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Abstract

In this article, some new oscillation criteria are established for the second order neutral difference equation
of the form

Aa(n)A(z(n))") + q(n)x* (o (n)) = 0, n = no,

where z(n) = x(n) + p(n)x(t(n)). Our results improve and extend some known results in the literature. Some
examples are also provided to show the importance of these results.

Keywords: Second order, half-linear, neutral, oscillation, difference equations.

2010 MSC: 39A10. (©2012 MJM. All rights reserved.

1 Introduction

This article deals with the oscillation of all solutions of the second order neutral difference equation of the
form

Aa(m)A(z(m)") + q(m)x* (@(n)) = 0, 1 > no, (L1)
where z(n) = x(n) + p(n)x(t(n)). Throughout this article, we assume the following hypotheses:
(Hp) wis aratio of odd positive integers;
(Hp) {a(n)}, {p(n)} and {q(n)} are sequences of positive real numbers;
(H3) {o(n)} and {7(n)} are sequences of nonnegative integers with too =co .

By a solution of equation (1.1), we mean a real sequence {x, } defined and satisfying the equation for
all n > ny. A nontrivial solution of equation is said to be oscillatory if it is neither eventually positive nor
eventually negative and nonoscillatory otherwise.

It is well-known that second order neutral difference equations find applications in so many problems in
the field of population dynamics, economics, biology etc. Therefore, there has been much interest in obtain-
ing sufficient conditions for the oscillation and nonoscillation of solutions of different types of second order
difference equations, see for example [1} 3} 6, [Z, 18, 9, [10} 11} (12} [13] 14} [15, [16} 17 [18]. Here, we recall some of
the previous works that motivate our study.

In[1} 4, 9], the authors discussed the oscillatory behavior of all solutions of equation

A2 (x(n) + p(n)x(n — 1)) +g(n)x(n — ) = 0
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under different conditions on the sequence {p,} and {g,}. In [8], the authors studied the oscillation of non-
linear difference equation

A(a(n)A(x(n) +p(n)x(n— 1)) +q(n)f(x(n —0)) =0,

under the assumptions
(1) =o0cand 0 < p(n) <

In [10}[11]], the authors established several oscillation results for the equation

Ii{ﬁfz <M>0
L= ,

IIMg

Aa(n)(A(x(n) + p(n)x(n —1)))7) + f(n,x(n — 7)) =0

under the assumptions

Fln,w)sgn(u) > qwu?, Y s = oand

In [7, 18] [10] [11]], the authors studied the oscillatory properties of the nonlinear neutral difference equation of
the form

Aa(n)(A(x(n) + p(n)x(t(n)))") +q(n)xf (e(n)) = 0

with the condition 0 < p(n) < p < oo and T o ¢ = 0 o 7. Following this trend, in this paper we establish some
new oscillation criteria for the equation (1.1) with the following conditions:

)
ad 1
& e = 42
and
(ii)
ad 1
n;ﬂ 7[11(””1/& < 0o, (1.3)

In Sections 2 and 3, we use the following notations for our convenience:

Q) = ming(n),gfr(m]} and o0n) = Y S

s;yn)

2  Oscillation Results
In this section, we present the following lemma, which will be useful in proving the main results.
Lemma2.1. [et A>0,B>0anda > 1. Then
(A+ B)* < 2% (A% 4 B*). (2.4)
Proof. The proof can be found in [16, Lemma 2.1 ]. O

Theorem 2.1. Suppose that condition holds, Ac(n) > 0, c(n) < nand oc(n) < t(n) for all n > ny. If there
exists a positive real sequence {p(n)} such that

-1 a+1
limsup Y p(s) {(2%(_51) - (“+11)“+1 (AP(S>> alo(s)]

n—oo S=ng

1+ 1” = oo, (2.5)

then every solution of equation (1.1)) is oscillatory.
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Proof. Let {x(n)} be a nonoscillatory solution of equation (L.I). Without loss of generality, we assume that
there exists 11 > ng such that x(n) > 0, x[t(n)] > 0 and x[c(n)] > 0 for all n > ny. Then by the definition of
z(n), we have z(n) > 0. From equation (L.I), for all sufficiently large n, we have
Aa(n)A(z(n))*) + q(n)x* (o (n)) + q(T(n))p* (o (n))x* (e (t(n)))
+p*(e(n)Aa(t(n)))(Az(T(n)))* =0, (2.6)
Using (24), T o 0 = 0 o T and the definition of {z(n)} in (2.6), we conclude that

Aa(n)A(z(n))") + %Q(ﬂ)Z“(U(n)) +p*(e(n))Aa(t(n)))(Bz(t(n)))* < 0. 2.7)
From the equation (1.1)), we have
Ala(m)A(z(n)) = —q(n)x*(e(n)) <0, n > ;. 2.8)

Thus {a(n)(Az(n))*} is a decreasing sequence. Here, we have two possible cases for Az(n), namely, (i)
Az(n) < 0 eventually or (i7) Az(n) > 0 eventually.
Case (i): Suppose that Az(n) < 0 for all n > np > ny > ng. Then, from , we have

a(n)A(z(n))" < a(n2)A(z(n2))" <0, n > my (2.9)
which implies that
n—1
z(n) < z(ny) + a'/*(ny) Az(ny) _Z ﬁ. (2.10)

Letting n — oo, by (1.2) we see that z(n) — —oo, which is a contradiction for the positivity of z(n).
Case (ii): Suppose that Az(n) > 0 for all n > np > ny > ny. Define

w(n) = p(n)M n>np, (2.11)

(z(e(m)* "~
then w(n) > 0 for all n > ny. By (2.8), we have

1/«
A(z(o(n)) > Az(n) ( aln) ) . 2.12)
From (2.11), we obtain

Aw(n) = Bp(n)

- A(z]o(n)])* (2.13)

IN

IA
>
=
2

Aw(n) <

IN

(2.14)



R. Arul et al. / Oscillation theorems for...

pefine [r(m)(Az[r(m)])*
a|itin Z|IT(n
o) =P T e 2
then, we have v(n) > 0 and
Aop(n) p(mAalr(m](Azlr(m)])*)
ST s R Y F T PR} O
_ap(n) v (n+1)
o (1) AR
From (2.15) and (2.16), we have
(o) + o ()] vo(n) < O+ 1)+ E o (n)Jo(n +1)

Summing the last inequality from 7, to n — 1, we obtain

w(n) —w(ny) + p*lo(n)]o(n) — p*lo(na)]o(nz) < -

Ap(s) ap(s) w2

P+ 1" el - p*E (s + al/2[o(s)] .
Ap(s) ap(s)p*lo(s)] e

pls+1)" b= ' (s+1)a1/"‘[<f(5)]v e

-T

S=nyp

LT

S=nyp

«

Let A(n) = ( = ocp() >+1 w(n+1)and
po (n+1)at/%o(n)]

- " Ap(n) Dcp() = «
B(n) = <a+1p(n+1) (p ot (n+1)aV/«[o(n )]) ) .

Now, using the inequality

a+1 a+1

“Flpie a0 <lpTa,
14 14

463

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

by taking A = A(n) and B = B(n) in the second part of the right hand side of the inequality (2.19), we have

n—1
w(n) — w(ng) + plo(n)]o(n) — p*lo(n)]o(ny) < zall L, P(£)Q)
A a+1
iznz e 5)((?)))“ o)
. Z o(s+1) = — 00 0" o(s + 1)

(2.22)
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Now, let a
Cln) = < mﬂép(n)p“[a(n)] )M o(n+1)
p & (n+1)at/%o(n)]
and N
_ |« Do) wp(n)p*[o(n)] o
D(n) = [a+1p(n+1) <pa:](”+1)ﬂl/"‘[a(n)]> ] : (2.23)

Now, using the inequality (2.21) by taking A = C(n) and B = D(n) in the third part of the right hand side of
(2.32), we get

1 n—1
w(n) —w(ng) + p*lo(n)]o(n) — p*lo(nz)]o(nz) < 2a,11 Y. p(5)Q(s)

Vo1 ()t T (Bp(s)"!

F o per T L o 22

Now,
n—1
wlon) = w(a) + )]0~ Plolmloln) < - T p6) | Q)
L ((Bps)\* 1

i (gey) e[t (pﬂ[a(stH | 229

Letting n — oo in the last inequality and using (2.5), we see that w(n) + p*[o(n)]v(n) — —oo, which contradicts

the positivity of w(n) + p*[o(n)]v(n). This completes the proof. O

Theorem 2.2. Assume that condition (I.2)) holds, p(n) < pg < oo, Ac(n) > 0,0(n) < nand o(n) < t(n) for all
n > ng. Further, suppose that there exists a sequence {p(n)} of positive real numbers such that

) n—1 1 A a+1 1
timsup 3. p(s [i(sl)w“)aH(pp(S)) Aote)] (”(pgws)w)]”‘ (2:26)

Then every solution of equation (1.1)) is oscillatory.

Proof. Let {x(n)} be a nonoscillatory solution of equation (I.I). Without loss of generality, we assume that
there exists n1 > ng such that x(n) > 0, x[t(n)] > 0 and x[o(n)] > 0 for all n > nq. Using the equation (1.1,
for all sufficiently large n, we have

(a(n)(Bz(n))*) + q(n)x"[o(n)] + pog[t(n)]x*[o(T(n))]
+po(alr(m)])(dz[t(m)]*) <O. (2.27)
By applying and the definition of z(n), we conclude that

1
2a—1

A(a(n)(Az(n))*) + 5= Q(n)z"[o(n)] + pp (a[t(n)](Az[T(n)])*) < 0. (2.28)

The remainder of the proof is similar to that of Theorem2.T|and hence it is omitted.
O

Theorem 2.3. Assume that conditions (1.2) holds, T(n) < n and o(n) > T(n) for all n > ny. Furthermore assume
that there exists a positive real sequence {p(n)} such that

n—1 a+1
limsup ) p(s) lg(_sl) - (Hll),m (Ap(s)> a[t(s)] <1+ (19“[;(5)])2” = co. (2.29)

0o semy p(s)

Then every solution of equation (1.1)) is oscillatory.
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Proof. Let {x(n)} be a nonoscillatory solution of equation (I.I). Without loss of generality, we assume that
there exists n; > ng such that x(n) > 0, x[t(n)] > 0 and x[o(n)] > 0 for all n > ny. Proceeding as in the proof
of Theorem 2.1} we have 2.7). From (I.T), we have {a(n)(Az(n))"} is a decreasing sequence. Then, we have

two possible cases for Az(n), namely, (i) Az(n) < 0 eventually or (ii) Az(n) > 0 eventually.

Case (i): If Az(n) < 0 for all m > ny > ny, then by the similar proof of case (i) of Theorem we get a

contradiction.
Case (ii): If Az(n) > 0 for n > ny > nq, then we define

w(n) = p(n)w, n>np,

and w(n) > 0. for all n > n,. By (2.8), we have

By using Mean Value Theorem, we have

Ap(n) Aa(n)(Az(n))")
p(n+1) (z[t(n+1)])"
p(m)w(n+1) ww /¥ (n 41

p(n+1)  pl/*(n+1)al/e[

Aw(n) < wn+1)+pn)

)
T(n)]

Ap(n) Aam)(Az(n)®)  p(n)  w'T (n+1)
= o+ 1 PO TG T ) @)
Pefine [r())(Azfr(m))
alt(n zlt(n)])“*
O

then we get v(n) > 0 and

at+l

Av(n) < Bp(n) o(n+1) + p(n)(a[z(n)](Az[t(n)])*) ap(n)  v'w (n+1)

From (2.33) and (2.35), we have

Aw(n) + plom)]ao(n) < 22011y + 200wt yon + 1)

p(n+1) p(n+1)
+ () [ 2@V | pHlo(n)AGa(T(n) (Bz(r(n))*)
P e+ 1)) (z[t(n + 1)])*
ap(n) atl atl

paTH(nJrl)a%[T(n)] lwa(rﬂ—l) +ptom))v« (n+1)].

z[t(n)])" o' (n+1) @V T(m)]

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)
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Using (2.7) in (2.36)), we have

T (n41) + ptom))o T (n+1)]. (2.37)

Summing the last inequality from 7, to n — 1, we have

w(n)=w(ny) + p*lo(m)]o(n) = p*lo(na)o(ny) < 5= 3 p(5)Q(s)

=1l Ap(s) B ap(s) w1 ]
P ey Y T e Y
n—1

N [wv(s 1) - HlocP(S)P“ [o(s)] o' (s + 1)] (2.38)

St P (s 4+ 1)al/e[x(s)]

Let

at+l
14

Aln) = ( _pln) ) w(n + 1)
o (0 + 1)al /<[ (m)]

e sl ap(n) Y
B(n) = <“+1p(n+1) <p S (n+1)al/[t(n ﬂ) ) '

Now, using the inequality

and

“ZIAB% _ant <l (2.39)

:

by taking A = A(n) and B = B(n) on the second part of the right hand side of the inequality (2.38), we have

wn)—wn) + pelo(n) — plot)le(m) <~ T pls)

1 A a+1
i;z @t 1>“+l | &((Ss))))“ )
wp(s)p*lo(s)] s

+sznz{ E+1)- o (s+1)a1/"‘[7(s)]v (SH)} (240

Now, let
c(n)< o) )Mvwl)
p & (n+1)al/[z(n)]

and

_aqa
Din) — | % Bpm) ap(n)p*(o(n)] o
(n) = 1 1)\ et :
at+lp(n+1) \ p* (n+1)al/e[z(n)]
Now, using the inequality by taking A = C(n) and B = D(n) in the third part of right hand side of
(2.40), we have

w(n) () + plo(m]o(n) — plotm)lotn) < — iy Zp
1 (Ap(s)rt w1 (Ap(s)™t al(s)]
R D o e R 5 L QU D ey e S prT

S=ny
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Now,

n—1
w(n) — w(na) + p*lo(n)]o(n) — p*[o(n2)]o(nz) < — ) p(s) [ - Q(s)

Kl 2a—1
1 Ap(s) ) atl 1
— 1+ — |- 242
e (rr) O ] 242
Letting n — oo in the last inequality and using (2.29), we see that
w(n) + p*lo(n)]o(n) — —oo,
which contradicts the positivity of w(n) + p*[c(n)]v(n). This completes the proof. O

Theorem 2.4. Assume that condition holds, p(n) < pg < oo, T(n) < mnand o(n) > w(n) for all n > ny.
Furthermore, if there exists a positive real sequence {p(n)} such that

] n—1 Q 1 A a+1 1
lim sup Z o(s) [2“(51) — e ( pii?) a[t(s)] (1 + W)] = 00, (2.43)

n—oo  s=ng
then every solution of equation (1.1)) is oscillatory.

Proof. Let {x(n)} be a nonoscillatory solution of equation (L.I). Without loss of generality, we assume that
there exists n7 > ng such that x(n) > 0,x[t(n)] > 0 and x[o(n)] > 0 for all n > n;. Using equation and
the definition of z(n), we get for all sufficiently large n. The remainder of the proof is similar to that of
Theorem 2.3 and hence it is omitted. O

Theorem 2.5. Assume that condition holds, p(n) < py < o0, At(n) > 0, Ac(n) > 0, 0(n) < nand c(n) <
T(n) for all n > ngy. Further assume that there exists a positive real sequence {p(n)} such that 2.26) holds. If there
exists a sequence {n(n)} of positive real numbers with n(n) > n, Ay(n) > 0 for all n > ng such that

— oo, (2.44)

- . a+1
limsup ) %JFGJFP%) (ai1> 8(s)a

n—oo S=ng

ES N

[W(s)]]

then every solution of equation (1.1) is oscillatory.

Proof. Let {x(n)} be a positive solution of equation (L.I). Then there exists n; > ngy such that x(n) >
0,x[t(n)] > 0and x[o(n)] > 0 for all n > ny. Proceeding as in Theorem 2.1, we get

1
2a—1

A(a(n))(Az(n))* + poA(alt(n)])(Az[t(n)])* + 5= Q(n)z"[o(n)] < 0 (2.45)
for all n > ny. Also from equation (I.I), we have a(n)(Az(n))* is decreasing. Then we have two cases for
Az(n), namely, (i) Az(n) < 0 or (ii) Az(n) > 0 for alln > np > nj.
Case(i): Suppose that Az(n) > 0 for all u > ny > n1 > ny. Then the proof is similar to that of Theorem
Case(ii): Suppose that Az(n) < 0 for all n > ny > ny > ny. Now define

u(n) = —a(n)(—AnZ)Yl))a for all n > ny. (2.46)

Then u(n) < 0 for all n > ny. Since a(n)(Az(n))* is decreasing, we have a(n)(—Az(n))* is increasing and we
get
a%(s)Az(s) < a%(n)Az(n) foralls > n > ny. (2.47)

Dividing the last inequality by ax (s) and then summing from 7 (n) to n — 1, we have

(2.48)
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Letting n — oo in the last inequality, we see that

thatis,

Hence by (2.46), we have

Now, define

Then, we have v(n) < 0. By using the monotonicity of a(n)(—z(n))* and using 7(n) < n, we get
a(n)(—Az(n))* > a[t(n)](—Az[t(n)])* for all n > nj,.

Thus
0< —ov(n) < —u(n).

From (2.50) and (2.54), we have
—6*(n)v(n) < 1.

Now, from (2.46), we have
Aa()(~Az(m)®) | a(n+ DA(—z(n + 1))
M) = =] T Ay~ )
A(—a(n)(—Az(m)") | (—u(n+1)) .,
2y ()] Ay & )

By Mean value Theorem, we have
Az [(n)] < az*" [y (n)]|Az[y(n)].
Using in (2.56), we get

A(=a(n)(=Az(n))*)
[ (n)]
Using monotonicity of a(n)(Az(n))*, we have

Au(n) < —u(n+1aAzn(n)].

_ _ 14 1/a
Au(n) < A( ﬂ(;ﬁ)[;(:)z}(n)) ) . (—u(n+1)) la/ [U(E/ln))]AZ(n)
A(—a(n)(=Az(n))®)  a[—u(n+1)]%
%[ (n)] al7a [ ()]

Similarly, we have

A(=a(t(n))(=Dz(t(n)")  al-v(n+1)]

Av(n) < 2y (x(n) a7y (z(n))]
From and
st + tot) <UD At
alu(n+ 1)) apil-v(n+ 1))

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)
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Using in (2.62), we have

al-u(n+ 1)) apil-v(n+ 1))
al/%[n(n)] al/%[y(t(n))]

Multiplying (2.63) by 6% (n) and summing the resulting inequality from n; to n — 1, we get

Au(n) + pgAv(n) < %Q(n) -

5 (2.63)

n—1 n—1
:Z Au(s)é“(s)—i—s; Av(s)8*(s)ph +Szn 5%(s lzrx -Q(s)
M—uw+1n@]_«pa—ws+1n%t

2175 (s)] PTETE T 6

By using summation by parts formula, we obtain

n—1
[1(s)8%(s)], — ) u(s +1)A8"(s) + [pgo(s)é™ (s)]y,

S=ny

— Z o(s +1)A5"(s Z 5 (s [2“1_1Q(s)

S=ny S=nyp

o[ufs + 1] «pm—msmﬂ 0
a5 A (e | T

Now

u(n)d*(n) — u(n2)8" (n2) + pgo(n)d* (n) — pyo(n2)d* (n2)
Y [5“‘1(sl)u(s+l) (s s+1 ]
5=y azn(s)
tapt i l&"‘l(s)v(s—i—l) 6%(s ) o(s+ 1)
ax(s) ax7(s)

<0. (2.65)

S=ny

By using the inequality
Bu — Au*t1/% < i Bl
T (a+ 1)) A

(2.66)

in fifth and sixth parts of the left hand side of the last inequality, we have

Q)5 (s) o (2 ) 1
2%{ 2t *”*p“(a+f> (awwmmwn>1

< u(n2)d (n2) + pio(nz)d (n2) + 1+ pi. (2.67)

Letting n — oo, we get a contradiction with (2.45). This completes the proof. O

3 Examples

In this section, we present some examples to illustrate the main results.

Example 3.1. Consider the neutral difference equation

A(n(A(x(n) + %x(n 23 +n®x*(n—-3)=0, n>3. (3.68)

Here a(n) =n, p(n) = %, q(n) =n?, a =3,7(n) = n—2and o(n) = n— 3. By taking p(n) = n, it is easy to see
that all conditions of Theorem2.)are satisfied and hence all solutions of equation (3.68) are oscillatory.
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Example 3.2. Consider the neutral difference equation

A(n*(A(x(n) + %x(n 2N} +nx(n—4)=0,n>4 (3.69)

Here a(n) = n*, p(n) = %, q(n) =n® a =3,7(n) =n—2and o(n) = n — 4. By taking p(n) = Land y(n) = n, it
is easy to see that all conditions of Theorem [2.5|are satisfied and hence all solutions of equation (3.69) are oscillatory.
We conclude this paper with the following remark.
Remark 3.1. The method used in this paper can be applied to the following difference equation
Aa(m)A(x(n) + p(n)x(T(n)))) +q(n)[x(8(n))* " x(5(m)) = 0

where & > 1, to obtain oscillation results. Also it would be interesting to find oscillation criteria for the equation (1.1)
when Too # 0oT.
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