## Malaya Journal of Matematik

#### MIM

an international journal of mathematical sciences with computer applications...



www.malayajournal.org

# Strongly unique best simulations approximation in linear 2-normed spaces

R. Vijayaragavan\*

School of Advanced Sciences, V I T University, Vellore-632014, Tamil Nadu, India.

#### Abstract

In this paper we established some basic properties of the set of strongly unique best simultaneous approximation in the context of linear 2-normed space.

Keywords: Linear 2-normed space, strongly unique best approximation, best simultaneous approximation and strongly unique best simultaneous approximation.

2010 MSC: 41A50, 41A52, 41A99, 41A28.

©2012 MJM. All rights reserved.

#### 1 Introduction

The problem of simultaneous approximation was studied by several authors. Diaz and McLaughlin [2,3], Dunham [4] and Ling, et al. [8] have considered the simultaneous approximation of two real-valued functions defined on a closed interval [a,b]. Several results related with best simultaneous approximation in the context of normed linear space under different norms were obtained by Goel, et al. [5,6], Phillips, et al. [11], Dunham [4] and Ling, et al. [8]. Strongly unique best simultaneous approximation are investigated by Laurent, et al. [7]. Pai, et al. [9,10] studied the characterization and unicity of strongly unique best simultaneous approximation in normed linear spaces. The notion of strongly unique best simultaneous approximation in the context of linear 2-normed spaces is introduced in this paper. Section 2 gives some important definitions and results that are used in the sequel. Some fundamental properties of the set of strongly unique best simultaneous approximation with respect to 2-norm are established in Section 3.

#### 2 Preliminaries

**Definition 2.1.** Let X be a linear space over real numbers with dimension greater than one and let  $\|.,.\|$  be a real-valued function on  $X \times X$  satisfying the following properties for all x, y, z in X.

- (i) ||x,y|| = 0 if and only if x and y are linearly dependent,
- (ii) ||x,y|| = ||y,x||,
- (iii)  $\|\alpha x, y\| = |\alpha| \|x, y\|$ , where  $\alpha$  is a real number,
- (iv) ||x, y + z|| < ||x, y|| + ||x, z||.

Then  $\|.,.\|$  is called a 2-norm and the linear space X equipped with the 2-norm is called a linear 2-normed space. It is clear that 2-norm is non-negative.

The following important property of 2-norm was established by Cho [1].

<sup>\*</sup>Corresponding author.

**Theorem 2.1.** [1] For any points  $x, y \in X$  and any  $\alpha \in \mathbb{R}$ ,

$$||x, y|| = ||x, y + \alpha x||.$$

**Definition 2.2.** Let G be a non-empty subset of a linear 2-normed space X. An element  $g_0 \in G$  is called a strongly unique best approximation to  $x \in X$  from G, if there exists a constant t > 0 such that for all  $g \in G$ ,

$$||x - g_0, k|| \le ||x - g, k|| - t||g - g_0, k||, \text{ for all } k \in X \setminus [G, x].$$

**Definition 2.3.** Let G be a non-empty subset of a linear 2-normed space X. An element  $g_0 \in G$  is called a best simultaneous approximation to  $x_1, \dots, x_n \in X$  from G if for all  $g \in G$ ,

$$\max\{\|x_1 - g_0, k\|, \cdots, \|x_n - g_0, k\|\} \le \max\{\|x_1 - g, k\|, \cdots, \|x_n - g, k\|\},\$$

for all 
$$k \in X \setminus [G, x_1, \dots, x_n]$$
.

The definition of strongly unique best simultaneous approximation in the context of linear 2-normed space is introduced here for the first time as follows:

**Definition 2.4.** Let G be a non-empty subset of a linear 2-normed space X. An element  $g_0 \in G$  is called a strongly unique best simultaneous approximation to  $x_1, \dots, x_n \in X$  from G, if there exists a constant t > 0 such that for all  $g \in G$ ,

$$\max\{\|x_1 - g_0, k\|, \cdots, \|x_n - g_0, k\|\} \le \max\{\|x_1 - g, k\|, \cdots, \|x_n - g, k\|\} - t\|g - g_0, k\|,$$

for all 
$$k \in X \setminus [G, x_1, \dots, x_n]$$
,

where  $[G, x_1, \dots, x_n]$  represents a linear space spanned by elements of G and  $x_1, \dots, x_n$ . Let  $Q_G(x_1, \dots, x_n)$  denote the set of all elements of strongly unique best simultaneous approximations to  $x_1, \dots, x_n \in X$  from G. The subset G is called an existence set if  $Q_G(x_1, \dots, x_n)$  contains at least one element for every  $x \in X$ . G is called a uniqueness set if  $Q_G(x_1, \dots, x_n)$  contains at most one element for every  $x \in X$ . G is called an existence and uniqueness set if  $Q_G(x_1, \dots, x_n)$  contains exactly one element for every  $x \in X$ .

### **3** Some fundamental properties of $Q_G(x_1, \dots, x_n)$

Some basic properties of strongly unique best simultaneous approximation are obtained in the following Theorems.

**Theorem 3.1.** Let G be a non-empty subset of a linear 2-normed space X and  $x_1, \dots, x_n \in X$ . Then the following statements hold.

- (i)  $Q_G(x_1, \dots, x_n)$  is closed if G is closed.
- (ii)  $Q_G(x_1, \dots, x_n)$  is convex if G is convex.
- (iii)  $Q_G(x_1, \dots, x_n)$  is bounded.

*Proof.* (i). Let G be closed.

Let  $\{g_m\}$  be a sequence in  $Q_G(x_1, \dots, x_n)$  such that  $g_m \to \tilde{g}$ .

To prove that  $Q_G(x_1, \dots, x_n)$  is closed, it is enough to show that  $\tilde{g} \in Q_G(x_1, \dots, x_n)$ .

Since G is closed,  $\{g_m\} \in G$  and  $g_m \to \tilde{g}$ , we have  $\tilde{g} \in G$ . Since  $\{g_m\} \in Q_G(x_1, \dots, x_n)$ , we have for all  $k \in X \setminus [G, x_1, \dots, x_n], g \in G$  and for some t > 0 that

$$\max\{\|x_{1} - g_{m}, k\|, \dots, \|x_{n} - g_{m}, k\|\} \leq \max\{\|x_{1} - g, k\|, \dots, \|x_{n} - g, k\|\} - t||g - g_{m}, k||.$$

$$\Rightarrow \max\{\|x_{1} - \tilde{g}, k\| - \|g_{m} - \tilde{g}, k\|, \dots, \|x_{n} - \tilde{g}, k\| - \|g_{m} - \tilde{g}, k\|\}$$

$$\leq \max\{\|x_{1} - g, k\|, \dots, \|x_{n} - g, k\|\} - t||g - g_{m}, k||$$
(3.1)

Since  $g_m \to \tilde{g}$ ,  $g_m - \tilde{g} \to 0$ . So  $||g_m - \tilde{g}, k|| \to 0$ , since 0 and k are linearly dependent.

Therefore, it follows from (3.1) that

$$\max\{\|x_1 - \tilde{g}, k\|, \cdots, \|x_n - \tilde{g}, k\|\} \le \max\{\|x_1 - g, k\|, \cdots, \|x_n - g, k\|\} - t\|g - \tilde{g}, k\|,$$
 for all  $g \in G$  and  $k \in X \setminus [G, x_1, \dots, x_n]$ , when  $m \to \infty$ .

Thus  $\tilde{g} \in Q_G(x_1, \dots, x_n)$ . Hence  $Q_G(x_1, \dots, x_n)$  is closed.

(ii). Let G be a convex set,  $g_1, g_2 \in Q_G(x_1, \dots, x_n)$  and  $0 < \alpha < 1$ . To show that  $\alpha g_1 + (1 - \alpha)g_2 \in Q_G(x_1, \dots, x_n)$ , let  $k \in X \setminus [G, x_1, \dots, x_n]$ .

Then

$$\max\{\|x_1 - (\alpha g_1 + (1 - \alpha)g_2), k\|, \dots, \|x_n - (\alpha g_1 + (1 - \alpha)g_2), k\|\}$$

$$\leq \max\{\alpha ||x_1 - g_1, k|| + (1 - \alpha)||x_1 - g_2, k||, \dots, \alpha ||x_n - g_1, k|| + (1 - \alpha)||x_n - g_2, k||\}$$

$$\leq \max\{\alpha ||x_1 - g_1, k||, \dots, \alpha ||x_n - g_1, k||\} + \max\{(1 - \alpha) ||x_1 - g_2, k||, \dots, (1 - \alpha) ||x_n - g_2, k||\}$$

 $\leq \alpha(\max\{\|x_1-g,k\|,\cdots,\|x_n-g,k\|\}-t||g-g_1,k||)$ 

 $+(1-\alpha)(\max\{\|x_1-g,k\|,\cdots,\|x_n-g,k\|\}-t\|g-g_2,k\|)$ , for all  $g\in G$  and for some t>0.

$$= \max\{\|x_1 - g, k\|, \cdots, \|x_n - g, k\|\} - t(\|\alpha g - \alpha g_1, k\| + \|(1 - \alpha)g - (1 - \alpha)g_2, k\|)$$

$$\leq \max\{\|x_1-g,k\|,\cdots,\|x_n-g,k\|\}-t\|\alpha g-\alpha g_1+(1-\alpha)g-(1-\alpha)g_2,k\|$$

$$= \max\{\|x_1 - g, k\|, \cdots, \|x_n - g, k\|\} - t\|g - (\alpha g_1 + (1 - \alpha)g_2), k\|.$$

Thus  $\alpha g_1 + (1 - \alpha)g_2 \in Q_G(x_1, \dots, x_n)$ . Hence  $Q_G(x_1, \dots, x_n)$  is convex.

(iii). To prove that  $Q_G(x_1, \dots, x_n)$  is bounded, it is enough to prove for arbitrary  $g_0, \tilde{g_0} \in Q_G(x_1, \dots, x_n)$  that  $\|g_0 - \tilde{g_0}, k\| < C$  for some C > 0, since  $\|g_0 - \tilde{g_0}, k\| < C$  implies that  $\sup_{g_0, \tilde{g_0} \in Q_G(x_1, \dots, x_n)} \|g_0 - \tilde{g_0}, k\|$  is finite and

hence the diameter of  $Q_G(x_1, \dots, x_n)$  is finite.

Let  $g_0, \tilde{g_0} \in Q_G(x_1, \dots, x_n)$ . Then there exists a constant t > 0 such that for all  $g \in G$  and  $k \in X \setminus [G, x_1, \dots, x_n]$ ,  $\max\{\|x_1 - g_0, k\|, \dots, \|x_n - g_0, k\|\} \le \max\{\|x_1 - g, k\|, \dots, \|x_n - g, k\|\} - t||g - g_0, k||$  and

 $\max\{\|x_1-\tilde{g_0},k\|,\cdots,\|x_n-\tilde{g_0},k\|\} \leq \max\{\|x_1-g,k\|,\cdots,\|x_n-g,k\|\} - t||g-\tilde{g_0},k||.$  Now,

$$||g - g_0, k|| \le ||x_1 - g, k|| + ||x_1 - g_0, k||$$
  
  $\le 2 \max\{||x_1 - g, k||, \dots, ||x_n - g, k||\} - t||g - g_0, k||.$ 

Thus  $||g - g_0, k|| \le \frac{2}{1+t} \max_{q \ge 0} \{||x_1 - g, k||, \dots, ||x_n - g, k||\}$  for all  $g \in G$ .

Hence  $||g - g_0, k|| \le \frac{2}{1+t}d$ ,

where  $d = \inf_{g \in G} \max\{\|x_1 - g, k\|, \dots, \|x_n - g, k\|\}.$ 

Similarly,  $||g - \tilde{g_0}, k|| \leq \frac{2}{1+t}d$ .

Therefore, it follows that

$$||g_0 - \tilde{g_0}, k|| \le ||g_0 - g, k|| + ||g - \tilde{g_0}, k||$$
  
  $\le \frac{4}{1+t}d$   
  $= C.$ 

Hence  $Q_G(x_1, \dots, x_n)$  is bounded.

Let X be a linear 2-normed space,  $x \in X$  and [x] denote the set of all scalar multiplications of x.

i.e., 
$$[x] = \{\alpha x : \alpha \in \mathbb{R}\}.$$

**Theorem 3.2.** Let G be a subset of a linear 2-normed space  $X, x_1, \dots, x_n \in X$  and  $k \in X \setminus [G, x_1, \dots, x_n]$ . Then the following statements are equivalent for all  $y \in [k]$ .

(i) 
$$g_0 \in Q_G(x_1, \dots, x_n)$$
.

(ii) 
$$g_0 \in Q_G(x_1 + y, \dots, x_n + y)$$
.

(iii) 
$$q_0 \in Q_G(x_1 - y, \dots, x_n - y)$$
.

(iv) 
$$g_0 + y \in Q_G(x_1 + y, \dots, x_n + y)$$
.

(v) 
$$g_0 + y \in Q_G(x_1 - y, \dots, x_n - y)$$
.

(vi) 
$$g_0 - y \in Q_G(x_1 + y, \dots, x_n + y)$$
.

(vii) 
$$g_0 - y \in Q_G(x_1 - y, \dots, x_n - y)$$
.

(viii) 
$$g_0 + y \in Q_G(x_1, \dots, x_n)$$
.

(ix) 
$$q_0 - y \in Q_G(x_1, \dots, x_n)$$
.

*Proof.* The proof follows immediately by using Theorem 2.1.

**Theorem 3.3.** Let G be a subspace of a linear 2-normed space  $X, x_1, \dots, x_n \in X$  and  $k \in X \setminus [G, x_1, \dots, x_n]$ . Then

$$g_0 \in Q_G(x_1, \dots, x_n) \Leftrightarrow g_0 \in Q_G(\alpha^m x_1 + (1 - \alpha^m)g_0, \dots, \alpha^m x_n + (1 - \alpha^m)g_0),$$

for all  $\alpha \in \mathbb{R}$  and  $m = 0, 1, 2, \cdots$ 

Proof. Claim:

$$g_0 \in Q_G(x_1, \dots, x_n) \Leftrightarrow g_0 \in Q_G(\alpha x_1 + (1 - \alpha)g_0, \dots, \alpha x_n + (1 - \alpha)g_0), \text{ for all } \alpha \in \mathbb{R}.$$

Let  $g_0 \in Q_G(x_1, \dots, x_n)$ . Then

$$\max\{\|x_1 - g_0, k\|, \dots, \|x_n - g_0, k\|\}$$

$$\leq \max\{\|x_1 - g, k\|, \dots, \|x_n - g, k\|\} - t\|g - g_0, k\|, \text{ for all } g \in G \text{ and for some } t > 0.$$

$$\Rightarrow \max\{\|\alpha x_1 - \alpha g_0, k\|, \cdots, \|\alpha x_n - \alpha g_0, k\|\}$$

$$\leq \max\{\|\alpha x_1 - \alpha g, k\|, \cdots, \|\alpha x_n - \alpha g, k\|\} - t \|\alpha g - \alpha g_0, k\|\}, \text{ for all } g \in G.$$

$$\Rightarrow \max\{\|\alpha x_1 - \alpha g_0, k \|, \cdots, \|\alpha x_n - \alpha g_0, k \|\}$$

$$\leq \max \left\{ \| \alpha x_{1} - \alpha \left( \frac{(\alpha - 1)g_{0} + g}{\alpha} \right), k \|, \dots, \| \alpha x_{n} - \alpha \left( \frac{(\alpha - 1)g_{0} + g}{\alpha} \right), k \| \right\}$$

$$-t \| \alpha \left( \frac{(\alpha - 1)g_{0} + g}{\alpha} \right) - \alpha g_{0}, k \|, \text{ for all } g \in G \text{ and } \alpha \neq 0, \text{ since } \frac{(\alpha - 1)g_{0} + g}{\alpha} \in G.$$

$$\Rightarrow \max \{ \| \alpha x_{1} + (1 - \alpha)g_{0} - g_{0}, k \|, \dots, \| \alpha x_{n} + (1 - \alpha)g_{0} - g_{0}, k \| \}$$

$$\leq \max \{ \| \alpha x_{1} + (1 - \alpha)g_{0} - g, k \|, \dots, \| \alpha x_{n} + (1 - \alpha)g_{0} - g, k \| \} - t \|g - g_{0}, k \|.$$

 $\Rightarrow g_0 \in Q_G(\alpha x_1 + (1 - \alpha)g_0, \dots, \alpha x_n + (1 - \alpha)g_0), \text{ when } \alpha \neq 0.$ 

If  $\alpha = 0$ , then it is clear that  $g_0 \in Q_G(\alpha x_1 + (1 - \alpha)g_0, \dots, \alpha x_n + (1 - \alpha)g_0)$ .

The converse is obvious by taking  $\alpha = 1$ . Hence the claim is true.

**Corollary 3.1.** Let G be a subspace of a linear 2-normed space  $X, x_1, \dots, x_n \in X$  and  $k \in X \setminus [G, x_1, \dots, x_n]$ . Then the following statements are equivalent for all  $y \in [k], \alpha \in \mathbb{R}$  and  $m = 0, 1, 2, \dots$ 

(i) 
$$q_0 \in Q_G(x_1, \dots, x_n)$$
.

(ii) 
$$g_0 \in Q_G(\alpha^m x_1 + (1 - \alpha^m)g_0 + y, \dots, \alpha^m x_n + (1 - \alpha^m)g_0 + y)$$
.

(iii) 
$$g_0 \in Q_G(\alpha^m x_1 + (1 - \alpha^m)g_0 - y, \dots, \alpha^m x_n + (1 - \alpha^m)g_0 - y).$$

(iv) 
$$g_0 + y \in Q_G(\alpha^m x_1 + (1 - \alpha^m)g_0 + y, \dots, \alpha^m x_n + (1 - \alpha^m)g_0 + y).$$

(v) 
$$g_0 + y \in Q_G(\alpha^m x_1 + (1 - \alpha^m)g_0 - y, \dots, \alpha^m x_n + (1 - \alpha^m)g_0 - y).$$

(vi) 
$$q_0 - y \in Q_G(\alpha^m x_1 + (1 - \alpha^m)q_0 + y, \dots, \alpha^m x_n + (1 - \alpha^m)q_0 + y)$$
.

(vii) 
$$g_0 - y \in Q_G(\alpha^m x_1 + (1 - \alpha^m)g_0 - y, \dots, \alpha^m x_n + (1 - \alpha^m)g_0 - y).$$

(viii) 
$$g_0 + y \in Q_G(\alpha^m x_1 + (1 - \alpha^m)g_0, \dots, \alpha^m x_n + (1 - \alpha^m)g_0).$$

(ix) 
$$g_0 - y \in Q_G(\alpha^m x_1 + (1 - \alpha^m)g_0, \dots, \alpha^m x_n + (1 - \alpha^m)g_0)$$
.

*Proof.* The proof follows immediately from simple application of Theorem 2.2 and Theorem 3.3.  $\Box$ 

**Theorem 3.4.** Let G be a subset of a linear 2-normed space  $X, x_1, \dots, x_n \in X$  and  $k \in X \setminus [G, x_1, \dots, x_n]$ . Then

$$g_0 \in Q_G(x_1, \cdots, x_n) \Leftrightarrow g_0 \in Q_{G+[k]}(x_1, \cdots, x_n).$$

*Proof.* The proof follows from a simple application of Theorem 3.2.

A corollary similar to that of Corollary 3.4 is established next as follows:

**Corollary 3.2.** Let G be a subspace of a linear 2-normed space  $X, x_1, \dots, x_n \in X$  and  $k \in X \setminus [G, x_1, \dots, x_n]$ . Then the following statements are equivalent for all  $y \in [k], \alpha \in \mathbb{R}$  and  $m = 0, 1, 2, \dots$ 

(i) 
$$g_0 \in Q_{G+[k]}(x_1, \cdots, x_n)$$
.

(ii) 
$$g_0 \in Q_{G+[k]}(\alpha^m x_1 + (1 - \alpha^m)g_0 + y, \dots, \alpha^m x_n + (1 - \alpha^m)g_0 + y).$$

(iii) 
$$g_0 \in Q_{G+[k]}(\alpha^m x_1 + (1 - \alpha^m)g_0 - y, \dots, \alpha^m x_n + (1 - \alpha^m)g_0 - y).$$

(iv) 
$$g_0 + y \in Q_{G+[k]}(\alpha^m x_1 + (1 - \alpha^m)g_0 + y, \dots, \alpha^m x_n + (1 - \alpha^m)g_0 + y).$$

(v) 
$$g_0 + y \in Q_{G+[k]}(\alpha^m x_1 + (1 - \alpha^m)g_0 - y, \dots, \alpha^m x_n + (1 - \alpha^m)g_0 - y).$$

(vi) 
$$g_0 - y \in Q_{G+[k]}(\alpha^m x_1 + (1 - \alpha^m)g_0 + y, \dots, \alpha^m x_n + (1 - \alpha^m)g_0 + y).$$

(vii) 
$$g_0 - y \in Q_{G+[k]}(\alpha^m x_1 + (1 - \alpha^m)g_0 - y, \dots, \alpha^m x_n + (1 - \alpha^m)g_0 - y).$$

(viii) 
$$g_0 + y \in Q_{G+[k]}(\alpha^m x_1 + (1 - \alpha^m)g_0, \dots, \alpha^m x_n + (1 - \alpha^m)g_0).$$

(ix) 
$$g_0 - y \in Q_{G+[k]}(\alpha^m x_1 + (1 - \alpha^m)g_0, \dots, \alpha^m x_n + (1 - \alpha^m)g_0).$$

*Proof.* The proof easily follows from Theorem 3.5 and Corollary 3.4.

**Proposition 3.1.** Let G be a subset of a linear 2-normed space  $X, x_1, \dots, x_n \in X, k \in X \setminus [G, x_1, \dots, x_n]$  and  $0 \in G$ . If  $g_0 \in Q_G(x_1, \dots, x_n)$ , then there exists a constant t > 0 such that  $\max\{\|x_1 - g_0, k\|, \dots, \|x_n - g_0, k\|\} \le \max\{\|x_1, k\|, \dots, \|x_n, k\|\} - t||g_0, k||$ .

*Proof.* The proof is obvious.

**Proposition 3.2.** Let G be a subset of a linear 2-normed space  $X, x_1, \dots, x_n \in X$  and  $k \in X \setminus [G, x_1, \dots, x_n]$ . If  $g_0 \in Q_G(x_1, \dots, x_n)$ , then there exists a constant t > 0 such that for all  $g \in G$ ,  $||g - g_0, k|| \le 2 \max\{||x_1 - g, k||, \dots, ||x_n - g, k||\} - t||g - g_0, k||$ .

*Proof.* The proof is trivial.

**Theorem 3.5.** Let G be a subspace of a linear 2-normed space X and  $x_1, \dots, x_n \in X$ . Then the following statements hold

(i) 
$$Q_G(x_1 + g, \dots, x_n + g) = Q_G(x_1, \dots, x_n) + g$$
, for all  $g \in G$ .

(ii) 
$$Q_G(\alpha x_1, \dots, \alpha x_n) = \alpha Q_G(x_1, \dots, x_n)$$
, for all  $\alpha \in \mathbb{R}$ .

*Proof.* (i). Let  $\tilde{g}$  be an arbitrary but fixed element of G.

Let  $g_0 \in Q_G(x_1, \dots, x_n)$ . It is clear that  $g_0 + \tilde{g} \in Q_G(x_1, \dots, x_n) + \tilde{g}$ .

To prove that  $Q_G(x_1, \dots, x_n) + \tilde{g} \subseteq Q_G(x_1 + \tilde{g}, \dots, x_n + \tilde{g})$ , it is enough to show that  $g_0 + \tilde{g} \in Q_G(x_1 + \tilde{g}, \dots, x_n + \tilde{g})$ .

Now,

$$\max\{\|x_{1} + \tilde{g} - g_{0} - \tilde{g}, k\|, \cdots, \|x_{n} + \tilde{g} - g_{0} - \tilde{g}, k\|\}$$

$$\leq \max\{\|x_{1} - g, k\|, \cdots, \|x_{n} - g, k\|\} - t||g - g_{0}, k||,$$
for all  $g \in G$  and for some  $t > 0$ .
$$\Rightarrow \max\{\|x_{1} + \tilde{g} - (g_{0} + \tilde{g}), k\|, \cdots, \|x_{n} + \tilde{g} - (g_{0} + \tilde{g}), k\|\}$$

$$\leq \max\{\|x_{1} + \tilde{g} - g, k\|, \cdots, \|x_{n} + \tilde{g} - g, k\|\} - t||g - (g_{0} + \tilde{g}), k||,$$
for all  $g \in G$  and for some  $t > 0$ , since  $g - \tilde{g} \in G$ .

Thus  $g_0 + \tilde{g} \in Q_G(x_1 + \tilde{g}, \dots, x_n + \tilde{g})$ .

Conversely, let  $g_0 + \tilde{g} \in Q_G(x_1 + \tilde{g}, \dots, x_n + \tilde{g})$ . To prove that  $Q_G(x_1 + \tilde{g}, \dots, x_n + \tilde{g}) \subseteq Q_G(x_1, \dots, x_n) + \tilde{g}$ , it is enough to show that  $g_0 \in Q_G(x_1, \dots, x_n)$ . Let  $k \in X \setminus [G, x_1, \dots, x_n]$ .

Then 
$$\max\{\|x_1 - g_0, k\|, \cdots, \|x_n - g_0, k\|\}$$

$$= \max\{\|x_1 + \tilde{g} - (g_0 + \tilde{g}), k\|, \cdots, \|x_n + \tilde{g} - (g_0 + \tilde{g}), k\|\}$$

$$\leq \max\{\|x_1 + \tilde{g} - g, k\|, \cdots, \|x_n + \tilde{g} - g, k\|\} - t||g - (g_0 + \tilde{g}), k||,$$
for all  $g \in G$  and for some  $t > 0$ .
$$\Rightarrow \max\{\|x_1 - g_0, k\|, \cdots, \|x_n - g_0, k\|\}$$

$$\leq \max\{\|x_1 + \tilde{g} - (g + \tilde{g}), k\|, \cdots, \|x_n + \tilde{g} - (g + \tilde{g}), k\|\}$$

$$-t||(g + \tilde{g}) - (g_0 + \tilde{g}), k||,$$
for all  $g \in G$  and for some  $t > 0$ , since  $g + \tilde{g} \in G$ .
$$\Rightarrow g_0 \in Q_G(x_1, \cdots, x_n).$$
 Thus the result follows.

(ii). The proof is similar to that of (i).

Remark 3.1. Theorem 3.9 can be restated as

$$Q_G(\alpha x_1 + g, \dots, \alpha x_n + g) = \alpha Q_G(x_1, \dots, x_n) + g$$
, for all  $g \in G$ .

#### References

- [1] Y.J. Cho, Theory of 2-inner Product Spaces, Nova Science Publications, New York, 1994.
- [2] J.B. Diaz and H.W.McLaughlin, On simultaneous Chebyshev approximation of a set of bounded complex-valued functions, *J. Approx Theory*, 2(1969), 419-432.
- [3] J.B. Diaz and H.W.McLaughlin, On simultaneous Chebyshev approximation and Chebyshev approximation with an additive weight function, *J. Approx Theory*, 6(1972), 68-71.
- [4] C.B. Dunham, Simultaneous Chebyshev approximation of functions on an interval, *Proc. Amer. Math. Soc.*, 18(1967), 472-477.
- [5] D.S. Goel, A.S.B. Holland, C. Nasim and B.N.Sahney, On best simultaneous approximation in normed linear spaces. *Canad. Math. Bull.*, 17(4)(1974), 523-527.
- [6] D.S. Goel, A.S.B. Holland, C. Nasim, and B.N.Sahney, Characterization of an element of best  $L_p$  simultaneous approximation, S.R.Ramanujan Memorial Volume, Madras, 1974, 10-14.
- [7] P.J. Laurent and D.V. Pai, Simultaneous approximation of vector valued functions, Research Report, MRR03-97, Department of Mathematics, IIT, Bombay, 1997.
- [8] W.H. Ling, H.W. McLaughlin and M.L. Smith, Approximation of random functions, AMS Notices, 22(1975), A-161.
- [9] D.V. Pai, Characterization of strong uniqueness of best simultaneous approximation, in Proceedings of the Fifth Annual Conference of Indian Society of Industrial and Applied Mathematics (ISIAM), Bhopal, 1998.
- [10] D.V. Pai and K. Indira, Strong unicity in simultaneous approximation, in *Proceedings of the Conference on Analysis, Wavelets and Applications*, Feb. 12-14, 2000.
- [11] G.H. Phillips and B.N. Sahney, Best simultaneous approximation in the  $L_1$  and  $L_2$  norms, in *Proceeding of conference on theory of Approximation at University of Calgary (August 1975)*, Academic Press, New York.

Received: May 22, 2013; Accepted: September 17, 2013