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Comments on Jensen’s Inequalities
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Abstract

The paper gives generalizations of some Jensen type inequalities for convex functions of one variable. The
work is based on the methods which use convex combinations in deriving inequalities. The main inequality
is applied to the quasi-arithmetic means.
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1 Introduction

1.1 Affine and Convex Combinations

The concept of affine and convex combinations refers to the sets of vectors. Through the paper we will
only use the combinations

c =
n

∑
i=1

pixi (1.1)

of the points xi ∈ R and the coefficients pi ∈ R. A combination in (1.1) is affine if ∑n
i=1 pi = 1. A combination

in (1.1) is convex if all pi ≥ 0 and ∑n
i=1 pi = 1. The point c itself is called the combination center. If I ⊆ R is an

interval, then any convex combination of the points xi ∈ I belongs to the interval I .

1.2 Affine and Convex Functions

A function f : R → R which is represented by the equation f (x) = kx + l where k and l are real constants
is affine, and it verifies the equality

f

(
n

∑
i=1

pixi

)
=

n

∑
i=1

pi f (xi) (1.2)

for all affine combinations ∑n
i=1 pixi from R. A function f : I → R which satisfies the inequality f (px + qy) ≤

p f (x) + q f (y) for all binomial convex combinations px + qy from I is convex, and it verifies the equality or
inequality in (1.2) for all convex combinations ∑n

i=1 pixi from I .

1.3 Recent Results

Theorem 1.1. Let [a, b] ⊂ R be a bounded closed interval where a < b, and ∑n
i=1 pixi be a convex combination from

[a, b].
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Then every convex function f : [a, b] → R verifies the inequality

2 f
(

a + b
2

)
−

n

∑
i=1

pi f (xi) ≤ f

(
a + b−

n

∑
i=1

pixi

)
≤ f (a) + f (b)−

n

∑
i=1

pi f (xi).
(1.3)

Theorem 1.2. Let [a, b] ⊂ R and [c, d] ⊂ R be bounded closed intervals where a < b and c < d. Let p : [c, d] → R be
a non-negative continuous function with

∫ d
c p(x) dx > 0, and g : [c, d] → [a, b] be a continuous function.

Then every convex function f : [a, b] → R verifies the inequality

2 f
(

a + b
2

)
−
∫ d

c p(x) f (g(x)) dx∫ d
c p(x) dx

≤ f

(
a + b−

∫ d
c p(x)g(x) dx∫ d

c p(x) dx

)

≤ f (a) + f (b)−
∫ d

c p(x) f (g(x)) dx∫ d
c p(x) dx

.

(1.4)

The right-hand side of the inequality in (1.3) was obtained in [3]. The left-hand side of the inequality in
(1.3), and the inequality in (1.4) were obtained in [2]. Some new Jensen type inequalities have been recently
derived in [4].

2 Three Methods of Deriving Convex Function Inequalities

2.1 Basic Method Using Affinity

If a, b ∈ R are different numbers, say a < b, then every number x ∈ R can be uniquely presented as the
affine combination

x =
b− x
b− a

a +
x− a
b− a

b. (2.1)

The above binomial combination is convex if, and only if, the number x belongs to the interval [a, b]. Given
the function f : R → R, let f line

{a,b} : R → R be the function of the line passing through the points A(a, f (a))

and B(b, f (b)) of the graph of f . Applying the affinity of f line
{a,b} to the combination in (2.1), we get

f line
{a,b}(x) =

b− x
b− a

f (a) +
x− a
b− a

f (b). (2.2)

Assume that the function f is convex. Applying its convexity to the combination in (2.1) and connecting it
with the equation in (2.2), we get the basic inequalities of convex functions:

Lemma 2.1. Let [a, b] ⊂ R be a bounded closed interval where a < b.
Then every convex function f : R → R verifies the inequality

f (x) ≤ f line
{a,b}(x) if x ∈ [a, b], (2.3)

and the reverse inequality
f (x) ≥ f line

{a,b}(x) if x /∈ (a, b). (2.4)

If f is concave, then the reverse inequalities are valid in (2.3) and (2.4).

2.2 Discrete Method Using Common Center

The following lemma deals with two convex combinations of the same center (one convex combination
with two ”sub-combinations” has been studied in [5, Proposition 2]). Applying a convex function on such
convex combinations, we obtain the Jensen type inequality:
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Lemma 2.2. Let I ⊆ R be an interval, and a, b ∈ I be points such that a ≤ b. Let ∑n
i=1 pixi be the convex combination

with points xi ∈ [a, b]. Let ∑m
j=1 qjyj be the convex combination with points yj ∈ I \ (a, b).

If the convex combination center equality

n

∑
i=1

pixi =
m

∑
j=1

qjyj (2.5)

is satisfied, then every convex function f : I → R verifies the inequality

n

∑
i=1

pi f (xi) ≤
m

∑
j=1

qj f (yj). (2.6)

If f is concave, then the reverse inequality is valid in (2.6).

Proof. Prove the convexity case. If a < b, relying on the convexity of f and the affinity of f line
{a,b}, we get the

series of inequalities
n

∑
i=1

pi f (xi) ≤
n

∑
i=1

pi f line
{a,b}(xi) = f line

{a,b}

(
n

∑
i=1

pixi

)

= f line
{a,b}

(
m

∑
j=1

qjyj

)
=

m

∑
j=1

qj f line
{a,b}(yj)

≤
m

∑
j=1

qj f (yj)

derived applying the inequality in (2.3) to xi, and the inequality in (2.4) to yj. If a = b, we use any support line
f line
{a} instead of the chord line f line

{a,b}.

Remark 2.1. Lemma 2.2 is the generalization of Jensen’s inequality. Applying the lemma to the convex combination
center equality

1c =
n

∑
i=1

pixi, (2.7)

with the assumption a = b = c, we come to the Jensen inequality

f

(
n

∑
i=1

pixi

)
= 1 f (c) ≤

n

∑
i=1

pi f (xi). (2.8)

Respecting the Jensen inequality and our purposes in the main section, we give the following consequence
of Lemma 2.2:

Corollary 2.1. Let [a, b] ⊂ R be a bounded closed interval where a < b, and ∑n
i=1 pixi be a convex combination from

[a, b].
If the convex combination center equality

n

∑
i=1

pixi = αa + βb (2.9)

is satisfied, then every convex function f : [a, b] → R verifies the inequality

f (αa + βb) ≤
n

∑
i=1

pi f (xi) ≤ α f (a) + β f (b). (2.10)

If f is concave, then the reverse inequality is valid in (2.10).

Let us show the immediate application of the above corollary. Rewrite the inequality in (1.3) of Theorem
1.1 in the form

f
(

a + b
2

)
≤ 1

2
f

(
a + b−

n

∑
i=1

pixi

)
+

n

∑
i=1

pi
2

f (xi) ≤
f (a) + f (b)

2
, (2.11)
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and observe the the convex combination center equality

1
2

(
a + b−

n

∑
i=1

pixi

)
+

n

∑
i=1

pi
2

xi =
1
2

a +
1
2

b. (2.12)

The middle member in (2.12) is the (n + 1)-membered convex combination of the points x̄1 = a + b−∑n
i=1 pixi

and x̄i+1 = xi from [a, b] with the coefficients p̄1 = 1/2 and p̄i+1 = pi/2, including all i = 1, . . . , n. The right
member in (2.12) is the two-membered convex combination, in fact the arithmetic center, of the endpoints a
and b. So, we can apply the inequality in (2.10) of Corollary 2.1 to the equality in (2.12) to obtain the inequality
in (2.11).

2.3 Integral Method Using Convex Combinations

Let [a, b] ⊂ R be a bounded closed interval where a < b, and f : [a, b] → R be the Riemann integrable
function. Given the positive integer n, let

[a, b] =
n⋃

i=1

[ani, bni] (2.13)

where a = an1, ani < bni = an i+1 for i = 1, . . . , n − 1 and ann < bnn = b. It is assumed that every interval of
the above union contracts to the point as n approaches infinity. Take one point xni ∈ [ani, bni] for every index
i = 1, . . . , n. Then the limit of the sequence (cn)n of the convex combination centers

cn =
n

∑
i=1

bni − ani
b− a

f (xni), (2.14)

as n approaches infinity, is the point

1
b− a

∫ b

a
f (x) dx.

As an application of the above procedure, insert the points xi = xni and the convex combination coefficients
pi = (bni − ani)/(b− a) in the inequality in (2.11). Letting n to infinity, we have

f
(

a + b
2

)
≤ 1

2
f

(
a + b− 1

b− a

∫ b

a
x dx

)
+

1
2(b− a)

∫ b

a
f (x) dx ≤ f (a) + f (b)

2

which after arranging and using (a + b)/2 = a + b− (a + b)/2, gives the inequality

f
(

a + b− a + b
2

)
≤ 1

b− a

∫ b

a
f (x) dx ≤ f (a) + f (b)− f

(
a + b

2

)
. (2.15)

The integral method with convex combinations in deriving some variants of the known inequalities has
been applied in [6].

3 Main Results

Lemma 3.3. Let [a, b] ⊂ R be a bounded closed interval where a ≤ b, and xi ∈ [a, b] be points. Let α, β, pi ∈ [0, 1] be
coefficients such that α + β−∑n

i=1 pi = 1.
Then the affine combination

αa + βb−
n

∑
i=1

pixi (3.1)

belongs to the interval [a, b].
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Proof. Take γ = ∑n
i=1 pi, so α + β− γ = 1 by the assumption. Note that γ ≤ α and γ ≤ β. In the case γ = 0,

the combination in (3.1) is reduced to the convex combination αa + βb ∈ [a, b].
If γ > 0, then the convex combination ∑n

i=1(pi/γ)xi ∈ [a, b], so it is consequently equal to the binomial
convex combination α1a + β1b. In this case, we have

αa + βb−
n

∑
i=1

pixi = αa + βb− γ(α1a + β1b)

= (α− γα1)a + (β− γβ1)b

= α2a + β2b,

where the coefficients α2 = α − γα1 ≥ α − γ ≥ 0 and β2 = β − γβ1 ≥ β − γ ≥ 0, and their sum α2 + β2 =
α + β− γ(α1 + β1) = 1.

Assigning the convex function to the affine combinations of the above lemma, our main result reads as
follows:

Theorem 3.3. Let [a, b] ⊂ R be a bounded closed interval where a < b, and xi ∈ [a, b] be points. Let α, β, pi ∈ [0, 1] be
coefficients such that α + β−∑n

i=1 pi = 1.
Then every convex function f : [a, b] → R verifies the inequality

f
(

αa + βb
α + β

)
≤ 1

α + β

[
f

(
αa + βb−

n

∑
i=1

pixi

)
+

n

∑
i=1

pi f (xi)

]

≤ α f (a) + β f (b)
α + β

.

(3.2)

Proof. Briefly, since the convex combination center equality

1
α + β

(
αa + βb−

n

∑
i=1

pixi

)
+

n

∑
i=1

pi
α + β

xi =
αa + βb
α + β

(3.3)

is satisfied, we can apply the inequality in (2.10) of Corollary 2.1 to obtain the inequality in (3.2). Namely,
the middle member in (3.3) should be taken as the (n + 1)-membered convex combination from [a, b], and
similarly the right member as the two-membered convex combination of the endpoints.

The inequality in (3.2) with α = β = 1 reduces to the inequality in (1.3). By application the integral method
with convex combinations the inequality in (3.2) can be transferred to integrals.

Corollary 3.2. Let [a, b] ⊂ R be a bounded closed interval where a < b. Let α, β ∈ [0, 1] be coefficients such that
α + β > 1.

Then every convex function f : [a, b] → R verifies the inequality

α + β

γ
f
(

αa + βb
α + β

)
− 1

γ
f (c) ≤ 1

b− a

∫ b

a
f (x) dx ≤ α

γ
f (a) +

β

γ
f (b)− 1

γ
f (c) (3.4)

where γ = α + β− 1 and

c =
α− β + 1

2
a +

β− α + 1
2

b.

Proof. Using the inequality in (3.2) with xi = xni and pi = γ(bni − ani)/(b − a) in which case ∑n
i=1 pixi ap-

proaches
γ

b− a

∫ b

a
x dx =

γ

2
(a + b),

and ∑n
i=1 pi f (xi) approaches

γ

b− a

∫ b

a
f (x) dx

as n approaches infinity, we get the inequality in (3.4).
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Corollary 3.3. Let [a, b] ⊂ R and [c, d] ⊂ R be bounded closed intervals where a < b and c < d. Let p : [c, d] → R

be a non-negative continuous function with
∫ d

c p(x) dx > 0, and g : [c, d] → [a, b] be a continuous function. Let
α, β ∈ [0, 1] be coefficients such that α + β > 1.

Then every convex function f : [a, b] → R verifies the inequality

f
(

αa+βb
α+β

)
≤ 1

α+β

[
f

(
αa + βb− γ

∫ d
c p(x)g(x) dx∫ d

c p(x) dx

)
+ γ

∫ d
c p(x) f (g(x)) dx∫ d

c p(x) dx

]

≤ α f (a) + β f (b)
α + β

(3.5)

where γ = α + β− 1.

Proof. The inequality in (3.5) follows from the inequality in (3.2) with the points xi = g(xni) and the coefficients
pi = γ(dni − cni)p(xni)/ ∑n

i=1(dni − cni)p(xni). For that matter, the combination

n

∑
i=1

pixi = γ
n

∑
i=1

(dni − cni)p(xni)
∑n

i=1(dni − cni)p(xni)
g(xni) = γ

∑n
i=1(dni − cni)p(xni)g(xni)

∑n
i=1(dni − cni)p(xni)

passes to the integral quotient

γ

∫ d
c p(x)g(x) dx∫ d

c p(x) dx

as n approaches infinity. The same goes for the combination ∑n
i=1 pi f (xi).

The inequality in (3.5) with γ = 1, and consequently α = β = 1, reduces to the inequality in (1.4).

4 Applications

We want to apply the combination in (3.1), and the right-hand side of the inequality in (3.2),

f

(
αa + βb−

n

∑
i=1

pixi

)
≤ α f (a) + β f (b)−

n

∑
i=1

pi f (xi), (4.1)

to discrete quasi-arithmetic means. The excellent book on means and their inequalities in [1] can always be
recommended.

Let I ⊆ R be an interval. In the applications of convexity, we often use strictly monotone continuous
functions ϕ, ψ : I → R such that ψ is convex with respect to ϕ (ψ is ϕ-convex), that is, f = ψ ◦ ϕ−1 is convex
on ϕ(I). A similar notation is used for the concavity.

Let ∑n
i=1 pixi be a convex combination from I . The discrete ϕ-quasi-arithmetic mean of the points xi with

the coefficients pi is the point

Mϕ(xi; pi) = ϕ−1

(
n

∑
i=1

pi ϕ(xi)

)
(4.2)

which belongs to I . The point Mϕ(xi; pi) can also be called the ϕ-quasi-center of the convex combination
center c = ∑n

i=1 pixi. The idea of the formula in (4.2) may be applied for a quasi-arithmetic mean of the affine
combination αa + βb−∑n

i=1 pixi that belongs to [a, b] , in this way:

Mϕ(a, b, xi; α, β, pi) = ϕ−1

(
αϕ(a) + βϕ(b)−

n

∑
i=1

pi ϕ(xi)

)
. (4.3)

The mean defined in (4.3) belongs to [a, b] because αϕ(a) + βϕ(b)−∑n
i=1 pi ϕ(xi) belongs to ϕ([a, b]).

We have the following application of the formula in (4.1) to the quasi-arithmetic means in (4.3):
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Corollary 4.4. Let [a, b] ⊂ R be a bounded closed interval where a < b, and ϕ, ψ : [a, b] → R be strictly monotone
continuous functions. Let xi ∈ [a, b] be points, and α, β, pi,∈ [0, 1] be coefficients such that α + β−∑n

i=1 pi = 1.
If ψ is either ϕ-convex and increasing or ϕ-concave and decreasing, then the inequality

Mϕ(a, b, xi; α, β, pi) ≤ Mψ(a, b, xi; α, β, pi) (4.4)

holds.
If ψ is either ϕ-convex and decreasing or ϕ-concave and increasing, then the reverse inequality is valid in (4.4).

Proof. Prove the case that ψ is ϕ-convex and increasing. Since ϕ is monotone, the endpoints of the interval
[c, d] = ϕ([a, b]) are ϕ(a) and ϕ(b). Using the inequality in (4.1) with the convex function f = ψ ◦ ϕ−1 : [c, d] →
R, we get

ψ ◦ ϕ−1

(
αϕ(a) + βϕ(b)−

n

∑
i=1

pi ϕ(xi)

)
≤ αψ(a) + βψ(b)−

n

∑
i=1

piψ(xi),

and assigning the increasing function ψ−1 to the above inequality, we attain the mean inequality in (4.4).

Using the pairs of functions ϕ(x) = x−1 , ψ(x) = ln x and ϕ(x) = ln x , ψ(x) = x in the inequality in (4.4)
with a, b > 0, we get the harmonic-geometric-arithmetic inequality for the means defined in (4.3):(

α

a
+

β

b
−

n

∑
i=1

pi
xi

)−1

≤ aαbβ
n

∏
i=1

x−pi
i ≤ αa + βb−

n

∑
i=1

pixi. (4.5)

A further application of the inequality in (4.1) could be related to the definition of the variant of Jensen’s
functional by the formula

J f (a, b, xi; α, β, pi) = α f (a) + β f (b)−
n

∑
i=1

pi f (xi)− f

(
αa + βb−

n

∑
i=1

pixi

)
. (4.6)

Some new results relating to the bounds of Jensen’s functional have been latterly achieved in [7].
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