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Oscillatory properties of third-order quasilinear difference equations
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Abstract

Some new oscillation criteria are obtained for the third-order quasilinear difference equation ∆2 (pn (∆xn)α)−
qn (∆xn)α + rnf(xn) = 0, n = 0, 1, 2, ..., where α > 0 is the ratio of odd positive integers. The method uses
techniques based on Schwarz’s inequality. Example is inserted to illustrate the result.
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1 Introduction

The notion of nonlinear difference equations was studied intensively by
R.P.Agarwal [1]. Recently there has been a lot of interest in the study of oscillatory behavior of solutions of
nonlinear difference equations. Motivated by the references [1]- [28], in this paper, we have considered the
oscillatory properties of third-order quasilinear difference equation of the form

∆2(pn (∆xn)α)− qn (∆xn)α + rnf(xn) = 0, n = 0, 1, 2, ..., (1.1)

where ∆ is the forward difference operator defined by ∆xn = xn+1 − xn, provided the following conditions are
assumed to hold:

(C1) α > 0 is the ratio of odd positive integer,

(C2) {pn} , {qn} , {rn} are real positive sequences,

(C3) f : R → R is a continuous function and xf (x) > 0 for all x 6= 0,

(C4) there exists a real valued function g such that
f(u)− f(v) = g(u, v)(u− v) for all u 6= 0, v 6= 0 and
g(u, v) ≥ L > 0 ∈ R,

(C5)
∞∑

n=M

pn
2 <∞ for M ≥ 0,

(C6)
∞∑

n=M

(∆ (pn+1 (∆xn+1)
α))2 <∞ for M ≥ 0,

(C7)
∞∑

n=M

1

p
1
α
n

=∞ for M ≥ 0,

∗Corresponding author.

E-mail addresses: professorselvaraj@gmail.com (B. Selvaraj) and rajumurugasamy@gmail.com (M. Raju)



B. Selvaraj et al. / Oscillatory properties of ... 143

(C8)
∞∑

n=M

qn
2 <∞ for M ≥ 0,

(C9)
∞∑

n=M

(n + 1) rn =∞ for M ≥ 0,

Our objective here is to proceed further in this direction to obtain the oscillation of all solutions of equation
( 1.1) which include and generalize some earlier results cited there in references.

By a solution of equation ( 1.1) we mean a real sequence {xn}, n = 0, 1, 2, ..., which satisfies equation ( 1.1)
for all n > n0, where n0 ≥ 0. We recall that a nontrivial solution of equation ( 1.1) is said to be oscillatory if
for every M > 0 there exists an integer n ≥M such that xnxn+1 ≤ 0; otherwise it is said to be nonoscillatory.
Thus, a nonoscillatory solution is either eventually positive or eventually negative.

2 Main Result

In this section, we present some sufficient conditions for the oscillatory properties of all solutions of equation
( 1.1).

Theorem 2.1. If the conditions (C1), (C2), (C3), (C4), (C5), (C6), (C7), (C8) and (C9) hold, then every
solution of equation ( 1.1) is oscillatory.

Proof. Without loss of generality we may assume that {xn} is a nonoscillatory solution of equation (1.1) such
that xn > 0 for all n ≥M , M ≥ 0 is an integer.
From equation ( 1.1), we have

∆ (pn+1 (∆xn+1)
α)−∆ (pn (∆xn)α)− qn (∆xn)α + rnf (xn) = 0. (2.1)

Multiplying equation ( 2.1) by
n + 1
f (xn)

and summing from M to n− 1, we obtain

n−1∑
n=M

s + 1
f (xs)

∆ (ps+1 (∆xs+1)
α)−

n−1∑
n=M

s + 1
f (xs)

∆ (ps (∆xs)
α)

−
n−1∑
n=M

s + 1
f (xs)

qs (∆xs)
α +

n−1∑
n=M

s + 1
f (xs)

rsf (xs) = 0.

(2.2)

Consider the first summation from equation ( 2.2),

n−1∑
n=M

s + 1
f (xs)

∆ (ps+1 (∆xs+1)
α) =

n + 1
f (xn)

pn+1 (∆xn+1)
α

− M + 1
f (xM )

pM+1 (∆xM+1)
α

−
n−1∑
n=M

ps+2 (∆xs+2)
α

(
f (xs) ∆(s + 1)− (s + 1)∆f (xs)

f (xs) f (xs+1)

)
.



144 B. Selvaraj et al. / Oscillatory properties of...

That is,

n−1∑
n=M

s + 1
f (xs)

∆ (ps+1 (∆xs+1)
α) =

n + 1
f (xn)

pn+1 (∆xn+1)
α

− M + 1
f (xM )

pM+1 (∆xM+1)
α

−
n−1∑
n=M

ps+2 (∆xs+2)
α

f (xs+1)

+
n−1∑
n=M

ps+2 (∆xs+2)
α (s + 1)

f (xs) f (xs+1)

g (xs+2, xs+1) ∆xs+1.

(2.3)

Now consider the second summation from equation ( 2.2) and similarly we obtain

n−1∑
n=M

s + 1
f (xs)

∆ (ps (∆xs)
α) =

n + 1
f (xn)

pn (∆xn)α

− M + 1
f (xM )

pM (∆xM )α

−
n−1∑
n=M

ps+1 (∆xs+1)
α

f (xs+1)

+
n−1∑
n=M

ps+2 (∆xs+2)
α+1 (s + 1)

f (xs) f (xs+1)
g (xs+2, xs+1) .

(2.4)

Substituting equations ( 2.3) and ( 2.4) in equation ( 2.2), we have

n + 1
f (xn)

pn+1 (∆xn+1)
α − M + 1

f (xM )
pM+1 (∆xM+1)

α −
n−1∑
n=M

ps+2 (∆xs+2)
α

f (xs+1)

+
n−1∑
n=M

ps+2 (∆xs+2)
α (s + 1)

f (xs) f (xs+1)
g (xs+2, xs+1) ∆xs+1 +

n + 1
f (xn)

pn (∆xn)α

−M + 1
f (xM )

pM (∆xM )α −
n−1∑
n=M

ps+1 (∆xs+1)
α

f (xs+1)

+
n−1∑
n=M

ps+2 (∆xs+2)
α+1 (s + 1)

f (xs) f (xs+1)
g (xs+2, xs+1)−

n−1∑
n=M

s + 1
f (xs)

qs (∆xs)
α

+
n−1∑
n=M

(s + 1) rs = 0.

That is,

n + 1
f (xn)

∆ (pn (∆xn)α)−
n−1∑
n=M

1
f (xs+1)

∆ (ps+1 (∆xs+1)
α)

−
n−1∑
n=M

(−s− 1) g (xs+2, xs+1) ∆xs+1

f (xs) f (xs+1)
∆ (ps+1 (∆xs+1)

α)

−
n−1∑
n=M

s + 1
f (xs)

qs (∆xs)
α

=
M + 1
f (xM )

∆ (pM (∆xM )α)−
n−1∑
n=M

(s + 1) rs.

(2.5)
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By Schwarz’s inequality we obtain the following:

n−1∑
n=M

1
f (xs+1)

∆ (ps+1 (∆xs+1)
α)

≤

(
n−1∑
n=M

1
f2 (xs+1)

) 1
2
(

n−1∑
n=M

(∆ (ps+1 (∆xs+1)
α))2

) 1
2

,

(2.6)

n−1∑
n=M

(−s− 1) g (xs+2, xs+1) ∆xs+1

f (xs) f (xs+1)
∆ (ps+1 (∆xs+1)

α)

≤

(
n−1∑
n=M

(s + 1)2 g2 (xs+2, xs+1) (∆xs+1)
2

f2 (xs) f2 (xs+1)

) 1
2
(

n−1∑
n=M

(∆ (ps+1 (∆xs+1)
α))2

) 1
2

(2.7)

and

n−1∑
n=M

s + 1
f (xs)

qs (∆xs)
α ≤

(
n−1∑
n=M

(s + 1)2 (∆xs+1)
2

f2 (xs)

) 1
2
(

n−1∑
n=M

q2
s

) 1
2

. (2.8)

In view of the above inequalities ( 2.6), ( 2.7) and ( 2.8), the summations in ( 2.5) are bounded.Therefore,
equation ( 2.5) becomes

n + 1
f (xn)

∆ (pn (∆xn)α)−

(
n−1∑
n=M

1
f2 (xs+1)

) 1
2
(

n−1∑
n=M

(∆ (ps+1 (∆xs+1)
α))2

) 1
2

−

(
n−1∑
n=M

(s + 1)2 g2 (xs+2, xs+1) (∆xs+1)
2

f2 (xs) f2 (xs+1)

) 1
2
(

n−1∑
n=M

(∆ (ps+1 (∆xs+1)
α))2

) 1
2

−

(
n−1∑
n=M

(s + 1)2 (∆xs+1)
2

f2 (xs)

) 1
2
(

n−1∑
n=M

q2
s

) 1
2

≤ M + 1
f (xM )

∆ (pM (∆xM )α)−
n−1∑
n=M

(s + 1) rs.

(2.9)

In view of the conditions (C1),(C2),(C3),(C4),(C5),(C6),(C8),(C9) and from the above inequality ( 2.9), we
obtain

n + 1
f (xn)

∆ (pn (∆xn)α)→∞ as n →∞.

Hence there exists an integer M1 > 0 such that

∆ (pn (∆xn)α) < 0 for n ≥M1.

Summing the above inequality from M1 to n− 1, we have

p
1
α
n ∆xn < p

1
α

M1
∆xM1 . (2.10)

Hence there exists a real number K > 0 such that p
1
α

M1
∆xM1 < −K.

Therefore, from equation ( 2.10), we have

p
1
α
n ∆xn < −K.

i.e., ∆xn < − K

p
1
α
n

.

Summing the above inequality from M1 to n− 1, we have

xn < xM1 −K

n−1∑
n=M1

1

p
1
α
n

. (2.11)



146 B. Selvaraj et al. / Oscillatory properties of...

In view of the condition (C7), from the above inequality ( 2.11) we find that xn → −∞ as n →∞. This is
a contradiction to the fact that xn > 0 for all n ≥M ≥ 0.

The proof is similar to the case when xn < 0 for all n ≥M , M ≥ 0 is an integer.
Hence the theorem is completely proved.

3 Example

Example 3.1. Consider the difference equation

∆2

(
1
n

(∆xn)3
)
−

4
(
2n2 + 4n + 1

)
n (n + 1) (n + 2)

(∆xn)3 +
8
(
2n2 + 4n + 1

)
n (n + 1) (n + 2)

xn = 0, n > 0. (3.1)

[
Here pn =

1
n

, qn =
4
(
2n2 + 4n + 1

)
n (n + 1) (n + 2)

, rn =
8
(
2n2 + 4n + 1

)
n (n + 1) (n + 2)

, and f (xn) = xn

]
All conditions of Theorem ( 2.1) are satisfied.
Hence all solutions of equation ( 3.1) are oscillatory.
In fact, {xn} = {(−1)n} is such a solution of equation ( 3.1).
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