Malaya Journal of Matematik

MJM

an international journal of mathematical sciences with computer applications...

www.malayajournal.org

On Hermite-Hadamard type integral inequalities for functions whose second derivative are nonconvex

Mehmet Zeki SARIKAYA^a*, Hakan Bozkurt and Mehmet Eyüp KİRİŞ^b

^aDepartment of Mathematics, Faculty of Science and Arts, Düzce University, Düzce-TURKEY.

Abstract

In this paper, we extend some estimates of the right hand side of a Hermite- Hadamard type inequality for nonconvex functions whose second derivatives absolute values are φ -convex, \log - φ -convex, and quasi- φ -convex.

Keywords: Hermite-Hadamard's inequalities, φ-convex functions, log-φ-convex, quasi-φ-convex, Hölder's inequality.

2010 MSC: 26D07, 26D10, 26D99.

©2012 MJM. All rights reserved.

1 Introduction

It is well known that if f is a convex function on the interval I = [a, b] and $a, b \in I$ with a < b, then

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x) dx \le \frac{f(a)+f(b)}{2} \tag{1.1}$$

which is known as the Hermite-Hadamard inequality for the convex functions. Both inequalities hold in the reversed direction if f is concave. We note that Hermite-Hadamard inequality may be regarded as a refinement of the concept of convexity and it follows easily from Jensen's inequality. Hermite-Hadamard inequality for convex functions has received renewed attention in recent years and a remarkable variety of refinements and generalizations have been found (see, for example, [1]-[4], [10]-[18]).

The following lemma was proved for twice differentiable mappings in [3]:

Lemma 1.1. Let $f: I \subset \mathbb{R} \to \mathbb{R}$ be a twice differentiable mapping on I^o , $a, b \in I$ with a < b and f'' of integrable on [a, b], the following equality holds:

$$\frac{f(a) + f(b)}{2} + \frac{1}{b-a} \int_{a}^{b} f(x) dx = \frac{(b-a)^{2}}{2} \int_{0}^{1} t(1-t) f(ta + (1-t) b) dt.$$

A simple proof of this equality can be also done by twice integrating by parts in the right hand side.

In [4], by using Lemma 1.1, Hussain et al. proved some inequalities related to Hermite-Hadamard's inequality for *s*-convex functions:

^bDepartment of Mathematics, Faculty of Science and Arts, Afyon Kocatepe University, Afyon-TURKEY.

^{*}Corresponding author.

Theorem 1.1. Let $f: I \subset [0, \infty) \to \mathbb{R}$ be twice differentiable mapping on I° such that $f'' \in L_1[a, b]$, where $a, b \in I$ with a < b. If |f''| is s-convex on [a, b] for some fixed $s \in [0, 1]$ and $q \ge 1$, then the following inequality holds:

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) dx \right| \le \frac{(b - a)^{2}}{2 \times 6^{\frac{1}{p}}} \left[\frac{|f''(a)|^{q} + |f''(b)|^{q}}{(s + 2)(s + 3)} \right]^{\frac{1}{q}}, \tag{1.2}$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

Remark 1.1. *If we take* s = 1 *in* (1.2), *then we have*

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_a^b f(x) dx \right| \le \frac{(b - a)^2}{12} \left[\frac{|f''(a)|^q + |f''(b)|^q}{2} \right]^{\frac{1}{q}}.$$

We recall that the notion of quasi-convex functions generalizes the notion of convex functions. More precisely, a function $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ is said quasi-convex on [a,b] if

$$f(tx + (1-t)y) \le \sup \{f(x), f(y)\}\$$

for all $x,y \in [a,b]$ and $t \in [0,1]$. Clearly, any convex function is a quasi-convex function. Furthermore, there exist quasi-convex functions which are not convex (see [10]).

Alomari, Darus and Dragomir in [1] introduced the following theorems for twice differentiable quasiconvex functions:

Theorem 1.2. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a twice differentiable function on I^o , $a, b \in I^o$ with a < b and f'' is integrable on [a, b]. If |f''| is quasiconvex on [a, b], then the following inequality holds

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) \, dx \right| \le \frac{(b - a)^{2}}{12} \max \left\{ \left| f''(a) \right|, \left| f''(b) \right| \right\}.$$

Theorem 1.3. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a twice differentiable function on I^o , $a, b \in I^o$ with a < b and f'' is integrable on [a, b]. If $|f''|^{\frac{p}{p-1}}$ is a quasiconvex on [a, b], for p > 1, then the following inequality holds

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) dx \right|$$

$$\leq \frac{(b - a)^{2}}{8} \left(\frac{\sqrt{\pi}}{2} \right)^{\frac{1}{p}} \left(\frac{\Gamma(1 + p)}{\Gamma(\frac{3}{2} + p)} \right)^{\frac{1}{p}} \left(\max\left\{ \left| f''(a) \right|^{q}, \left| f''(b) \right|^{q} \right\} \right)^{\frac{1}{q}},$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

Theorem 1.4. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a twice differentiable function on I^o , $a, b \in I^o$ with a < b and f'' is integrable on [a,b]. If $|f''|^q$ is a quasiconvex on [a,b], for $q \ge 1$, then the following inequality holds

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) \, dx \right| \le \frac{(b - a)^{2}}{12} \left(\max \left\{ \left| f''(a) \right|^{q}, \left| f''(b) \right|^{q} \right\} \right)^{\frac{1}{q}}.$$

2 Preliminaries

Let $f, \varphi : K \to \mathbb{R}$, where K is a nonempty closed set in \mathbb{R}^n , be continuous functions. First of all, we recall the following well known results and concepts, which are mainly due to Noor and Noor [5] and Noor [9] as follows:

Definition 2.1. Let $u, v \in K$. Then the set K is said to be φ – convex at u with respect to φ , if

$$u + te^{i\varphi} (v - u) \in K, \forall u, v \in K, t \in [0, 1].$$

Remark 2.2. We would like to mention that Definition 2.1 of a φ -convex set has a clear geometric interpretation. This definition essentially says that there is a path starting from a point u which is contained in K. We do not require that the point v should be one of the end points of the path. This observation plays an important role in our analysis. Note that, if we demand that v should be an end point of the path for every pair of points, $u, v \in K$, then $e^{i\varphi}(v - u) = v - u$ if and only if, $\varphi = 0$, and consequently φ -convexity reduces to convexity. Thus, it is true that every convex set is also an φ -convex set, but the converse is not necessarily true, see [5]-[9] and the references therein.

Definition 2.2. The function f on the φ -convex set K is said to be φ -convex with respect to φ , if

$$f\left(u+te^{i\varphi}\left(v-u\right)\right)\leq\left(1-t\right)f\left(u\right)+tf\left(v\right),\ \forall u,v\in K,\ t\in\left[0,1\right].$$

The function f is said to be φ -concave if and only if -f is φ -convex. Note that every convex function is a φ -convex function, but the converse is not true.

Definition 2.3. The function f on the φ -convex set K is said to be logarithmic φ -convex with respect to φ , such that

$$f(u + te^{i\varphi}(v - u)) \le (f(u))^{1-t}(f(v))^t$$
, $u, v \in K$, $t \in [0, 1]$

where f(.) > 0.

Now we define a new definition for quasi- φ -convex functions as follows:

Definition 2.4. The function f on the quasi φ -convex set K is said to be quasi φ -convex with respect to φ , if

$$f\left(u+te^{i\varphi}\left(v-u\right)\right)\leq\max\left\{ f\left(u\right),f\left(v\right)\right\} .$$

From the above definitions, we have

$$f\left(u + te^{i\varphi}(v - u)\right) \leq (f(u))^{1-t} (f(v))^{t}$$

$$\leq (1 - t) f(u) + tf(v)$$

$$\leq \max \left\{f(u), f(v)\right\}.$$

Clearly, any φ -convex function is a quasi φ -convex function. Furthermore, there exist quasi φ -convex functions which are neither φ -convex nor continuous. For example, for

$$\varphi(v,u) = \begin{cases} 2k\pi, & u.v \ge 0, k \in \mathbb{Z} \\ k\pi, & u.v < 0, k \in \mathbb{Z} \end{cases}$$

the floor function $f_{loor}(x) = \lfloor x \rfloor$, is the largest integer not greater than x, is an example of a monotonic increasing function which is quasi φ -convex but it is neither φ -convex nor continuous.

In [7], Noor proved the Hermite-Hadamard inequality for the φ -convex functions as follows:

Theorem 2.5. Let $f: K = [a, a + e^{i\varphi}(b - a)] \to (0, \infty)$ be a φ -convex function on the interval of real numbers K^0 (the interior of K) and $a, b \in K^0$ with $a < a + e^{i\varphi}(b - a)$ and $0 \le \varphi \le \frac{\pi}{2}$. Then the following inequality holds:

$$f\left(\frac{2a + e^{i\varphi}(b - a)}{2}\right) \leq \frac{1}{e^{i\varphi}(b - a)} \int_{a}^{a + e^{i\varphi}(b - a)} f(x) dx$$

$$\leq \frac{f(a) + f\left(a + e^{i\varphi}(b - a)\right)}{2} \leq \frac{f(a) + f(b)}{2}.$$

$$(2.3)$$

This inequality can easily show that using the φ -convex function's definition and $f\left(a+e^{i\varphi}\left(b-a\right)\right)< f\left(b\right)$.

In [19] and [20], the authors proved some generalization inequalities connected with Hermite-Hadamard's inequality for differentiable φ -convex functions.

In this article, using functions whose second derivatives absolute values are φ -convex, log- φ -convex and quasi- φ -convex, we obtained new inequalities related to the right side of Hermite-Hadamard inequality given with (2.3).

3 Hermite-Hadamard Type Inequalities

We will start the following theorem:

Theorem 3.6. Let $K \subset \mathbb{R}$ be an open interval, $a, a + e^{i\varphi}(b-a) \in K$ with a < b and $f : K = \left[a, a + e^{i\varphi}(b-a)\right] \to (0, \infty)$ a twice differentiable mapping such that f'' is integrable and $0 \le \varphi \le \frac{\pi}{2}$. If |f''| is φ -convex function on $\left[a, a + e^{i\varphi}(b-a)\right]$. Then, the following inequality holds:

$$\begin{split} &\left|\frac{1}{e^{i\varphi}(b-a)}\int_{a}^{a+e^{i\varphi}(b-a)}f(x)dx - \frac{f(a)+f(a+e^{i\varphi}(b-a))}{2}\right| \\ \leq & \left.\frac{e^{2i\varphi}(b-a)^{2}}{24}\left[\left|f''(a)\right| + \left|f''(b)\right|\right]. \end{split}$$

Proof. If the partial integration method is applied twice, then it follows that

$$\frac{e^{2i\varphi}(b-a)^2}{2} \int_0^1 (t-t^2) f''(a+te^{i\varphi}(b-a)) dt$$

$$= \frac{1}{e^{i\varphi}(b-a)} \int_a^{a+e^{i\varphi}(b-a)} f(x) dx - \frac{f(a)+f(a+e^{i\varphi}(b-a))}{2}.$$
(3.4)

Thus, by φ -convexity function of |f''|, we have

$$\left| \frac{1}{e^{i\varphi}(b-a)} \int_{a}^{a+e^{i\varphi}(b-a)} f(x) dx - \frac{f(a) + f(a+e^{i\varphi}(b-a))}{2} \right|$$

$$\leq \frac{e^{2i\varphi}(b-a)^{2}}{2} \left| \int_{0}^{1} (t-t^{2}) f''(a+te^{i\varphi}(b-a)) dt \right|$$

$$\leq \frac{e^{2i\varphi}(b-a)^{2}}{2} \int_{0}^{1} (t-t^{2}) \left[(1-t) \left| f''(a) \right| + t \left| f''(b) \right| \right] dt$$

$$\leq \frac{e^{2i\varphi}(b-a)^{2}}{24} \left[\left| f''(a) \right| + \left| f''(b) \right| \right]$$

which the proof is completed.

Theorem 3.7. Let $f: K = [a, a + e^{i\varphi}(b-a)] \to (0, \infty)$ be a twice differentiable mapping on K^0 and f'' be integrable on $[a, a + e^{i\varphi}(b-a)]$. Assume $p \in \mathbb{R}$ with p > 1. If $|f''|^{p/p-1}$ is φ -convex function on the interval of real numbers K^0 (the interior of K) and $a, b \in K^0$ with $a < a + e^{i\varphi}(b-a)$ and $0 \le \varphi \le \frac{\pi}{2}$. Then, the following inequality holds:

$$\left| \frac{1}{e^{i\varphi}(b-a)} \int_{a}^{a+e^{i\varphi}(b-a)} f(x) dx - \frac{f(a) + f(a+e^{i\varphi}(b-a))}{2} \right|$$

$$\leq \frac{e^{2i\varphi}(b-a)^{2}}{8} \left(\frac{\sqrt{\pi}}{2} \right)^{\frac{1}{p}} \left(\frac{\Gamma(p+1)}{\Gamma(\frac{3}{2}+p)} \right)^{\frac{1}{p}} \left(\frac{|f''(a)|^{\frac{p}{p-1}} + |f''(b)|^{\frac{p}{p-1}}}{2} \right)^{\frac{p-1}{p}}.$$

Proof. By assumption, Hölder's inequality and (3.4), we have

$$\begin{split} & \left| \frac{1}{e^{i\varphi}(b-a)} \int_{a}^{a+e^{i\varphi}(b-a)} f(x) dx - \frac{f(a) + f(a + e^{i\varphi}(b-a))}{2} \right| \\ & \leq \frac{e^{2i\varphi}(b-a)^{2}}{2} \int_{0}^{1} \left| t - t^{2} \right| \left| f''(a + te^{i\varphi}(b-a)) \right| dt \\ & \leq \frac{e^{2i\varphi}(b-a)^{2}}{2} \left(\int_{0}^{1} (t-t^{2})^{p} dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} \left| f''(a + te^{i\varphi}(b-a)) \right|^{\frac{p}{p-1}} dt \right)^{\frac{p-1}{p}} \\ & \leq \frac{e^{2i\varphi}(b-a)^{2}}{2} \left(\frac{2^{-1-2p}\sqrt{\pi}\Gamma(p+1)}{\Gamma(\frac{3}{2} + p)} \right)^{\frac{1}{p}} \left(\int_{0}^{1} \left[(1-t) \left| f''(a) \right|^{\frac{p}{p-1}} + t \left| f''(b) \right|^{\frac{p}{p-1}} \right] dt \right)^{\frac{p-1}{p}} \\ & = \frac{e^{2i\varphi}(b-a)^{2}}{8} \left(\frac{\sqrt{\pi}}{2} \right)^{\frac{1}{p}} \left(\frac{\Gamma(p+1)}{\Gamma(\frac{3}{2} + p)} \right)^{\frac{1}{p}} \left(\frac{\left| f''(a) \right|^{\frac{p}{p-1}} + \left| f''(b) \right|^{\frac{p}{p-1}}}{2} \right)^{\frac{p-1}{p}} \end{split}$$

where we use the fact that

$$\int_0^1 (t - t^2)^p dt = \frac{2^{-1 - 2p} \sqrt{\pi} \Gamma(p+1)}{\Gamma(\frac{3}{2} + p)}$$

which completes the proof.

Let us denote by A(a, b) the arithmetic mean of the nonnegative real numbers, and by L(a, b) the logaritmic mean of the same numbers.

Theorem 3.8. Let $K \subset \mathbb{R}$ be an open interval, $a, a + e^{i\varphi}(b - a) \in K$ with a < b and $f : K = \left[a, a + e^{i\varphi}(b - a)\right] \to (0, \infty)$ a twice differentiable mapping such that f'' is integrable and $0 \le \varphi \le \frac{\pi}{2}$. If |f''| is log φ -convex function on $\left[a, a + e^{i\varphi}(b - a)\right]$. Then, the following inequality holds:

$$\left| \frac{1}{e^{i\varphi}(b-a)} \int_{a}^{a+e^{i\varphi}(b-a)} f(x) dx - \frac{f(a) + f(a+e^{i\varphi}(b-a))}{2} \right|$$

$$\leq \left(\frac{e^{i\varphi}(b-a)}{\log|f''(b)| - \log|f''(a)|} \right)^{2} \left[A\left(|f''(b)|, |f''(a)| \right) - L\left(|f''(b)|, |f''(a)| \right) \right].$$

Proof. By using (3.4) and $\log \varphi$ -convexity of |f''|, we have

$$\begin{split} & \left| \frac{1}{e^{i\varphi}(b-a)} \int_{a}^{a+e^{i\varphi}(b-a)} f(x) dx - \frac{f(a) + f(a + te^{i\varphi}(b-a))}{2} \right| \\ & \leq \frac{e^{2i\varphi}(b-a)^{2}}{2} \int_{0}^{1} (t-t^{2}) \left| f''(a + te^{i\varphi}(b-a)) \right| dt \\ & \leq \frac{e^{2i\varphi}(b-a)^{2}}{2} \int_{0}^{1} (t-t^{2}) \left(\left| f''(a) \right|^{1-t} \left| f''(b) \right|^{t} \right) dt \\ & = \frac{e^{2i\varphi}(b-a)^{2}}{2} \left[\frac{\left| f''(b) \right| + \left| f''(a) \right|}{\left(\log |f''(b)| - \log |f''(a)| \right)^{2}} - \frac{2 \left(\left| f''(b) \right| - \left| f''(a) \right| \right)}{\left(\log |f''(b)| - \log |f''(a)| \right)^{3}} \right] \\ & = \left(\frac{e^{i\varphi}(b-a)}{\log |f''(b)| - \log |f''(a)|} \right)^{2} \left[A \left(\left| f''(b) \right|, \left| f''(a) \right| \right) - L \left(\left| f''(b) \right|, \left| f''(a) \right| \right) \right]. \end{split}$$

The proof of Theorem 3.8 is completed.

Theorem 3.9. Let $f: K = [a, a + e^{i\varphi}(b - a)] \to (0, \infty)$ be a twice differentiable mapping on K^o and f'' be integrable on $[a, a + e^{i\varphi}(b - a)]$. Assume $p \in \mathbb{R}$ with p > 1. If $|f''|^{p/p-1}$ is log φ -convex function on the interval of real numbers

 K^o (the interior of K) and $a, b \in K^o$ with $a < a + e^{i\varphi}(b-a)$ and $0 \le \varphi \le \frac{\pi}{2}$. Then, the following inequality holds:

$$\left| \frac{1}{e^{i\varphi}(b-a)} \int_{a}^{a+e^{i\varphi}(b-a)} f(x) dx - \frac{f(a) + f(a+e^{i\varphi}(b-a))}{2} \right|$$

$$\leq \frac{e^{2i\varphi}(b-a)^{2}}{8} \left(\frac{\sqrt{\pi}}{2} \right)^{\frac{1}{p}} \left(\frac{\Gamma(p+1)}{\Gamma(\frac{3}{2}+p)} \right)^{\frac{1}{p}} \left(\frac{p-1}{p} \right)^{\frac{p-1}{p}} \left(\frac{|f''(a)|^{\frac{p}{p-1}} - |f''(b)|^{\frac{p}{p-1}}}{\log|f''(b)| - \log|f''(a)|} \right)^{\frac{p-1}{p}}.$$

Proof. By using (3.4) and the well known Hölder's integral inequality, we obtain

$$\begin{split} & \left| \frac{1}{e^{i\varphi}(b-a)} \int_{a}^{a+e^{i\varphi}(b-a)} f(x) dx - \frac{f(a) + f(a + e^{i\varphi}(b-a))}{2} \right| \\ & \leq \left| \frac{e^{2i\varphi}(b-a)^{2}}{2} \int_{0}^{1} (t-t^{2}) \left| f''(a + te^{i\varphi}(b-a)) \right| dt \\ & \leq \left| \frac{e^{2i\varphi}(b-a)^{2}}{2} \left(\int_{0}^{1} (t-t^{2})^{p} dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} \left| f''(a + te^{i\varphi}(b-a)) \right|^{\frac{p}{p-1}} dt \right)^{\frac{p-1}{p}} \\ & \leq \left| \frac{e^{2i\varphi}(b-a)^{2}}{2} \left(\frac{2^{-1-2p}\sqrt{\pi}\Gamma(p+1)}{\Gamma(\frac{3}{2} + p)} \right)^{\frac{1}{p}} \left(\int_{0}^{1} \left| f''(a) \right|^{\frac{p}{p-1}(1-t)} \left| f''(b) \right|^{\frac{p}{p-1}t} dt \right)^{\frac{p-1}{p}} \\ & = \left| \frac{e^{2i\varphi}(b-a)^{2}}{8} \left(\frac{\sqrt{\pi}}{2} \right)^{\frac{1}{p}} \left(\frac{\Gamma(p+1)}{\Gamma(\frac{3}{2} + p)} \right)^{\frac{1}{p}} \left(\frac{p-1}{p} \right)^{\frac{p-1}{p}} \left(\frac{|f''(a)|^{\frac{p}{p-1}} - |f''(b)|^{\frac{p}{p-1}}}{\log|f''(b)| - \log|f''(a)|} \right)^{\frac{p-1}{p}} . \end{split}$$

Theorem 3.10. Let $f: K = [a, a + e^{i\varphi}(b - a)] \to (0, \infty)$ be a differentiable mapping on K^0 and f'' be integrable on $[a, a + e^{i\varphi}(b - a)]$. If |f''| is a quasi φ -convex function on the interval of real numbers K^0 (the interior of K) and $a, b \in K^0$ with $a < a + e^{i\varphi}(b - a)$ and $0 \le \varphi \le \frac{\pi}{2}$. Then, the following inequality holds:

$$\left| \frac{1}{e^{i\varphi}(b-a)} \int_{a}^{a+e^{i\varphi}(b-a)} f(x) dx - \frac{f(a) + f(a+te^{i\varphi}(b-a))}{2} \right|$$

$$\leq \frac{e^{i\varphi}(b-a)}{4} \max\{ \left| f'(a) \right|, \left| f'(b) \right| \}.$$

Proof. By using (3.4) and the quasi φ -convexity of |f''|, we have

$$\left| \frac{1}{e^{i\varphi}(b-a)} \int_{a}^{a+e^{i\varphi}(b-a)} f(x) dx - \frac{f(a) + f(a+te^{i\varphi}(b-a))}{2} \right|$$

$$\leq \frac{e^{2i\varphi}(b-a)^{2}}{2} \int_{0}^{1} (t-t^{2}) \left| f''(a+te^{i\varphi}(b-a)) \right| dt$$

$$\leq \frac{e^{2i\varphi}(b-a)^{2}}{2} \max\{ \left| f''(a) \right|, \left| f''(b) \right| \} \int_{0}^{1} (t-t^{2}) dt$$

$$\leq \frac{e^{2i\varphi}(b-a)^{2}}{24} \max\{ \left| f''(a) \right|, \left| f''(b) \right| \}.$$

Theorem 3.11. Let $f: K = [a, a + e^{i\varphi}(b-a)] \to (0, \infty)$ be a differentiable mapping on K^o and f'' be integrable on $[a, a + e^{i\varphi}(b-a)]$. Assume $p \in \mathbb{R}$ with p > 1. If $|f''|^{p/p-1}$ is a quasi φ -convex function on the interval of real numbers K^o (the interior of K) and $a, b \in K^o$ with $a < a + e^{i\varphi}(b-a)$ and $0 \le \varphi \le \frac{\pi}{2}$. Then, the following inequality

holds:

$$\begin{split} & \left| \frac{1}{e^{i\varphi}(b-a)} \int_{a}^{a+e^{i\varphi}(b-a)} f(x) dx - \frac{f(a) + f(a+te^{i\varphi}(b-a))}{2} \right| \\ \leq & \left. \frac{e^{2i\varphi}(b-a)^2}{8} \left(\frac{\sqrt{\pi}}{2} \right)^{\frac{1}{p}} \left(\frac{\Gamma(p+1)}{\Gamma(\frac{3}{2}+p)} \right)^{\frac{1}{p}} \left[\max\{ \left| f''(a) \right|^{\frac{p}{p-1}}, \left| f''(b) \right|^{\frac{p}{p-1}} \} \right]^{\frac{p-1}{p}}. \end{split}$$

Proof. By using (3.4) and the well known Hölder's integral inequality, we get

$$\begin{split} & \left| \frac{1}{e^{i\varphi}(b-a)} \int_{a}^{a+e^{i\varphi}(b-a)} f(x) dx - \frac{f(a) + f(a + te^{i\varphi}(b-a))}{2} \right| \\ & \leq \left| \frac{e^{2i\varphi}(b-a)^{2}}{2} \int_{0}^{1} (t-t^{2}) \left| f''(a + te^{i\varphi}(b-a)) \right| dt \\ & \leq \left| \frac{e^{i\varphi}(b-a)}{2} \left(\int_{0}^{1} (t-t^{2})^{p} dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} \left| f'(a + te^{i\varphi}(b-a)) \right|^{\frac{p-1}{p}} dt \right)^{\frac{p}{p-1}} \\ & \leq \left| \frac{e^{i\varphi}(b-a)}{2} \left(\frac{2^{-1-2p} \sqrt{\pi} \Gamma(p+1)}{\Gamma(\frac{3}{2} + p)} \right)^{\frac{1}{p}} \left(\int_{0}^{1} \max\{ \left| f'(a) \right|^{\frac{p}{p-1}}, \left| f'(b) \right|^{\frac{p}{p-1}} \} dt \right)^{\frac{p}{p-1}} \\ & \leq \left| \frac{e^{2i\varphi}(b-a)^{2}}{8} \left(\frac{\sqrt{\pi}}{2} \right)^{\frac{1}{p}} \left(\frac{\Gamma(p+1)}{\Gamma(\frac{3}{2} + p)} \right)^{\frac{1}{p}} \left[\max\{ \left| f''(a) \right|^{\frac{p}{p-1}}, \left| f''(b) \right|^{\frac{p}{p-1}} \} \right]^{\frac{p-1}{p}} . \end{split}$$

Theorem 3.12. Let $f: K = [a, a + e^{i\varphi}(b-a)] \to (0, \infty)$ be a differentiable mapping on K^o and f'' be integrable on $[a, a + e^{i\varphi}(b-a)]$. Assume $q \in \mathbb{R}$ with $q \ge 1$. If $|f''|^q$ is a quasi φ -convex function on the interval of real numbers K^o (the interior of K) and $a, b \in K^o$ with $a < a + e^{i\varphi}(b-a)$ and $0 \le \varphi \le \frac{\pi}{2}$. Then, the following inequality holds:

$$\left| \frac{1}{e^{i\varphi}(b-a)} \int_{a}^{a+e^{i\varphi}(b-a)} f(x) dx - \frac{f(a) + f(a+te^{i\varphi}(b-a))}{2} \right|$$

$$\leq \frac{e^{2i\varphi}(b-a)^{2}}{12} \left[\max\{ |f''(a)|^{q}, |f''(b)|^{q} \} \right]^{\frac{1}{q}}.$$

Proof. By using (1.1) and the well known power mean integral inequality, we have

$$\begin{split} & \left| \frac{1}{e^{i\varphi}(b-a)} \int_{a}^{a+e^{i\varphi}(b-a)} f(x) dx - \frac{f(a) + f(a + te^{i\varphi}(b-a))}{2} \right| \\ & \leq \frac{e^{2i\varphi}(b-a)^{2}}{2} \int_{0}^{1} (t-t^{2}) \left| f''(a + te^{i\varphi}(b-a)) \right| dt \\ & \leq \frac{e^{i\varphi}(b-a)}{2} \left(\int_{0}^{1} (t-t^{2}) dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} (t-t^{2}) \left| f'(a + te^{i\varphi}(b-a)) \right|^{q} dt \right)^{\frac{1}{q}} \\ & \leq \frac{e^{i\varphi}(b-a)}{2} \left(\frac{1}{6} \right)^{\frac{1}{p}} \left(\max\{ \left| f'(a) \right|^{q}, \left| f'(b) \right|^{q} \} \int_{0}^{1} (t-t^{2}) dt \right)^{\frac{1}{q}} \\ & \leq \frac{e^{2i\varphi}(b-a)^{2}}{12} \left[\max\{ \left| f''(a) \right|^{q}, \left| f''(b) \right|^{q} \} \right]^{\frac{1}{q}}, \end{split}$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

References

[1] M. Alomari, M. Darus and S. S. Dragomir, New inequalities of Hermite-Hadamard's type for functions whose second derivatives absolute values are quasiconvex, *Tamk. J. Math.*, 41(2010), 353-359.

- [2] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula, *Appl. Math. Lett.*, 11(5)(1998), 91–95.
- [3] S. S. Dragomir and C. E. M. Pearce, *Selected Topics on Hermite-Hadamard Inequalities and Applications*, RGMIA Monographs, Victoria University, 2000.
- [4] S. Hussain, M. I. Bhatti and M. Iqbal, Hadamard-type inequalities for s-convex functions I, *Punjab Univ. Jour. of Math.*, 41(2009), 51-60.
- [5] M. A. Noor, Some new classes of nonconvex functions, Nonl. Funct. Anal. Appl., 11(2006), 165-171.
- [6] M. A. Noor, On Hadamard integral inequalities involving two log-preinvex functions, *J. Inequal. Pure Appl. Math.*, 8(3)(2007), 1-6.
- [7] M. A. Noor, Hermite-Hadamard integral inequalities for \log - φ -convex functions, Nonlinear Analysis Forum, 13(2)(2008), 119–124.
- [8] M. A. Noor, On a class of general variotional inequalities, J. Adv. Math. Studies, 1(2008), 31-42.
- [9] K. I. Noor and M. A. Noor, Relaxed strongly nonconvex functions, Appl. Math. E-Notes, 6(2006), 259-267.
- [10] D.A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, *Annals of University of Craiova Math. Comp. Sci. Ser.*, 34(2007), 82-87.
- [11] C. E. M. Pearce and J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formulae, *Appl. Math. Lett.*, 13(2)(2000), 51–55.
- [12] J. Pečarić, F. Proschan and Y. L. Tong, *Convex functions, partial ordering and statistical applications*, Academic Press, New York, 1991.
- [13] A. Saglam, M. Z. Sarikaya and H. Yildirim, Some new inequalities of Hermite-Hadamard's type, *Kyung-pook Mathematical Journal*, 50(2010), 399-410.
- [14] M. Z. Sarikaya, A. Saglam and H. Yıldırım, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex, *International Journal of Open Problems in Computer Science and Mathematics (IJOPCM)*, 5(3)(2012).
- [15] M. Z. Sarikaya, A. Saglam and H. Yıldırım, On some Hadamard-type inequalities for h-convex functions, *Journal of Mathematical Inequalities*, 2(3)(2008), 335-341.
- [16] M. Z. Sarikaya, M. Avci and H. Kavurmaci, On some inequalities of Hermite-Hadamard type for convex functions, ICMS Iternational Conference on Mathematical Science. AIP Conference Proceedings 1309, 852 (2010).
- [17] M. Z. Sarikaya and N. Aktan, On the generalization some integral inequalities and their applications *Mathematical and Computer Modelling*, 54(9-10)(2011), 2175-2182.
- [18] M. Z. Sarikaya, E. Set and M. E. Ozdemir, On some new inequalities of Hadamard type involving h-convex functions, *Acta Mathematica Universitatis Comenianae*, Vol. LXXIX, 2(2010), 265-272.
- [19] M. Z. Sarikaya, H. Bozkurt and N. Alp, On Hadamard Type Integral Inequalities for nonconvex Functions, *Mathematical Sciences And Applications E-Notes*, in press, arXiv:1203.2282v1.
- [20] M. Z. Sarikaya, N. Alp and H. Bozkurt, On Hermite-Hadamard Type Integral Inequalities for preinvex and log-preinvex functions, *Contemporary Analysis and Applied Mathematics*, 1(2)(2013), 237-252.

Received: December 3, 2013; Accepted: April 15, 2014