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Abstract

A proper coloring f is a b-coloring of the vertices of graph G such that in each color class there exists a
vertex that has neighbours in every other color classes. The b-chromatic number ϕ (G) of a graph G is the
largest integer k for which G admits a b-coloring with k colors. If χ (G) is the chromatic number of G and
b-coloring exists for every integer k satisfying the inequality χ (G) ≤ k ≤ ϕ (G) then G is called b-continuous.
The b-spectrum Sb(G) of a graph G is the set of k integers(colors) for which G has a b-coloring. We investigate
b-chromatic number for the graphs obtained from wheel Wn by means of duplication of vertices. We also
discuss b-continuity and b-spectrum for such graphs.
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1 Introduction

A proper k-coloring of a graph G = (V(G), E(G)) is a mapping f : V(G) → {1, 2, ..., k} such that every
two adjacent vertices receive different colors. The chromatic number of a graph G is denoted by χ (G), is
the minimum number for which G has a proper k-coloring. The set of vertices with a specific color is called
a color class. A b-coloring of a graph G is a variant of proper k-coloring such that every color class has a
vertex which is adjacent to at least one vertex in every other color classes and such a vertex is called a color
dominating vertex. If v is a color dominating vertex of color class c then we denote it as cdv(c) = v. The
b-chromatic number ϕ (G) is the largest integer k such that G admits a b-coloring with k colors. The concept
of b-coloring was originated by Irving and Manlove [6] and they also observed that every coloring of a graph
G with χ (G) colors is obviously a b-coloring. In the same paper they have introduced the concepts of b-
continuity and b-spectrum. If the b-coloring exists for every integer k satisfying χ (G) ≤ k ≤ ϕ (G) then G is
called b-continuous and the b-spectrum Sb(G) of a graph G is the set of k integers(colors) for which G has a b-
coloring. The concept of b-coloring has been extensively studied by Faik [4], Kratochvil et al.[7], Alkhateeb [1],
Balakrishnan [2], Chandrakumar and Nicholas [3]. The b- chromatic number of some cycle realated graphs
have investigated by Vaidya and Shukla [8] while b-chromatic number of some degree splitting graphs is
studied by Vaidya and Rakhimol [9].
Throughout this work wheel Wn we mean Wn = Cn + K1.

Proposition 1.1. [2] For any graph G, ϕ (G) ≤ ∆ (G) + 1.

Definition 1.1. [5] The m-degree of a graph G, denoted by m(G), is the largest integer m such that G has m vertices of
degree at least m− 1.
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Proposition 1.2. [6] If graph G admits a b-coloring with m-colors, then G must have at least m vertices with degree at
least m− 1.

Proposition 1.3. χ (Wn) =
{

3, n is even
4, n is odd.

2 Some general Results

Definition 2.2. Duplication of a vertex v of graph G produces a new graph G′ by adding a new vertex v′ such that
N(v′) = N(v).

Theorem 2.1. Let G1 be the graph obtained from graph G by duplication of vertices(vertex) then χ (G) = χ (G1).

Proof. Let v ∈ V(G) be an arbitrary vertex of G and v′ ∈ V(G1) be its duplicated vertex. As N(v) = N(v′)
in G1 and v and v′ are independent vertices we can assign the same color to v and v′. Thus no extra color is
required for proper coloring of G1.

As all the duplicated vertices are independent in G1 this argument can be extended in the case when
arbitrary number of vertices are duplicated . Hence χ (G) = χ (G1).

Theorem 2.2. Let G be the graph obtained by duplicating all the rim vertices in Wn then

ϕ (G) =



4, n = 3
3, n = 4
5, n = 5, 6, 8
6, n = 7
6, n ≥ 9.

Proof. Let v1, v2, ..., vn be the rim vertices and u be the apex vertex of Wn and G be the graph obtained by dupli-
cation of all the rim vertices of Wn. Let v′1, v′2, ..., v′n be the duplicated vertices corresponding to v1, v2, ..., vn.
Then |V (G)| = 2n + 1 and |E (G)| = 5n. To define proper coloring we consider the following cases.
Case-1: n = 3.
In this case we have V(G) = {v1, v2, v3, v′1, v′2, v′3, u} and |V (G)| = 7. More precisely G has three vertices of
degree three, three vertices of degree five and one vertex of degree six. Then by Proposition 1.1, ϕ (G) ≤ 7 as
∆ (G) = 6.
If ϕ (G) = 7, then according to Proposition 1.3, the graph G must have seven vertices of degree six which is
not possible as there is only one vertex of degree six. Hence ϕ (G) 6= 7.
If ϕ (G) = 6 then according to Proposition 1.3, the graph G must have six vertices of degree five which is not
possible as there are only three vertices of degree five and the remaining vertices are of degree three. Hence
ϕ (G) 6= 6.
We claim that ϕ (G) 6= 5 because to achieve ϕ (G) = 5 we need minimum five vertices of degree four, which
is not possible by Proposition 1.3 as there are only three vertices of degree five and the remaining one vertex
is of degree six while three vertices are of degree three. Hence ϕ (G) 6= 5.
If ϕ (G) = 4 then according to Proposition 1.3, the graph G must have four vertices of degree three, which
is possible for G. For b-coloring consider the color class c = {1, 2, 3, 4} and to assign the proper coloring to
the vertices define the color function f : V → {1, 2, 3, 4} as f (v1) = f (v′1) = 1, f (v2) = f (v′2) = 2, f (v3) =
f (v′3) = 3, f (u) = 4. This proper coloring gives cdv(1) = v′1, cdv(2) = v′2, cdv(3) = v′3, cdv(4) = u. Hence
ϕ (G) = 4.
Case-2: n = 4.
For graph G we have V(G) = {v1, v2, v3, v4, v′1, v′2v′3, v′4, u} and |V (G)| = 9. More precisely graph G has
four vertices of degree three, four vertices of degree five and one vertex of degree eight. Then by Proposition
1.3 we have ϕ (G) ≤ 9 as ∆ (G) = 8. If ϕ (G) = 9, 8, 7 then the respective graphs do not have the required
number of m-degree vertices so it is not possible to obtain b-coloring with said number of colors.
If ϕ (G) = 6 then according to Proposition 1.3, the graph G must have six vertices of degree five, which is not
possible as there are only four vertices of degree five, four vertices of degree three and one vertex of degree
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eight. Hence ϕ (G) 6= 6
If ϕ (G) = 5 then according to Proposition 1.3, the graph G must have five vertices of degree four that is not
possible as there is no vertex of degree four. Hence ϕ (G) 6= 5
If ϕ (G) = 4 then by Proposition 1.3, the graph G must have four vertices of degree three which is possible.
But due to nature of the graph G any proper coloring with four colors have at least one color class which does
not have color dominating vertices hence it will not be b-coloring for the graph G. Hence ϕ (G) 6= 4. Thus we
can color the graph by three colors.
For b-coloring consider the color class c = {1, 2, 3} and to assign the proper coloring to the vertices define the
color function f : V → {1, 2, 3} as f (v1) = f (v′1) = 1, f (v2) = f (v′2) = 2, f (v3) = f (v′3) = 1, f (v4) =
f (v′4) = 2, f (u) = 3. This proper coloring gives cdv(1) = v′1, cdv(2) = v′2, cdv(3) = u. Hence ϕ (G) = 3.
Case-3: When n = 5, 6, 8.
Subcase-1: For n = 5.
In this case we have V (G) = {v1, v2, v3, v4, v5, v′1, v′2, v′3, v′4, v′5, u} and |V (G)| = 11. More precisely G has
five vertices of degree three, five vertices of degree five and one vertex of degree ten. Then by Proposition 1.1,
ϕ (G) ≤ 11 as ∆ (G) = 10.
If ϕ (G) = 11, 10, 9, 8, 7 then the respective graphs do not have the required number of m-degree vertices so it
is not possible to obtain b-coloring with said number of colors.
If ϕ (G) = 6 then the graph G must have six vertices of degree at least five which is not possible as there are
only five vertices of degree five and the remaining vertices are of degree three while one vertex is of degree
ten. Hence ϕ (G) 6= 6
If ϕ (G) = 5 then the graph G must have five vertices of degree at least four which is possible for the graph G.
Thus we can color the graph by five colors.
Now for b-coloring consider the set of colors c = {1, 2, 3, 4, 5} and to assign the proper coloring to the vertices
define the color function f : V → {1, 2, 3, 4, 5} as f (v1) = 4, f (v2) = 1, f (v3) = 2, f (v4) = 3, f (v5) = 2, f (v′1) =
3, f (v′2) = 3, f (v′3) = 4, f (v′4) = 4, f (v′5) = 1, f (u) = 5. This proper coloring gives cdv(1) = v2, cdv(2) =
v3, cdv(3) = v4, cdv(4) = v1, cdv(5) = u. Hence ϕ (G) = 5.
Subcase-2: For n = 6.
For graph G we have V (G) = {v1, v2, v3, v4, v5, v6, v′1, v′2, v′3, v′4, v′5, v′6, u} and |V (G)| = 13. More precisely
G has six vertices of degree three, six vertices of degree five and the remaining one vertex is of degree twelve.
Then by Proposition 1.1, ϕ (G) ≤ 13 as ∆ (G) = 12.
If ϕ (G) = 12, 11, 10, 9, 8, 7 then the respective graphs do not have the required number of m-degree vertices
so it is not possible to obtain b-coloring with said number of colors.
If ϕ (G) = 6 then the graph G must have six vertices of degree at least five which is possible. But due to the
nature of the graph G any proper coloring with six colors have at least one color class which does not have
color dominating vertices hence it will not be b-coloring for the graph G. Thus ϕ (G) 6= 6.
For b-coloring with five colors consider the color class c = {1, 2, 3, 4, 5} and to assign the proper coloring to
vertices define the color function f : V → {1, 2, 3, 4, 5} as f (v1) = f (v′1) = 3, f (v2) = 1, f (v3) = 2, f (v4) =
3, f (v5) = 4, f (v6) = 2, f (v′2) = 4, f (v′3) = 4, f (v′4) = 1, f (v′5) = 1, f (v′6) = 1, f (u) = 5. This proper coloring
gives cdv(1) = v2, cdv(2) = v3, cdv(3) = v4, cdv(4) = v5, cdv(5) = u. Hence ϕ (G) = 5.
Subcase-3: For n = 8.
In this case we have V (G) = {v1, v2, v3, v4, v5, v6, v7, v8, v′1, v′2, v′3, v′4, v′5, v′6, v′7, v′8, u} and |V (G)| = 17.
More precisely G has eight vertices of degree three, eight vertices of degree five and one vertex of degree
sixteen. Then by Proposition 1.1, ϕ (G) ≤ 17 as ∆ (G) = 16.
If ϕ (G) = 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7 then the respective graphs do not have the required number of m-
degree vertices so it is not possible to obtain b-coloring with said number of colors.
If ϕ (G) = 6, then graph G must have six vertices of degree at least five which is possible. But due to nature
of the graph G any proper coloring with six colors have at least one color class which does not have color
dominating vertices hence it will not be b-coloring for the graph G. Thus ϕ (G) 6= 6.
For b-coloring with five colors consider the color class c = {1, 2, 3, 4, 5} and to assign the proper coloring to
the vertices define the color function f : V → {1, 2, 3, 4, 5} as f (v1) = f (v′1) = 3, f (v2) = 1, f (v3) = 2, f (v4) =
3, f (v5) = 4, f (v6) = 2, f (v7) = 3, f (v′2) = 4, f (v′3) = 4, f (v′4) = 1, f (v′5) = 1, f (v′6) = 1, f (v′7) = 3, f (v8) =
f (v′8) = 1, f (u) = 5. This proper coloring gives cdv(1) = v2, cdv(2) = v3, cdv(3) = v4, cdv(4) = v5, cdv(5) = u.
Hence ϕ (G) = 5.
Case-4: n = 7.
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For graph G we have V (G) = {v1, v2, v3, v4, v5, v6, v7, v′1, v′2, v′3, v′4, v′5, v′6, v′7, u} and |V (G)| = 15. More
precisely G has seven vertices of degree three, seven vertices of degree five and one vertex is of degree four-
teen. Then by Proposition 1.1, ϕ (G) ≤ 15 as ∆ (G) = 14.
If ϕ (G) = 15, 14, 13, 12, 11, 10, 9, 8, 7 then the respective graphs do not have the required number of m-degree
vertices so it is not possible to obtain b-coloring with said number of colors.
If ϕ (G) = 6 then according to Proposition 1.3, we need minimum six vertices of degree at least five which is
possible. For b-coloring consider the color class c = {1, 2, 3, 4, 5, 6} and to assign the proper coloring to the
vertices define the color function f : V → {1, 2, 3, 4, 5, 6} as f (v1) = 5, f (v2) = 1, f (v3) = 2, f (v4) = 3, f (v5) =
1, f (v6) = 4, f (v7) = 2, f (v′1) = 3, f (v′2) = 4, f (v′3) = 4, f (v′4) = 5, f (v′5) = 5, f (v′6) = 4, f (v′7) = 3, f (u) =
6. This proper coloring gives cdv(1) = v2, cdv(2) = v3, cdv(3) = v4, cdv(4) = v6, cdv(5) = v1, cdv(6) = u.
Which conforms that ϕ (G) = 6.
Case-5: n ≥ 9.
For n = 9, V(G) = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v′1, v′2, v′3, v′4, v′5, v′6, v′7, v′8, v′9, u} and |V (G)| = 19. More
precisely G has nine vertices of degree five, nine vertices of degree three and one vertex of degree eighteen.
Then by Proposition 1.1, ϕ (G) ≤ 19 as ∆ (G) = 18.
If ϕ (G) = 19, 18, 17, 16, 15, 14, 13, 11, 10, 9, 8, 7 then the respective graphs do not have the required number of
m-degree vertices so it is not possible to obtain b-coloring with said number of colors.
According to Proposition 1.3 if ϕ (G) = 6 then we need minimum six vertices of degree at least five which is
possible. For b-coloring consider the color class c = {1, 2, 3, 4, 5, 6} and to assign the proper coloring to the
vertices define the color function f : V → {1, 2, 3, 4, 5, 6} as f (v1) = 4, f (v2) = 2, f (v3) = 5, f (v4) = 1, f (v5) =
2, f (v6) = 3, f (v7) = 1, f (v8) = 4, f (v9) = 2, f (v′1) = 4, f (v′2) = 3, f (v′3) = 3, f (v′4) = 4, f (v′5) = 4, f (v′6) =
5, f (v′7) = 5, f (v′8) = 4, f (v′9) = 3, f (u) = 6. This proper coloring gives cdv(1) = v2, cdv(2) = v3, cdv(3) =
v4, cdv(4) = v6, cdv(5) = v1, cdv(6) = u. Hence ϕ (G) = 6.
When n > 9 we repeat the colors as in the above graph G for the vertices {v1, v2, v3, v4, v5, v6, v7, v8, v9, v′1, v′2,
v′3, v′4, v′5, v′6, v′7, v′8, v′9, u} and for the remaining vertices assign the colors as follows f (vi) = 1, f (v′ i) =
2; when i is even and f (vi) = 2, f (v′ i) = 1; when i is odd . Hence ϕ (G) = 6, n ≥ 9.

Theorem 2.3. G is b-continuous.

Proof. To prove this result we continue with the terminology and notations used in Theorem 2.3 and consider
the following cases.
Case-1: n = 3.
In this case the graph G is b-continuous as χ (G) = ϕ (G) = 4.
Case-2: n = 4.
In this case the graph G is b-continuous as χ (G) = ϕ (G) = 3.
Case-3: n = 5.
In this case by Theorem 2.2 and Proposition 1.4 we have χ (G) = χ (W5) = 4. Also by Theorem 2.3, ϕ (G) = 5.
Thus b-coloring exists for every integer k satisfying χ (G) ≤ k ≤ ϕ (G)(Here k = 4, 5). Hence G is b-continuous.
Case-4: n = 6.
In this case by Theorem 2.2 and Proposition 1.4 we have χ (G) = χ (W6) = 3. Also by Theorem 2.3, ϕ (G) = 5.
It is obvious that b-coloring for the graph G is possible using the number of colors k = 3, 5.
Now for k = 4 the b-coloring for the graph G is as follows. Consider the color class c = 1, 2, 3, 4 and to assign
the proper coloring to the vertices define the color function f : V → {1, 2, 3, 4} as f (v1) = 1 = f (v′1), f (v2) =
2 = f (v′2), f (v3) = 3 = f (v′3), f (v4) = 1 = f (v′4), f (v5) = 2 = f (v′5), f (v6) = 3 = f (v′6), f (u) = 4.
This proper coloring gives the color dominating vertices as cdv(1) = v1, cdv(2) = v2, cdv(3) = v3, cdv(4) = u.
Thus G is four colorable. Hence b-coloring exists for every integer k satisfying χ (G) ≤ k ≤ ϕ (G) (Here
k = 3, 4, 5).Hence G is b-continuous.
Case-5: n = 7.
In this case by Theorem 2.2 and Proposition 1.4 we have χ (G) = χ (W7) = 4. Also by Theorem 2.3,ϕ (G) = 6.
It is obvious that b-coloring for the graph G is possible using the number of colors k = 4, 6. Now for k = 5
the b-coloring for the graph G is as follows. Consider the color class c = {1, 2, 3, 4, 5} and to assign the proper
coloring to the vertices define the color function f : V → {1, 2, 3, 4, 5} as f (v1) = 1, f (v2) = 2, f (v3) =
3, f (v4) = 1, f (v5) = 4, f (v6) = 2, f (v7) = 4, f (v′1) = 1, f (v′2) = 4, f (v′3) = 4, f (v′4) = 1, f (v′5) = 4, f (v′6) =
3, f (v′7) = 3, f (u) = 5. This proper coloring gives dominating vertices cdv(1) = v1, cdv(2) = v2, cdv(3) =
v3, cdv(4) = v5, cdv(5) = u. So the graph G is five colorable. Hence b-coloring exists for every integer k satis-
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fying χ (G) ≤ k ≤ ϕ (G) (Here k = 4, 5, 6). Thus G is b-continuous.
Case-6: n = 8.
In this case by Theorem 2.2 and Proposition 1.4 we have χ (G) = χ (W8) = 3. Also by Theorem 2.3, ϕ (G) = 5.
It is obvious that b-coloring for the graph G is possible using the number of colors k = 3, 5. Now for
k = 4 the b-coloring for the graph G is as follows. Consider the color class c = {1, 2, 3, 4} and to assign
the proper coloring to the vertices define the color function f : V → {1, 2, 3, 4} as f (v1) = 1 = f (v′1), f (v2) =
2 = f (v′2), f (v3) = 3 = f (v′3), f (v4) = 1 = f (v′4), f (v5) = 2 = f (v′5), f (v6) = 3 = f (v′6), f (v7) =
1 = f (v′7), f (v8) = 3 = f (v′8), f (u) = 4. This proper coloring gives the color dominating vertices as
cdv(1) = v1, cdv(2) = v2, cdv(3) = v3, cdv(4) = u. Thus G is four colorable. Hence b-coloring exists for
every integer k satisfying χ (G) ≤ k ≤ ϕ (G) (Here k = 3, 4, 5). Consequently G is b-continuous.
Case-7: n = 9.
In this case by Theorem 2.2 and Proposition 1.4 we have χ (G) = χ (W9) = 4. Also by Theorem 2.3, ϕ (G) = 6.
It is obvious that b-coloring for the graph G is possible using the number of colors k = 4, 6. Now for k = 5 the
b-coloring for the graph G is as follows. Consider the color class c = {1, 2, 3, 4, 5} and to assign the proper col-
oring to the vertices define the color function f : V → {1, 2, 3, 4, 5} as f (v1) = 2, f (v2) = 4, f (v3) = 1, f (v4) =
2, f (v5) = 3, f (v6) = 1, f (v7) = 2, f (v8) = 1, f (v9) = 3, f (v′1) = 2, f (v′2) = 3, f (v′3) = 3, f (v′4) = 4, f (v′5) =
4, f (v′6) = 1, f (v′7) = 2, f (v′8) = 1, f (v′9) = 3, f (u) = 5. This proper coloring gives the color dominating
vertices as cdv(1) = v1, cdv(2) = v2, cdv(3) = v3, cdv(4) = v9, cdv(5) = u. Thus G is five colorable. Hence
b-coloring exists for every integer k satisfying χ (G) ≤ k ≤ ϕ (G) (Here k = 4, 5, 6).
Case-8: n > 9.
When n > 9 we repeat the color assignment as in the case n = 9 discussed above for the vertices
{v1, v2, v3, v4, v5, v6, v7, v8, v9, v′1, v′2, v′3, v′4, v′5, v′6, v′7, v′8, v′9, u} and for the remaining vertices give the col-
ors as follows.
When k = 5

f (vi) = f (v′ i) =
{

1, i even
3, i odd

Hence G is b-continuous.

As any coloring with χ (G) colors is a b-coloring, we state the following obvious result.

Corollary 2.1.

Sb(G) =



{4} n = 3
{3} n = 4
{4, 5} n = 5
{3, 4, 5} n = 6, 8
{4, 5, 6} n = 7
{4, 5, 6} n ≥ 9

Theorem 2.4. Let G1 be the graph obtained by duplicating the apex vertex in Wn then

ϕ (G1) =


4, n = 3
3, n = 4
4, n ≥ 5

Proof. For Wn, v1, v2, ..., vn be the vertices and u be the apex vertex of Wn. Let G1 be the graph obtained by
duplication of the vertex u of Wn. Let u′ be the duplicated vertices corresponding to u. Then |V(G1)| = n + 2
and |E(G1)| = 3n. To define the proper coloring we consider the following two cases.
Case-1: n = 3.
In this case V (G1) = {v1, v2, v3, u, u′} and |V (G1)| = 5. More precisely G1 has two vertices of degree three,
three vertices of degree four. Then by Proposition 1.1, ϕ (G1) ≤ 5 as ∆ (G1) = 4. If ϕ (G1) = 4 then according
to Proposition 1.3, the graph G1 must have four vertices of degree at least three which is possible.
For b-coloring consider the color class c = {1, 2, 3, 4} and to assign the proper coloring to the vertices define
the color function f : V → {1, 2, 3, 4} as f (v1) = 1, f (v2) = 2, f (v3) = 3, f (u) = 4 = f (u′). This proper
coloring gives cdv(1) = v1, cdv(2) = v2, cdv(3) = v3, cdv(4) = u. Hence ϕ (G1) = 4.
Case-2: n = 4.
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In this case V(G1) = {v1, v2, v3, v4, u, u′} and |V(G1)| = 6. More precisely G1 has six vertices of degree four.
Then by Proposition 1.1, ϕ (G1) ≤ 5 as ∆ (G1) = 4. If ϕ (G1) = 5 then according to Proposition 1.3 the graph
G1 must have five vertices of degree at least four which is possible. But due to the nature of graph G1 any
proper coloring with five colors have at least one color class which does not have color dominating vertices.
Hence the graph G1 is not b-colorable using five colors. Hence ϕ (G1) 6= 5.
If possible let ϕ (G1) = 4 and f (v1) = 1, f (v2) = 2, f (v3) = 3, f (u) = 4, which in turn forces us to assign
f (v4) = 2, f (u′) = 4. This proper coloring gives the color dominating vertices for color classes 2 and 4 but not
for 1 and 3 which is contradiction. Thus ϕ (G1) 6= 4. Hence we can color the graph by three colors.
For b-coloring consider the color class c = {1, 2, 3} and to assign the proper coloring to the vertices define the
color function f : V → {1, 2, 3} as f (v1) = 1, f (v2) = 2, f (v3) = 1, f (v4) = 2, f (u) = 3, f (u′) = 3. This proper
coloring gives cdv(1) = v1, cdv(2) = v2, cdv(3) = u. Hence ϕ (G1) = 3.
Case-3: n = 5.
For graph G1 we have V(G1) = {v1, v2, v3, v4, v5, u, u′} and |V(G1)| = 7. More precisely G1 has five vertices
of degree four and two vertices of degree two. Then by Proposition 1.1, ϕ(G1) ≤ 6 as ∆ (G1) = 5. According
to Proposition 1.3, if ϕ (G1) = 6 then we need six vertices of degree at least five, which is not possible as there
are only two vertices of degree five and the remaining vertices are of degree four. Hence ϕ (G1) 6= 6.
If ϕ (G1) = 5 then according to Proposition 1.3 the graph G1 must have five vertices of degree at least four
which is possible. But due to the nature of graph G1 any proper coloring with five colors have at least one
color class which does not have any color dominating vertex. Hence G1 is not b-colorable with five colors.
Hence ϕ (G1) 6= 5. Thus we can color the graph by four colors.
For b-coloring consider the color class c = {1, 2, 3, 4} and to assign the proper coloring to the vertices define the
color function f : V → {1, 2, 3, 4} as f (v1) = 3, f (v2) = 1, f (v3) = 2, f (v4) = 3, f (v5) = 1, f (u) = 4, f (u′) = 4.
This proper coloring gives cdv(1) = v2, cdv(2) = v3, cdv(3) = v4, cdv(4) = u. Hence ϕ (G1) = 4.
Case-3: n > 5.
When n > 5 we repeat the color assignment as in the case when n = 5 for the vertices {v1, v2, v3, v4, v5, u, u′}
and for the remaining vertices assign the colors as follows.

f (vi) =
{

2, i is even
1, i is odd

Hence ϕ (G1) = 4 ; n ≥ 5.

3 Concluding Remarks

We explore the concept of b-coloring in the context of duplication of vertex in graph and prove that the
chromatic number of graph G is same as the chromatic number of the graph obtained by duplication of ver-
tices in G. We investigate the b-chromatic number for the larger graphs obtained from wheel Wn by means of
duplication of a vertex. The graph obtained by duplication of the apex of Wn is obviously b-continuous while
we have shown that the graph obtained by duplication of rim vertices altogether is a b-continuous. We also
determine the b-spectrum for the same.

4 Acknowledgement

Our thanks are due to the anonymous referee for careful reading of the paper.

References

[1] M. Alkhateeb, On b-coloring and b-continuity of graphs, Ph.D Thesis, Technische Universitt Bergakademie,
Freiberg, Germany, (2012).

[2] R. Balakrishnan and K. Ranganathan, A textbook of Graph Theory, 2nd edition, Springer, New York, (2012).



488 S. K. Vaidya et al. / b-Chromatic number...

[3] S. Chandra Kumar, T. Nicholas, b-Continuity in Peterson graph and power of a cycle, International Journal
of Modern Engineering Research, 2(2012), 2493-2496.

[4] T. Faik, About the b-continuity of graphs, Electronics Notes in Discrete Mathematics, 17(2004), 151-156.

[5] F. Havet, C. L. Sales and L. Sampaio, b-Coloring of Tight Graphs, Discrete Applied Mathematics, 160, (2012),
2709-2715.

[6] R. W.Irving and D. F.Manlove, The b-chromatic number of a graph, Discrete Applied Mathematics, 91(1999),
127-141.

[7] J. Kratochvil, Z. Tuza and M. Voight, On b-Chromatic Number of Graphs, Lecture Notes in Computer
Science, Springer, Berlin, 2573(2002), 310-320.

[8] S. K. Vaidya and M. S. Shukla, b-chromatic number of some cycle related graphs, International Journal of
Mathematics and Soft Computing, 4, (2014), 113-127.

[9] S. K. Vaidya and Rakhimol V. Isaac, b-chromatic number of some degree splitting graphs, Malaya Journal
of Matematik,2(3), (2014), 249-253 .

Received: May 15, 2014; Accepted: July 31, 2014

UNIVERSITY PRESS

Website: http://www.malayajournal.org/


	Introduction
	Some general Results
	Concluding Remarks
	Acknowledgement

