A/S)) ≥ mid value (rel Σ count (B/S))
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C1 C2 C3 C4 C5 C6

A (.2, .7) (.5, .2) (.8, .1) (.6, .3) (.4, .5) (.3, .6)
B (.6, .2) (.2, .7) (.7, .3) (.8, .2) (.5, .3) (.9, .1)
C (.2, .7) (.4, .5) (.8, .2) (.9, .1) (.6, .3) (.5, .2)
D (.5, .4) (.3, .5) (.6, .3) (.5, .3) (.7, .2) (.9, .0)

S (.6, .2) (.5, .2) (.8, .1) (.9, .1) (.7, .2) (.9, .0)

4.1 Case Studies

Case Study 1: Consider the problem of gradation of students of a class. The Characteristics, which are to
determine the gradation, may be some characteristics as

• Skill
• Knowledge
• Discipline in the school
• Punctually
• Efficiency in extracurricular activities
• Age

A selector may have to use the above characteristics and make their evaluation for each student in a class,
considering all the information. The gradation list can be prepared basing upon the evaluation and some
technique. We may use the technique of dominance as defined in definition 4.3 as the factor of gradation.

To make a case study, we assume that the number of characteristics be six. On the basis of these six charac-
teristics which we denote by C1, C2, C3, C4, C5 and C6, suppose there are four students with the characteristics
as mentioned above in the form of a matrix:

The super IFS ′S′ will be given above in the form of matrix:

relΣcount(A/S) =
[∑n

i=1(µA(xi) ∧ µS(xi))∑n
i=1(1− νs(xi))

,min

(
1,

∑n
i=1((1− νA(xi)) ∧ (1− νB(xi)))∑n

i=1 µS(xi)

) ]

=
[
2.8
5.2

,min

(
1,

3.6
4.4

) ]
=

[
7
13

,
9
11

]
= [.54, .82]

relΣcount(B/S) =
[
3.7
5.2

,min

(
1,

4.2
4.4

) ]
=

[
37
52

,
21
22

]
= [.71, .95]

relΣcount(C/S) =
[
3.4
5.2

,min

(
1,

4
4.4

) ]
=

[
17
26

,
10
11

]
= [.65, .9]

relΣcount(D/S) =
[
3.5
5.2

,min

(
1,

4.3
4.4

) ]
=

[
35
52

,
43
44

]
= [.67, .98]

The mid values of relΣcount(A/S), relΣcount(B/S), relΣcount(C/S) and relΣcount(D/S) are .68,.83,.75,
.825 respectively. So, the grading is B,D,C,A.

Definition 4.4. Let A be an IFS on X = {x1, x2, . . . , xn}. Then depth of A denoted by depth (A) is given by

depth(A) = [n, n]− ΣcountA = [n, n]− [a1, a2]

where

a1 =
n∑

i=1

µA(xi) and a2 =
n∑

i=1

(1− νA(xi))) = [n− a2, n− a1]

Clearly, depth(X) = 0 and depth (φ) = n.
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Definition 4.5. Let A1 and A2 be two IFSs over X, then we say A2 is a better representative of X than A1

denoted by A2 ⊃ A1, if and only if

| depth(A2) |<| depth(A1) |

where | [a, b] | is given by max(| a |, | b |).

Using the above definitions a grading of IFSs defined over a set X can be made. The ordering being the Ai

comes higher in the order the Ak if Ak is a better representative of X than Ai. We explain this by a case study.

Case Study 2: Consider four IFSs A1, A2, A3 and A4 defined over the finite set X = {x1, x2} given by

A1 = {(.5, .4)/x1, (.2, .8)/x2}

A2 = {(.1, .8)/x1, (.9, 0)/x2}

A3 = {(.1, .9)/x1, (0, 1)/x2} and

A4 = {(.2, .5)/x1, (.1, .7)/x2} and

Here
|depth(A1)| = |[2− .8, 2− .7]| = |[1.2, 1.3]| = 1.3

|depth(A2)| = |[2− 1.2, 2− .1]| = |[.8, 1]| = 1

|depth(A3)| = |[2− .1, 2− .1]| = |[1.9, 1.9]| = 1.9

|depth(A4)| = |[2− .9, 2− .3]| = |[1.1, 1.7]| = 1.7

So, A2 ⊃ A1 ⊃ A4 ⊃ A3. Thus A2 is the best representative of x.

5 Quantification Rules

If ”x is A” be a proposition, then the proposition is modified by the modifier by ′m′ as not , very, fairly etc.
Hence the modifier proposition be ”x is mA”.

Similarly proposition may be quantified by intuitionistic fuzzy quantifiers such as usually, frequently, most
etc. Quantifiers are denoted by Q. So, ”Qx′s are A′s” is a quantified proposition and ”QA′s are B′s” is known
as extended quantified propositions. For example, ’most cars are fast’ is a quantified proposition, where ’most
fast cars are dangerous’ is an extended quantified proposition.

The extended quantified proposition as ”QA′s are B′s”, where Q is a intuitionistic fuzzy quantifier with
membership function µQ(x) and the non-membership function νQ(x) and the IFSs A and B have membership
and non-membership functions with the same argument on xεU, (µA(x), νA(x)) and(µB(x), νB(x)) correspond-
ingly.

We have to find out the truth of the above quantified propositions.

Let A and B are two IFSs on a finite universe of discourse U = {x1, x2, . . . , xn} then

ΣcountA =
[ n∑

i=1

µA(xi),
n∑

i=1

(1− νA(xi))
]

ΣcountB =
[ n∑

i=1

µB(xi),
n∑

i=1

(1− νB(xi))
]
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In particular Σ count X = [n, n] = n, where each xi, i = 1, 2, . . . n has a membership value ′1′ and non-
membership value ′0′.

The truth value of the proposition in a finite universe U is determined by truth (QAs are Bs) = (µQ(r), νQ(r)),
where the value of ′r′ is

r = relΣcount(B/A) =
Σcount(A ∩B)

Σcount(A)

=
[∑n

i=1(µA(xi) ∧ µB(xi))∑n
i=1(1− νs(xi))

,min

(
1,

∑n
i=1((1− νA(xi)) ∧ (1− νB(xi))∑n

i=1 µA(xi)

) ]
The meaning of the coefficient r = relΣcount(B/A) is that it expresses the proportion of B in A.

In particular case, when A and B are fuzzy sets instead of IFSs, then the proposition ”QA are B” reduced
to the concept of Zadeh’s sense.

Also, in the case, ”Qxs are Bs” that is, when instead of an IFS A, we have a crisp set {xi} = U , then truth
value of ”Qxs are B” be

truth(Qx′s are B) = (µQ(r0), νQ(r0))

where

r0 = relΣcount(B/U) =
[∑n

i=1 µB(xi)
n

,min

(
1,

∑n
i=1(1− νB(xi))

n

) ]
Example 5.1. Consider the proposition ”most cars are fast”. Assume that cars, fast and most are defined as

cars∆y = {y1, y2, y3}, U = {y1, y2, y3}

cars∆B = (.1, .8)/y1 + (.6, .2)/y2 + (.8, .2)/y3

and most = Q, where

µQ(x) =


0 0 ≤ x ≤ .3;

1− {1 + (2x− 0.6)2}−1 .3 ≤ x ≤ .7;

1 .7 ≤ x.

and

νQ(x) =


1 0 ≤ x ≤ .4;

{1 + (2x− 0.8)2}−1 .4 ≤ x ≤ .8;

0 .8 ≤ x.

r0 = relΣcount(B/U) =
[∑n

i=1 µB(xi)
n

,min

(
1,

∑n
i=1(1− νB(xi))

n

) ]
=

[
1.5
3

,min

(
1,

1.8
3

) ]
= [.5, .6]

mid value (r0) = .55, which is the average of the degree of car speed.

Now substituting r0 = .55 for ′x′, we have

µQ(.55) = .2 and νQ(.55) = .53

The truth value depends on how both the quantifiers Q(most) and the set B(fast) are defined.

Example 5.2. Let us consider the more general proposition, ’Most fast cars are dangerous’, using the data in
the above example for cars, fast and most.

In addition, let dangerous be defined as

dangerous ∆A = (.2, .7)/x1 + (.5, .4)/x2 + (.6, .4)/x3
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to define ′r′ we have to calculate

r = relΣcount(B/A) =
[
1.2
1.5

,min

(
1,

1.4
1.3

) ]
=

[
4
5
,min

(
1,

14
13

) ]
=

[
4
5
, 1

]

mid value (r) =
4
5 + 1

2
=

4 + 5
5

× 1
2

=
9
10

= .9

which represent the proportion of B in A.

Finally, substituting ′r′ for ′x′, we have

µQ(.9) = 1 and νQ(.9) = 0.

6 Conclusion

In this paper a measure of cardinality of IFS, called Σcount which generalizes the notion of Σcount of fuzzy
sets introduced [4] has been put forth and studied. Many results involving Σ count of transformed IFSs by
using modal operations have been established. A notion called relative Σ count is defined and as an application,
a case study is made. Intuitionistic fuzzy quantifiers are discussed and illustrated by taking examples.
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