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Abstract

In this paper we established some basic properties of the set of strongly unique best simultaneous approxi-
mation in the context of linear 2-normed space.
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1 Introduction

The problem of simultaneous approximation was studied by several authors. Diaz and McLaughlin [2,3],
Dunham [4] and Ling, et al.[8] have considered the simultaneous approximation of two real-valued functions
defined on a closed interval [a,b]. Several results related with best simultaneous approximation in the context
of normed linear space under different norms were obtained by Goel, et al. [5,6], Phillips, et al. [11], Dunham [4]
and Ling, et al. [8]. Strongly unique best simultaneous approximation are investigated by Laurent, et al. [7].
Pai, et al. [9,10] studied the characterization and unicity of strongly unique best simultaneous approximation in
normed linear spaces. The notion of strongly unique best simultaneous approximation in the context of linear
2-normed spaces is introduced in this paper. Section 2 gives some important definitions and results that are
used in the sequel. Some fundamental properties of the set of strongly unique best simultaneous approximation
with respect to 2-norm are established in Section 3.

2 Preliminaries

Definition 2.1. Let X be a linear space over real numbers with dimension greater than one and let ||.,.|| be a
real-valued function on X x X satisfying the following properties for all x,y,z in X.

(i) ||z, yl = 0 if and only if x and y are linearly dependent,
(it) |z, yll = lly, =|,
(iii) ||ax,y|| = |a|l|z,yl|, where a is a real number,

(iv) l|z,y+ 2| < llz, yll + [z, z|.

Then ||.,.|| is called a 2-norm and the linear space X equipped with the 2-norm is called a linear 2-normed
space. It is clear that 2-norm is non-negative.

The following important property of 2-norm was established by Cho [1].
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Theorem 2.1. [1] For any points x,y € X and any a € R,
Iz, yll = llz,y + ax]|.

Definition 2.2. Let G be a non-empty subset of a linear 2-normed space X. An element go € G is called a
strongly unique best approximation to x € X from G, if there exists a constant t > 0 such that for all g € G,

|z — go, k|| < ||l — g, k|| — tllg — g0, k||, for all k € X\[G,x].

Definition 2.3. Let G be a non-empty subset of a linear 2-normed space X. An element g9 € G is called a
best simultaneous approrimation to x1,--- ,x, € X from G if for all g € G,

max{||zy = go, k[l [#n = go, kl[} < max{|jzy — g, kll, -, lzn — g, K[},

for all k € X\[G,x1,- - ,xy].

The definition of strongly unique best simultaneous approximation in the context of linear 2-normed space
is introduced here for the first time as follows:

Definition 2.4. Let G be a non-empty subset of a linear 2-normed space X. An element go € G is called a
strongly unique best simultaneous approximation to x1,--- ,x, € X from G, if there exists a constant t > 0
such that for all g € G,

max{|[z1 = go, kll, - s [[2n = go, kl[} < max{{zr — g, kll,- -+ [[en — g, kl[} = tllg — g0, kI,

for all k € X\[G,x1,--- ,x,),

where [G,x1,- - ,x,] represents a linear space spanned by elements of G and x1,- - ,x,. Let Qa(x1, -+ ,xy)
denote the set of all elements of strongly unique best simultaneous approximations to x1,--- ,x, € X from G.
The subset G is called an existence set if Qg (x1, - ,x,) contains at least one element for every x € X. G
is called a uniqueness set if Qa(x1,--+ ,xpn) contains at most one element for every x € X. G is called an
existence and uniqueness set if Qg (x1,- -+ ,xy,) contains exactly one element for every x € X.

3 Some fundamental properties of Qg(zy, - ,x,)

Some basic properties of strongly unique best simultaneous approximation are obtained in the following
Theorems.

Theorem 3.1. Let G be a non-empty subset of a linear 2-normed space X and x1,---, x, € X. Then the
following statements hold.

(i) Qc(x1,--+ ,2n) is closed if G is closed.
(i) Qa(z1,--- ,xp) is conver if G is conves.
(iii) Qa(x1, -+ ,xn) is bounded.

Proof. (i). Let G be closed.

Let {gn} be a sequence in Qg(z1,- - ,x,) such that g,, — g.

To prove that Qc(x1,-+ ,2n) is closed, it is enough to show that
g S QG(‘T;17' te 71‘71)-

Since G is closed, {gm} € G and ¢, — §, we have § € G. Since {g,,} € Q¢ (z1,--- ,x,), we have for all
ke X\[G,z1, - ,z,],g9 € G and for some t > 0 that

max{||:c1 - gmakH7' ) HITL - gmka} < max{”xl - gvkl|7' o 7H:C’ﬂ - gakH} - t||g - gm7k||‘
= max{||m1 - g7kH - ||gm _§7k”7' o 7||$" _§7k|| - ||gm - gka}
< max{|[z1 — g, kll,- -+, [len — g, klI} — tllg — gm., Kl| (3.1)

Since gm — G, gm — g — 0. So ||gm — g, k|| — 0, since 0 and k are linearly dependent.
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Therefore, it follows from (3.1) that

max{”xl 7§7k”7" : 7||I7l 7§akH} < maX{Hxl 797]{3”7"' 7||‘In 7gak||} 7t”97§7k||a
for all g € G and k € X\[G,z1,...,2,], when m — oo.

Thus § € Qg(x1, -+ ,x,). Hence Qg(x1, -+ ,x,) is closed.
(ii). Let G be a convex set, ¢g1,92 € Qg(x1, - ,z,) and 0 < a < 1. To show that ag; + (1 — a)gs €
Qa(x1, - ,xn), let k€ X \ [G, 21, , 2]
Then

max{||lz1 — (agr + (1 — a)ga), kI, -, [|on — (g1 + (1 — a)g2), k| }

< max{allz1 — g1, k|| + (1 — a)llzy — g2, kl|, -+, ellwn — g1, k][ + (1 — a)||zn — g2, K[}

< max{allzr — gukll, -+ allzn — g1, K} + max{(1 - a) 2 — g2, K, - -,

(1= )lln — g2, K|}

< a(max{|lz1 — g, kll,- -+, [len — g, K[} — tllg — g1, kl])
+ (1 — a)(max{|lz1 — g, kll, -, llzn — 9, E||} — tllg — g2, k]|), for all g € G and for some ¢t > 0.

=max{[lzy — g, k[, -+, [|on — g, klI} — t(llog — gy, k| + [[(1 — a)g — (1 — a)g2, k)

< max{ w1 — g, kll, -+, |n — g, K[} — tllag — ags + (1 — a)g — (1 — a)gz, bl

= ma{ a1 — g, kll,+ n — g, K[} — tllg — (ags + (1 — a)ga), kI

Thus ag; + (1 — a)ge € Qa(z1, -+ ,xy,). Hence Qg(z1,- -+ ,x,) is convex.
(iii). To prove that Q¢(z1,- - ,xy) is bounded, it is enough to prove for arbitrary go, go € Qa(z1,: -+ ,zn) that
llgo — go, k|| < C for some C > 0, since ||go — do, k|| < C implies that sup llgo — go, k|| is finite and

90,90€QG (T1,...,Tn)

hence the diameter of Qg (x1,- - ,x,) is finite.
Let go, do € Qc(x1,- -+ ,x,). Then there exists a constant ¢ > 0 such that forallg € Gand k € X \ [G,z1,- -+ ,z,],
masc{}21 — go, kll -+ ,llon — o, K[} < max{llzs — g, kI, -+ , I}t — g, kll} — tllg — go, k|
and
mac{l}1 — do,bll, n — o, K[} < mas{ 21 — g, K, 5 — g, K|} — tlg — o, I
Now,

lg = go: Kl < [lz1 = g, kIl + llz1 = g0, |l
<

2max{||z1 — g, kl, -+, [len — g, Kl } = tllg — go, Kl|-
Thus ||g — go, k|| < %H max{||z1 — g, k|, - ,||zn — g, k||} for all g € G.
Hence Hg _g07k|| < %HCL
where d = inf max{||z1 — g, k|, -, ||lzn — g, k|| }.
geG
Similarly, [|g — do, k|| < 12;d.
Therefore, it follows that
lgo — go, kIl < lgo — g, kll + llg — do, k|l
< -
- 1+t
= C.
Hence Qg(x1,- -+ ,xy,) is bounded.

Let X be a linear 2-normed space, € X and [z] denote the set of all scalar multiplications of x.

ie., [z] = {ax: o € R}.

Theorem 3.2. Let G be a subset of a linear 2-normed space X, x1, -+ ,xn € X and k € X \ [G, 21, ,zy).
Then the following statements are equivalent for all y € [k].

(Z) go € QG(xlv"' 7xn)-
(ii) go € Qc(z1+ Yy, ,Tn +Y).

(ii) go € Qa(r1 =y, -+, Zn —Y)-
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() go+y € Qa(r1 +y, -+, 20 +y).
(v) go+y€Qa(xr—y, 20 —y).
(vi) go —y € Qa1+ vy, - ,Zn +¥).
(vii) go —y € Qa(r1 — Y, ,Zn —Y).
(viii) go +y € Qg (w1, ,Tn).

(ZZL’) go— Y€ QG(xla T axn)-

Proof. The proof follows immediately by using Theorem 2.1. O
Theorem 3.3. Let G be a subspace of a linear 2-normed space X, x1,-+ ,x, € X and k € X \ [G,x1,- -+ ,zy].
Then

g0 € Qa(z1,-- ,2n) & g0 € Qa(a™z1 + (1 —a™)go, - ,a™x, + (1 —a™)go),
forallao e R and m=0,1,2,---

Proof. Claim:
9o € Qa(z1, - ,z,) © go € Qalazs + (1 — a)go, -+ ,ax, + (1 —a)gp), for all « € R.

Let go € Qa (21, ,2n). Then

max{|[z1 — go,k [, | Zn — g0,k [|}
< max{||z1 —g.k |, -, lzn — g, kll} — tllg — g0, k ||, for all g € G and for some ¢ > 0.
= max{[| azy —ago,k ||, | axn — ago, k ||}
< max{” axy — O[g,k ||7 7” QTn 7O‘gak ||} -t || ozg—ozgo,k ||}a for all g€ G.
= maX{H axl_agmk”?"' aH ‘m’n_agmk‘u}
—1 —1
< max{ mla(W>,k||,... il azna<<a>90+g)7k}
« !
-1 -1
—t| « ((a)g(ﬁ—g) — ago, k||, for all g € G and « # 0, since w €G.
« a
= max{[| ax1 + (1 —a)go — go. k ||+, || azn + (1 = @)go — g0, k ||}
< max {[| axy + (1 —a)go — g, kll, -+, [lexn + (1 — @)go — g,k ||} — tllg — go, Kl|.
= go € Qg(az; + (1 — a)go, - ,az, + (1 — @)go), when a # 0.
If @ =0, then it is clear that go € Qa(azi + (1 — a)go, - -+, az, + (1 — a)go).
The converse is obvious by taking o = 1. Hence the claim is true. O
Corollary 3.1. Let G be a subspace of a linear 2-normed space X, x1,- -+ ,x, € X andk € X \ [G,x1, - ,2n].

Then the following statements are equivalent for all y € [k],a € R and m =0,1,2,---
(i) go € Qc (1, ,2n).
(i) go € Qa(a™x1+ (1 —a™)go+y, -, a™x, + (1 —a™)go +y).

(iii) go € Qa(a™x; + (1 —a™)go —y, - ,a™xy, + (1 —a™)go — y).

(iv) go+vy € Qala™z1+ (1 —a™)go+y, - ,a™x, + (1 —a™)go +y)-

(v) go+y € Qala™r1+ (1 —a™)go—y, -, aMan + (1 —a™)go — y).

(vi) go—y € Qa(a™z1+ (1 —a™)go+ vy, - ,a™x, + (1 —a™)go +y)-
(vii) go —y € Qa(a™x1 + (1 —a™)go — y, -+ ,a™xp + (1 — a™)go — y).
(viii) go +y € Qa(a™xy + (1 — a™)go, amx, + (1 —a™)go)
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(ir) go —y € Qa(a™w1 + (L —a™)go, -+, a™wn + (1 —a™)go).

Proof. The proof follows immediately from simple application of Theorem 2.2 and Theorem 3.3. U
Theorem 3.4. Let G be a subset of a linear 2-normed space X, x1,--+ ,2p € X and k € X \ [G,x1, -, xy).
Then

9o € Qa(w1,-++ ,2n) & go € Qatp) (1, -+, Tn).
Proof. The proof follows from a simple application of Theorem 3.2. O

A corollary similar to that of Corollary 3.4 is established next as follows:

Corollary 3.2. Let G be a subspace of a linear 2-normed space X, x1,--+ ,xp € X and k € X \ [G, 21, -+, xy).
Then the following statements are equivalent for all y € k], € R and m =0,1,2,---

(i) go € Qg (T1,- -+, 70).
(ii) go € Qe (@™ + (1 —a™)go +y, -+, 0w, + (1 —a™)go +y).

(i4) go € Qatr (@™ 1+ (1 —a™)go =y, ,a™x, + (1 —a™)go —y).

(iv) go +y € Qarw(a™zr+ (1 —a™)go +y, -+ ,aMaxn + (1= a™)go +y)-
(v) 9o +y € Qe (@™@1+ (1 —a™)go —y, -+ o™z, + (1 —a™)go — y).
(vi) go —y € Qayp(@™w1 + (1 —a™)go +y, - ,amx, + (1 —a™)go +y).
(vii) go —y € Qayp(@™z1 + (1 —a™)go =y, -+, 0"z, + (1 —a™)go — ¥).
(viii) go +y € Qo+ (a™z1+ (1 —a™)go, -+, a™xy + (1 —a™)go).
(iz) go —y € Qayx (@™ w1 + (1 —a™)go, -+ ,a™xy, + (1 —a™)go).
Proof. The proof easily follows from Theorem 3.5 and Corollary 3.4. O
Proposition 3.1. Let G be a subset of a linear 2-normed space X, x1,-+ 2, € X, k € X \ [G, 21, ,x4)
and 0 € G. TIf go € Qg (x1, -+ ,xy), then there exists a constant t > 0 such that
max{[| x1 — go, k[, , | @n — g0,k [[} S max{|| z1,k [|,-- || &n, k ||} = l|g0, k-
Proof. The proof is obvious. O
Proposition 3.2. Let G be a subset of a linear 2-normed space X, x1,- -+ ,x, € X andk € X \ [G, 21, -, Tp].
If go € Qa(x1,- -+ ,x,), then there exists a constant t > 0 such that for all g € G,
g = go. kIl < 2max{[|z1 — g, k[, -, [lzn — g, K[} — t]lg — g0, Kl|-
Proof. The proof is trivial. O
Theorem 3.5. Let G be a subspace of a linear 2-normed space X and x1,---, x, € X. Then the following

statements hold.
(i) Qa(x1+ g, ;a0 +g) = Qalr1, - ,2n) +g, foralged.
(ii) Qclaxy, - ,ax,) = aQg(x1, -+ ,x,), for all @ € R.

Proof. (i). Let § be an arbitrary but fixed element of G.
Let go € Qa(x1, -+ ,xy). It is clear that go + g € Qg (a1, ,zn) + §.
To prove that Qg (21, -+ ,2,) + 3§ C Qa(x1 + G, - ,&n + §), it is enough to show that go + § € Q¢ (z1 +

§,-~-,xn+§)-
Now,
maX{Hxl +§_go_§7k”a 7||xn+§_go_§7k”}
< max{ller — gkl [n — g, K]} — tllg — go. k1l
for all ¢ € G and for some t > 0.
= max{llzy + 97— (90 + ). kll,- -, [len + G — (90 + 9), |}
< maX{Hxl—kg—g,kH,--- 7||33n+§—gakH}—t||g—(90+§)7k||,

for all g € G and for some t > 0, since g — g € G.
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Thus go+ g € Qa(x1 + G, ,Tn + ).

COHV€TS€1Y7 let 90+§ € QG(Il +§7 o arn+g) To prove that QG(xl +§a e 7xn+§) - QG(‘Tla T 7xn)+ga

it is enough to show that gg € Qg(z1, - ,zpn). Let k € X \[G,z1,- - ,z,].

Then max{||z1 — go. k||, -, |0 — g0, K[|}
= max{[lz1 +7— (g0 +9),kll,- -, |z + 3 — (g0 + 9), K[|}
S maX{Hxl +§_g7k”7 >||mn+§—9ak”}_t”9—(go +§)7k||7

for all ¢ € G and for some ¢ > 0.

= max{[lz1 — go. kll, -, lzn — g0, I}
<max{llzs +g—(9+9).kl, -, lzn+9— (9+9),kll}
—t[|(g +9) — (90 + 9), Kl],
for all g € G and for some ¢t > 0, since g+ g € G.
= g0 € Qa(x1,- -+ ,xy,). Thus the result follows.
(ii). The proof is similar to that of (i). O

Remark 3.1. Theorem 3.9 can be restated as

QG(O&-’IH +g7 ,Oé.’L'n+g) = aQG(‘Tla"' ,l’n> +ga for all g S G.
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