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Hypersphere and the fourth Laplace-Beltrami operator in 4-space
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Abstract. We consider hypersphere x(u, v, w) in the four dimensional Euclidean space E4. We compute the fourth Laplace-
Beltrami operator of the hypersphere satisfying ∆IV x =Ax, where A ∈ Mat (4, 4).
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1. Introduction

In differential geometry, hyper-surfaces theory have been worked by many mathematicians for a long time.
For example, Obata worked [41] certain conditions for a Riemannian manifold to be isometric with a sphere;
Takahashi [44] proved that a connected Euclidean submanifold is of 1-type, iff it is either minimal in Em or
minimal in some hypersphere of Em; Chern, do Carmo, and Kobayashi [15] gave minimal submanifolds of a
sphere with second fundamental form of constant length; Cheng and Yau considered hypersurfaces with constant
scalar curvature; Lawson [37] gave minimal submanifolds in his book.

Chen [9–12] studied submanifolds of finite type whose immersion into Em (or Em
ν ) by using a finite number of

eigenfunctions of their Laplacian. Some results of 2-type spherical closed submanifolds were given by [6, 7, 10];
Garay researched [25] an extension of Takahashi’s theorem in Em. Chen and Piccinni [13] focused submanifolds
with finite type Gauss map in Em. Dursun [20] considered hypersurfaces with pointwise 1-type Gauss map in
En+1.
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In E3; Takahashi [44] proved that minimal surfaces and spheres are the only surfaces satisfying the condition
∆r = λr, λ ∈ R; Ferrandez, Garay, and Lucas [22] gave that the surfaces satisfying ∆H = AH , A ∈ Mat(3, 3)

are either minimal, or an open piece of sphere or of a right circular cylinder; Choi and Kim [17] studied the
minimal helicoid in terms of pointwise 1-type Gauss map of the first kind; Garay [24] classified a certain class
of finite type surfaces of revolution; Dillen, Pas and Verstraelen [18] focused that the only surfaces satisfying
∆r = Ar +B, A ∈ Mat(3, 3), B ∈ Mat(3, 1) are the minimal surfaces, the spheres and the circular cylinders;
Stamatakis and Zoubi [43] obtained surfaces of revolution satisfying ∆IIIx = Ax; Senoussi and Bekkar [42]
introduced helicoidal surfaces M2 which are of finite type with respect to the fundamental forms I, II and III,

i.e., their position vector field r(u, v) satisfies the condition ∆Jr = Ar, J = I, II, III, where A ∈ Mat(3, 3);
Kim, Kim and Kim [34] gave Cheng-Yau operator and Gauss map of surfaces of revolution.

In E4; Moore [39, 40] worked general rotational surfaces; Hasanis and Vlachos [31] considered
hypersurfaces with harmonic mean curvature vector field; Cheng and Wan [14] gave complete hypersurfaces
with CMC; Kim and Turgay [35] introduced surfaces with L1-pointwise 1-type Gauss map; Arslan et al [2]
worked Vranceanu surface with pointwise 1-type Gauss map; Arslan et al [3] studied generalized rotational
surfaces; Aksoyak and Yaylı [32] worked flat rotational surfaces with pointwise 1-type Gauss map; Güler,
Magid and Yaylı [29] introduced helicoidal hypersurfaces; Güler, Hacısalihoğlu, and Kim [28] studied Gauss
map and the third Laplace-Beltrami operator of the rotational hypersurface; Güler and Turgay [30] focused
Cheng-Yau operator and Gauss map of rotational hypersurfaces; Güler [27] found rotational hypersurfaces
satisfying ∆IR = AR, where A ∈ Mat(4, 4). He [26] also studied fundamental form IV and curvature
formulas of the hypersphere.

In Minkowski 4-space E4
1; Ganchev and Milousheva [23] indicated analogue of surfaces of [39, 40];

Arvanitoyeorgos, Kaimakamais, and Magid [5] studied that if the mean curvature vector field of M3
1 satisfies the

equation ∆H = αH (α a constant), then M3
1 has CMC; Arslan and Milousheva considered meridian surfaces

of elliptic or hyperbolic type with pointwise 1-type Gauss map; Turgay introduced some classifications of
Lorentzian surfaces with finite type Gauss map; Dursun and Turgay gave space-like surfaces in with pointwise
1-type Gauss map. Aksoyak and Yaylı [33] obtained general rotational surfaces with pointwise 1-type Gauss
map in E4

2. Bektaş, Canfes, and Dursun [8] worked surfaces in a pseudo-sphere with 2-type pseudo-spherical
Gauss map in E5

2.

We consider hypersphere in the four dimensional Euclidean space E4. In Section 2, we give some notions
of four space. We give curvature formulas of any hypersurface in Section 3. Finally, we define hypersphere in
Section 4. We compute hypersphere satisfying ∆IV x =Ax for some 4× 4 matrix A in the last section.

2. Preliminaries

In this section, we give some of basic facts and definitions, then describe notations used in this paper. Let Em

denote the Euclidean m-space with the canonical Euclidean metric tensor given by g̃ = ⟨ , ⟩ =
m∑
i=1

dx2
i , where

(x1, x2, . . . , xm) is a rectangular coordinate system in Em. Consider an m-dimensional Riemannian submanifold
of the space Em. We denote the Levi-Civita connections of Em and M by ∇̃ and ∇, respectively. We shall use
letters X,Y, Z,W (resp., ξ, η) to denote vectors fields tangent (resp., normal) to M . The Gauss and Weingarten
formulas are given, respectively, by

∇̃XY = ∇XY + h(X,Y ), (2.1)

∇̃Xξ = −Aξ(X) +DXξ, (2.2)

where h, D and A are the second fundamental form, the normal connection and the shape operator of M ,
respectively.

For each ξ ∈ T⊥
p M , the shape operator Aξ is a symmetric endomorphism of the tangent space TpM at
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p ∈ M . The shape operator and the second fundamental form are related by

⟨h(X,Y ), ξ⟩ = ⟨AξX,Y ⟩ .

The Gauss and Codazzi equations are given, respectively, by

⟨R(X,Y, )Z,W ⟩ = ⟨h(Y,Z), h(X,W )⟩ − ⟨h(X,Z), h(Y,W )⟩, (2.3)

(∇̄Xh)(Y,Z) = (∇̄Y h)(X,Z), (2.4)

where R, RD are the curvature tensors associated with connections ∇ and D, respectively, and ∇̄h is defined by

(∇̄Xh)(Y,Z) = DXh(Y,Z)− h(∇XY, Z)− h(Y,∇XZ).

2.1. Hypersurfaces of Euclidean space

Now, let M be an oriented hypersurface in the Euclidean space En+1, S its shape operator (i.e. Weingarten
map) and x its position vector. We consider a local orthonormal frame field {e1, e2, . . . , en} of consisting of
principal directions of M corresponding from the principal curvature ki for i = 1, 2, . . . n. Let the dual basis of
this frame field be {θ1, θ2, . . . , θn}. Then the first structural equation of Cartan is

dθi =

n∑
i=1

θj ∧ ωij , i, j = 1, 2, . . . , n, (2.5)

where ωij denotes the connection forms corresponding to the chosen frame field. We denote the Levi-Civita
connection of M and En+1 by ∇ and ∇̃, respectively. Then, from the Codazzi equation (2.3), we have

ei(kj) = ωij(ej)(ki − kj), (2.6)

ωij(el)(ki − kj) = ωil(ej)(ki − kl) (2.7)

for distinct i, j, l = 1, 2, . . . , n.
We put sj = σj(k1, k2, . . . , kn), where σj is the j-th elementary symmetric function given by

σj(a1, a2, . . . , an) =
∑

1≤i1<i2<...<ij≤n

ai1ai2 . . . aij .

We use following notation
rji = σj(k1, k2, . . . , ki−1, ki+1, ki+2, . . . , kn).

By the definition, we have r0i = 1 and sn+1 = sn+2 = · · · = 0. We call the function sk as the k-th mean
curvature of M . We would like to note that functions H = 1

ns1 and K = sn are called the mean curvature and
Gauss-Kronecker curvature of M , respectively. In particular, M is said to be j-minimal if sj ≡ 0 on M .

In En+1, to find the i-th curvature formulas Ci (Curvature formulas sometimes are represented as mean
curvature Hi, and sometimes as Gaussian curvature Ki by different writers, such as [1] and [36]. We will call it
just i-th curvature Ci in this paper.), where i = 0, ..., n, firstly, we use the characteristic polynomial of S:

PS(λ) = 0 = det(S− λIn) =

n∑
k=0

(−1)
k
skλ

n−k, (2.8)

where i = 0, ..., n, In denotes the identity matrix of order n. Then, we get curvature formulas
(
n
i

)
Ci = si. That

is,
(
n
0

)
C0 = s0 = 1 (by definition),

(
n
1

)
C1 = s1, . . . ,

(
n
n

)
Cn = sn = K.

3



Erhan GÜLER

k-th fundamental form of M is defined by I
(
Sk−1 (X) , Y

)
=
〈
Sk−1 (X) , Y

〉
. So, we have

n∑
i=0

(−1)
i

(
n

i

)
CiI

(
Sn−i (X) , Y

)
= 0. (2.9)

In particular, one can get classical result C0III − 2C1II + C2I = 0 of surface theory for n = 2. See [36] for
details.

For a Euclidean submanifold x: M −→ Em, the immersion (M,x) is called finite type, if x can be expressed
as a finite sum of eigenfunctions of the Laplacian ∆ of (M,x) , i.e. x = x0 +

∑k
i=1 xi, where x0 is a constant

map, x1, . . . , xk non-constant maps, and ∆xi = λixi, λi ∈ R, i = 1, . . . , k. If λi are different, M is called
k-type. See [10] for details.

2.2. Rotational hypersurfaces

We obtain a rotational hypersurface (rot-hypface for short) in Euclidean 4-space. Before we proceed, we
would like to note that the definition of rot-hypfaces in Riemannian space forms were defined in [19]. A rot-
hypface M ⊂ En+1 generated by a curve C around an axis C that does not meet C is obtained by taking the orbit
of C under those orthogonal transformations of En+1 that leaves r pointwise fixed (See [19, Remark 2.3]).

Throughout the paper, we identify a vector (a, b, c, d) with its transpose. Consider the case n = 3, and let C
be the curve parametrized by

γ(w) = (ξ(w), 0, 0, φ (w)) , (2.10)

where ξ, φ are differentiable functions. If r is the x4-axis, then an orthogonal transformations of En+1 that leaves
r pointwise fixed has the form

Z(v, w) =


cosu cos v − sinu − cosu sin v 0

sinu cos v cosu − sinu sin v 0

sin v 0 cos v 0

0 0 0 1

 , u, v ∈ R.

Therefore, the parametrization of the rot-hypface generated by a curve C around an axis r is given by x(u, v, w) =

Z(u, v)γ(w).

Definition 2.1. Let x = x(u, v, w) be an immersion from M3 ⊂ E3 to E4. In 4-space, inner product is given by

⟨−→x ,−→y ⟩ = x1y1 + x2y2 + x3y3 + x4y4,

and triple vector product is defined by

−→x ×−→y ×−→z = det


e1 e2 e3 e4
x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4

 ,

where −→x = (x1, x2, x3, x4),
−→y = (y1, y2, y3, y4),

−→z = (z1, z2, z3, z4).

Definition 2.2. Definition For a hypface x in 4-space, we have

(gij)3×3 , (hij)3×3 , (tij)3×3 , (2.11)

where (gij) , (hij) , and (tij) are the first, second, and the third fundamental form matrices (or I ,II , and III),
respectively, where g11 = ⟨xu,xu⟩ , g12 = ⟨xu,xv⟩ , g13 = ⟨xu,xw⟩ , g22 = ⟨xv,xv⟩ , g23 = ⟨xv,xw⟩ , g33 =
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⟨xw,xw⟩ , h11 = ⟨xuu, e⟩ , h12 = ⟨xuv, e⟩ , h13 = ⟨xuw, e⟩ , h22 = ⟨xvv, e⟩ , h23 = ⟨xvw, e⟩ , h33 = ⟨xww, e⟩ ,
e11 = ⟨eu, eu⟩ , e12 = ⟨eu, ev⟩ , e13 = ⟨eu, ew⟩ , e22 = ⟨ev, ev⟩ , e23 = ⟨ev, ew⟩ , e33 = ⟨ew, ew⟩ . Here,

e =
xu × xv × xw

∥xu × xv × xw∥
(2.12)

is unit normal (i.e. the Gauss map) of hypface x.

Product matrices (gij)
−1·(hij) gives the matrix of the shape operator S of hypface x in 4-space. See [28–30]

for details.

3. i-th Curvatures

To compute the i-th mean curvature formula Ci, where i = 0, .., 3, we use characteristic polynomial PS(λ) =

aλ3 + bλ2 + cλ+ d = 0:
PS(λ) = det(S− λI3) = 0.

Then, obtain C0 = 1 (by definition),
(
3
1

)
C1 =

(
3
1

)
H = − b

a ,
(
3
2

)
C2 = c

a ,
(
3
3

)
C3 = K = − d

a .

Therefore, we find i-th curvature folmulas depends on the coefficients of the fundamental forms (gij) and
(hij) in 4-space. See [26] for details.

Theorem 3.1. Any hypersurface x in E4
2 has following curvature formulas, C0 = 1 (by definition),

C1 =


(g11h22 + g22h11 − 2g12h12)g33 + (g11g22 − g212)h33

−2(g13h13g22 − g23h13g12 − g13h23g12
+g11g23h23 − g13g23h12)− g223h11 − g213h22


3 [(g11g22 − g212)g33 − g11g223 + 2g12g13g23 − g22g213]

, (3.1)

C2 =


(g11h22 + g22h11 − 2g12h12)h33 +

(
h11h22 − g212

)
g33

−2(g13h13h22 − g23h13h12 − g13h23h12

+g23h23h11 − h13h23g12)− g11h
2
23 − g22h

2
13


3 [(g11g22 − g212)g33 − g11g223 + 2g12g13g23 − g22g213]

, (3.2)

C3 =

(
h11h22 − h2

12

)
h33 − h11h

2
23 + 2h12h13h23 − h22h

2
13

(g11g22 − g212)g33 − g11g223 + 2g12g13g23 − g22g213
. (3.3)

Proof. See [26] for details. ■

A hypersurface x in E4 is i-minimal, when Ci = 0 identically on x.

4. Hypersphere

In this section, we define hypersphere, then find its differential geometric properties in E4.
For an open interval I ⊂ R, let γ : I −→ Π be a curve in a plane Π in E4, and let ℓ be a straight line in Π.
Definition. A rotational hypersurface in E4 is called hypersphere, when a profile curve

γ(w) = (r cosw, 0, 0, r sinw)

rotates around a axis ℓ = (0, 0, 0, 1) for hyperradius r > 0.
So, in 4-space, the hypersphere which is spanned by the vector ℓ, is as follows

x(u, v, w) = Z(u, v)γ(w). (4.1)
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Therefore, more clear form of (4.1) is as follows

x(u, v, w) =


r cosu cos v cosw

r sinu cos v cosw

r sin v cosw

r sinw

 , (4.2)

where r > 0 and 0 ≤ u, v, w ≤ 2π. When w = 0, we have a sphere in E4.

Next, we will obtain the Gauss map and the curvatures of the hypersphere (4.2). The first quantities of (4.2)
are as follows

(gij) = diag
(
r2 cos2 v cos2 w, r2 cos2 w, r2

)
. (4.3)

We have det (gij) = r6 cos2 v cos4 w. Using (2.12) , we get the Gauss map of the hypersphere (4.2) as follows

e =


cosu cos v cosw

sinu cos v cosw

sin v cosw

sinw

 . (4.4)

Using the second differentials of (4.2) with respect to u, v, w, and the Gauss map (4.4) of the hypersphere (4.2) ,
we have the second quantities as follows

(hij) = diag
(
−r cos2 v cos2 w, −r cos2 w, −r

)
. (4.5)

So, we get det (hij) = −r3 cos2 v cos4 w. Using (gij)
−1·(hij), we calculate the shape operator matrix of the

hypersphere (4.2): S = − 1
r I3. Differentiating (4.4) with respect to u, v, w, we find the third quantities as

follows
(tij) = diag

(
cos2 v cos2 w, cos2 w, 1

)
. (4.6)

Here, det (tij) = cos2 v cos4 w. Computing (3.1), (3.2) and (3.3) , with (4.3), (4.5), respectively, we find the
curvatures of the hypersphere (4.2) as follows (C0 = 1 by definition)

C1 = −1

r
, C2 =

1

r2
, C3 = − 1

r3
.

Using (fij) = (tij) ·S = (hij) ·S2 = (gij) ·S3, we obtain the fourth fundamental form matrix (fij)3×3 of
hypersphere (4.2) as follows

(fij) = diag
(
− 1

r cos
2 v cos2 w, − 1

r cos
2 w, − 1

r

)
. (4.7)

See [26] for details.

5. Hypersphere Satisfying ∆IV x =Ax

In this section, we give the fourth Laplace-Beltrami operator of a smooth function, then calculate it using
hypersphere.

The inverse of the fourth fundamental form matrix IV = (fij) of any hypersurface is as follows

1

f

 f22f33 − f23f32 − (f12f33 − f13f32) f12f23 − f13f22
− (f21f33 − f31f23) f11f33 − f13f31 − (f11f23 − f21f13)

f21f32 − f22f31 − (f11f32 − f12f31) f11f22 − f12f21

 ,

where

f = det (fij)

= f11f22f33 − f11f23f32 + f12f31f23 − f12f21f33 + f21f13f32 − f13f22f31.
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Definition 5.1. The fourth Laplace-Beltrami operator of a smooth function ϕ = ϕ(x1, x2, x3) |D (D ⊂ R3) of
class C3 with respect to the fourth fundamental form of a hypersurface M is the operator ∆IV which is defined
by as follows

∆IV ϕ =
1

|f |1/2
3∑

i,j=1

∂

∂xi

(
|f |1/2 f ij ∂ϕ

∂xj

)
. (5.1)

where
(
f ij
)
= (fkl)

−1 and f = det (fij) .

Clearly, we can write (5.1) as follows

1

|f |1/2


∂

∂x1

(
|f |1/2 f11 ∂ϕ

∂x1

)
− ∂

∂x1

(
|f |1/2 t12 ∂ϕ

∂x2

)
+ ∂

∂x1

(
|f |1/2 t13 ∂ϕ

∂x3

)
− ∂

∂x2

(
|f |1/2 f21 ∂ϕ

∂x1

)
+ ∂

∂x2

(
|f |1/2 t22 ∂ϕ

∂x2

)
− ∂

∂x2

(
|f |1/2 t23 ∂ϕ

∂x3

)
+ ∂

∂x3

(
|f |1/2 f31 ∂ϕ

∂x1

)
− ∂

∂x3

(
|f |1/2 t32 ∂ϕ

∂x2

)
+ ∂

∂x3

(
|f |1/2 t33 ∂ϕ

∂x3

)
 . (5.2)

Hence, using a smooth function ϕ = ϕ(u, v, w), we re-write (5.2) as follows

1

|f |1/2


∂

∂x1

(
(f22f33−f23f32)ϕu−(f13f32−f12f33)ϕv+(f12f23−f13f22)ϕw

|f |1/2

)
− ∂

∂x2

(
(f12f33−f13f32)ϕu−(f11f33−f13f31)ϕv+(f21f13−f11f23)ϕw

|f |1/2

)
+ ∂

∂x3

(
(f12f23−f13f22)ϕu−(f21f13−f11f23)ϕv+(f11f22−f12f21)ϕw

|f |1/2

)
 . (5.3)

Therefore, the fourth Laplace-Beltrami operator of the hypersphere (4.2) is given by

∆IV x =
1

|f |1/2

{
∂

∂u

(
f22f33xu

|f |1/2

)
+

∂

∂v

(
f11f33xv

|f |1/2

)
+

∂

∂w

(
f11f22xw

|f |1/2

)}
, (5.4)

Getting more clear form of the fourth Laplace-Beltrami operator ∆IV x of the hypersphere (4.2), we use (4.7)

and (5.4). Differentiating f22f33
|f |1/2 xu,

f11f33
|f |1/2 xv,

f11f22
|f |1/2 xw, with respect to u, v, w, respectively, and substituting

them into (5.4) , we get following relations between the fourth Laplace-Beltrami operator, Gauss map, and the
curvatures of the hypersphere (4.2) .

Corollary 5.2. Let x : M3 −→ E4 be an immersion given by (4.2). Then x has

∆IV x = −3r2e,

where e is the Gauss map of the hypersphere x.

Corollary 5.3. Let x : M3 −→ E4 be an immersion given by (4.2). Then x has ∆IV x = Ax, where

A = −3rC0I4 = 3r2C1I4 = −3r3C2I4 = 3r4C3I4,

A ∈ Mat (4, 4) , and I4 is identity matrix.
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