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On the oscillation of third order quasilinear delay differential equations
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Abstract

In this paper, we study the oscillation and asymptotic properties of third order quasilinear neutral delay
differential equation (

a(t)
(
(x(t) + p(t)x(τ(t)))′′

)α
)′

+ q(t) max
[σ(t),t]

xα(s) = 0, t ≥ t0 ≥ 0 (0.1)

where α is a ratio of odd positive integers and
∫ ∞

t0
1

a1/α(t) dt = ∞. We establish a new condition which guar-
antees that every solution of (0.1) is either oscillatory or converges to zero. There results extend some known
results in the literature without “maxima”. Examples are given to illustrate the main results.
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1 Introduction

We are concerned with the oscillation problem of third order quasilinear neutral delay differential equation
with “maxima” of the form(

a(t)
(
(x(t) + p(t)x(τ(t)))′′

)α
)′

+ q(t) max
[σ(t),t]

xα(s) = 0, t ≥ t0 ≥ 0 (1.1)

where α > 0 is the quotient of odd positive integers. Throughout this paper, we will assume that the following
conditions hold:

(C1) τ(t) ≤ t and σ(t) < t are continuous functions in [t0, ∞)l;

(C2) p(t) ∈ C3([t0, ∞), R) with 0 ≤ p(t) ≤ p < 1, and q(t) ∈ C([t0, ∞), R+) with q(t) is not identically zero
on any ray of the form [t∗, ∞) for any t∗ ≥ t0;

(C3) a(t) ∈ C1([t0, ∞), a(t) > 0 and nondecreasing for all t ≥ t0 and
∫ ∞

t0
1

a
1
α (1)

dt = ∞.

By a solution of equation (1.1) we mean a continuous function x(t) ∈ C2([Tx, ∞)), Tx ≥ t), which has the prop-
erty ((x(t) + p(t)x(τ(t)))′′)α are continuously differentiable and x(t) satisfies the equation (1.1) on [Tx, ∞). We
consider only those solution x(t) of equation (1.1) which satisfy sup{|x(t)| : t ≥ T} > 0 for all t ≥ Tx. We
assume that the equation (1.1) is called oscillatory if it has arbitrary large zeros on [Tx, ∞), otherwise it is called
nonoscillatory. A solution x(t) of equation (1.1) is said to be almost oscillatory if x(t) is either oscillatory or
|x(t)| → 0 monotonically as t → ∞.
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In the last few years, the qualitative theory of differential equations with “maxima” received very little
attention even though such equations often arise in the problem of automatic regulation of various real system,
see for example [1, 10, 12]. The oscillatory behavior of solutions of differential equations with “maxima” are
discussed in [1-6, 11, 13, 14], and the references cited therein.

The great attention has been devoted to the oscillation of third order differential equation without “max-
ima” see for example [15-24, 26, 27] and the references cited therein. Compared to second order differential
equations with “maxima” less attention has received the third order differential equation with “maxiam”.
Motivated by these observations, in this paper, we present some sufficient conditions for the oscillation of
all solutions of equation (1.1). The result extend that of in [25] for equation (1.1) with p(t) ≡ 0 and without
“maxima”.

In Section 2, we obtain criteria for the oscillation of all solution of equation (1.1) and is Section 3 we present
some examples to illustrate the main results.

Remark 1.1. All functional inequalities consider in this paper assumed to hold eventually, that is they are satisfied for
all t large enough.

Remark 1.2. Without loss of generality we can deal only with the positive solution of equation (1.1).

2 Oscillation Results

In this section, we obtain a oscillatory criterion for equation (1.1). For a solution x(t) of (1.1) we define the
corresponding function z(t) by

z(t) = x(t) + p(t)x(τ(t)). (2.2)

To obtain sufficient condition for the oscillation of solutions of equation (1.1), we need the following lem-
mas.

Lemma 2.1. Let x(t) be a positive solution of equation (1.1), then there are only the following two cases for z(t) defined
in (2.2) hold:

(I) z(t) > 0, z′(t) > 0 and z′′(t) > 0;

(I I) z(t) > 0, z′(t) < 0 and z′′(t) > 0 for t ≥ t1 ≥ t0;

where t1 is sufficiently large.

Proof. Assume that x(t) is a positive solution of (1.1) on [t0, ∞). We see that z(t) > x(t) > 0 and(
a(t)

(
(x(t) + p(t)x(τ(t)))′′

)α
)′

= −q(t) max
[σ(t),t]

xα(s) < 0. (2.3)

Thus, a(t)(z′′(t))α is nonincreasing and of one sign. Therefore z′′(t) is also of one sign and so we have two
possibilities

z′′(t) < 0 or z′′(t) > 0 for t ≥ t1.

If we admit that z′′(t) < 0, then there exists a constant M > 0 such that

aa(t)(z′′(t))α ≤ −M < 0.

Integrating the last inequality from t1 to t we obtain

z′(t) ≤ z′(t1)− M1/α
∫ t

t1

a−1/α(s)ds.

Letting t → ∞ and using (C2) we get z′(t) → ∞. Thus z′(t) < 0 eventually. But z′′(t) < 0 and z′(t) < 0
eventually imply z(t) < 0 for t ≥ t1 a contradiction. This contradiction proves that z′′(t) > 0 and we have
only tow cases (I) and (II) for z(t). The proof is now complete.

Lemma 2.2. Assume that u(t) > 0, u′(t) ≥ 0, u′′(t) ≤ 0, on [t0, ∞). Then for each ` ∈ (0, 1) there exists a T` ≥ t0
such that

u(τ(t))
u(t)

≥ `
u(t)

t
for t ≥ T`.
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Lemma 2.3. Assume that z(t) > 0, z′(t) > 0, z′′(t) > 0, z′′′(t) ≤ 0, on [T`, ∞). Then

z(t)
z′(t)

≥ t− T`

2
for t ≥ T`.

The proofs of Lemma 2.2 and Lemma 2.3 are found in [25].

Lemma 2.4. The function x(t) is a negative solutions of equation (1.1) if and only if −x(t) is a positive solution of the
equation (

a(t)
(
(x(t) + p(t)x(τ(t)))′′

)α
)′

+ q(t) min
[σ(t),t]

xβ(s) = 0. (2.4)

Proof. The assertion of Lemma 2.4 can be verified easily.

Lemma 2.5. Let x(t) be a positive solution of equation (1.1) and let the corresponding z(t) satisfy Lemma 2.1 (II). If

∫ ∞

t0

∫ ∞

v

(
1

a(u)

∫ ∞

u
q(s)ds

) 1
α

dudv = ∞ (2.5)

then limt→∞ x(t) = limt→∞ z(t) = 0.

Proof. The proof is similar to that of in [25] and hence the details are omitted.

Lemma 2.6. Assume that z′(t) > 0, z′′(t) > 0, z′′′(t) ≤ 0 on [T`, ∞). Then

(t− T`)
z′′(t)
z′(t)

≤ 1 for t ≥ T`.

Proof. The proof is similar to that of in [25] and hence the details are omitted.

Now, we present the main results. For simplicity we introduce the following notations:

p∗ = lim
t→∞

tα

a(t)

∫ ∞

t
P`(s)ds,

q∗ = lim
t→∞

sup
1
t

∫ t

t0

sα+1

a(s)
P`(s)ds

where

P`(s) = `α max
[σ(t),t]

(1− p(s))αq(s)
(

τ(s)
s

)α (τ(s)− T`

2

)α

(2.6)

with ` ∈ (0, 1) arbitrarily chosen and T` large enough. Moreover for z(t) satisfying case (I), we define

w(t) = a(t)
(

z′′(t)
z(t)

)α

(2.7)

r = lim
t→∞

inf
tα

a(t)
,

and

r = lim
t→∞

sup
tα

a(t)
. (2.8)

Theorem 2.1. Assume that condition (2.5) holds and a′(t) ≥ 0 for all t ≥ t0. If

p∗ = lim
t→∞

inf
tα

a(t)

∫ ∞

t
P`(s)ds >

αα

(α + 1)α+1 . (2.9)

Then the solution x(t) of equation (1.1) is either oscillatory or limt→∞ x(t) = 0.
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Proof. Assume that x(t) is a positive solution of equation (1.1) and the corresponding function z(t) satisfies
case(I) of Lemma 2.1. First note that

x(t) = z(t)− p(t)x(τ(t)) ≥ (1− p(t))z(t) (2.10)

or
max
[τ(t),t]

xα(s) ≥ zα max
[σ(t),t]

(1− p(s))α.

Using the above inequality in (1.1) we obatin

(a(t)(z′′(t))α)′ ≤ 0 (2.11)

The last inequality together with a′(t) ≥ 0 gives that z(t) satisfies z(τ(t)) > 0, z′(t) > 0, z′′(t) > 0, z′′′(t) ≤ 0
for t ∈ [T, ∞]. From the definition of w(t) we see that w(t) > 0 and from (1.1) we have

w′(t) =
(z′(t))α(a(t)(z′′(t))α)′ − (a(t)(z′′(t))α)α(z′(t))α−1z′′(t)

(z′(t))2α

=
−q(t)zα(t) max[σ(t),t](1− p(s))α

(z′(t))α
− α

a1/α(t)
w

α+1
α (t) (2.12)

From Lemma 2.2 with u(t) = z′(t), we have for ` the same P`(t),

1
z′(t)

≥ `
τ(t)

t
1

z′(tau(t))
, t ≥ T`

which with (2.12) gives

w′(t) ≤ −q(t)`α

(
τ(t)

t

)α zα(t)
(z′(τ(t)))α

max
[σ(s),s]

(1− p(s))α − α

a1/α(t)
w

α+1
α (t).

Using the fact from Lemma 2.3 that z(t) ≥ (t−T`)
2 z′(t), we have

w′(t) + P`(t) +
α

a1/α(t)
w

α+1
α (t) ≤ 0. (2.13)

Since P`(t) > 0 and w(t) > 0 for t ≥ T`, we have from (2.13) that w′(t) ≤ 0 and

−

(
w′(t)

αw
α+1

α (t)

)
>

1
a1/α(t)

, for t ≥ T`. (2.14)

This implies that (
1

w1/α(t)

)′
>

1
a1/α(t)

(2.15)

Integrating the last inequality from T` to t, we obtain

w(t) =
1(∫ t

T`

ds
a1/α(t)

)α (2.16)

which inview of (C3) implies that limt→∞ w(t) = 0. On the otherhand, from the definition of w(t), and Lemma
2.3, we see that

0 ≤ r ≤ R ≤ 1. (2.17)

Now, let ε > 0, then from the definitions of p∗ and r we can pick t2 ∈ [T`, ∞) sufficiently large that

tα

a(t)

∫ ∞

t
P`(s)ds ≥ p∗ − ε,

and
tαw(t)

a(t)
≥ t− ε, for t ∈ [t0, ∞).
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Integrating (2.13) from t to ∞ and using limt→∞ w(t) = 0, we have

w(t) ≥
∫ ∞

t
P`(s)ds + α

∫ ∞

t

w1+1/α(s)
a1/α(s)

ds, for t ∈ [t2, ∞). (2.18)

Assume p∗ = ∞, then from (2.18), we have

tαw(t)
a(t)

≥ tα

a(t)

∫ ∞

t
P`(s)ds.

Taking the limit infimum on both sides as t → ∞, we get in view of (2.17) that 1 ≥ r ≥ ∞. This is a contradic-
tion. Next assume that p∗ < ∞. Now from (2.18) and the fact a′(t) ≥ 0, we have

tα

a(t)
w(t) ≥ tα

a(t)

∫ α

t
P`(s)ds + α

tα

a(t)

∫ ∞

t

sα+1a(s)w
1
α +1(s)

sα+1a
1
α +1(s)

ds

≥ (p∗ − ε) +
tα(r − ε)1+ 1

α

a(t)

∫ ∞

t

αa(s)
sα+1 ds

≥ (p∗ − ε) + (r − ε)1+ 1
α tα
∫ ∞

t

α

sα+1 ds (2.19)

or
tαw(t)

a(t)
≥ (p∗ − ε) + (r − ε)1+ 1

α .

Taking the limit infimum on both sides as t → ∞, we get

r ≥ p∗ − ε + (r − ε)1+ 1
α .

Since ε > 0 is arbitrary, we get the desired result

p∗ ≤ r − r1+ 1
α .

Using the inequality Bu − Au
α+1

α ≤ αα

(α+1)α+1
Bα+1

Aα . With A = B = 1, we get p∗ ≤ αα

(α+1)α+1 , which contradicts
(2.9). This completes the proof.

Corollary 2.1. Assume that (2.5) holds and a′(t) ≥ 0. Let x(t) be a solution of equation (1.1). If

lim
t→∞

inf
tα

a(t)

∫ ∞

t
q(s) max

[σ(t),t]
(1− p(s))α τ2α(s)

sα
P`(s)ds >

(2α)α

(α + 1)α+1 (2.20)

then x(t) is either oscillatory or satisfies limt→∞ x(t) = 0.

Proof. We shall now show that (2.20) implies (2.19). First note that for any ` ∈ (0, 1) there exists a t1 such that
τ(t)− T` ≥ `τ(t), t ≥ t1. Therefore

P` ≥
`2α max[σ(t),t](1− p(t))α

2α

q(t)τ2α(t)
tα

, t ≥ t1. (2.21)

On the otherhand, (2.20) implies that for some ` ∈ (0, 1)

lim
t→∞

inf
tα

a(t)

∫ ∞

t
q(s) max

[σ(t),t]
(1− p(s))α τ2α(s)

sα
>

1
`2α

(2α)α

(α + 1)(α + 1)
(2.22)

Combining (2.21) with (2.22) we get (2.9).

Theorem 2.2. Assume that the condition (2.5) holds and a′(t) ≥ 0 for all t ≥ t0. Let x(t) be a solution of equation
(1.1). If p∗ + q∗ > 1, then x(t) is either oscillatory or satisfies limt→∞ x(t) = 0.
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Proof. Assume that x(t) be a positive solution of equation (1.1) and the corresponding function z(t) satisfies
case(I) of Lemma 2.1. Now multiply (2.13) by tα+1

a(t) , and integrating from t2 to t (t ≥ t2), we get

∫ t

t2

sα+1

a(s)
w′(s)ds ≤

∫ t

t2

sα+1

a(s)
P`(s)ds− α

∫ t

t2

(
sαw(t)

a(s)

) s+1
s

ds (2.23)

Using integration by parts, we obtain

tα+1

a(t)
w(t) ≤

tα+1
2 w(t2)

a(t2)
−
∫ t

t2

sα+1

a(s)
P`(s)ds

− α

∫ t

t2

(
sαw(t)

a(s)

) s+1
s

ds +
∫ t

t2

(
sα+1

a(s)

)′
w(s)ds.

Since a′(t) ≥ 0, we have (
sα+1

a(s)

)′
=

a(s)(α + 1)sα − a′(s)sα

(a(s))2 ≤ (α + 1)sα

a(s)
.

Hence,

tα+1

a(t)
w(t) ≤

tα+1
2 w(t2)

a(t2)
−
∫ t

t2

sα+1

a(s)
P`(s)ds

+
∫ t

t2

[
(α + 1)sαw(s)

a(s)
− α

(
sαw(s)

a(s)

)α+1
]

ds.

Using the inequality Bu − Au
α+1

α ≤ αα

(α+1)α+1
Bα+1

Aα , with u(s) = sαw(s)
a(s) > 0, and positive constants. A = α, B =

α + 1, we get

tα+1

a(t)
w(t) ≤

tα+1
2

a(t2)
w(t2)−

∫ t

t2

sα+1

a(s)
P`(s)ds +

t− t2

t
. (2.24)

Taking limit supreme on both sides as t → ∞ we obtain R ≤ q∗ + 1. Combining this with the inequality (2.20)
we get

p∗ + q∗ ≤ 1. (2.25)

This is a contradiction. If z(t) satisfies condition (2.5) then by Lemma 2.1 of case(II) with limt→∞ z(t) = 0. This
completes the proof.

Corollary 2.2. Assume that (2.5) holds and a′(t) ≥ 0. Let x(t) be a solution of equation (1.1). If

q∗ = lim
t→∞

sup
1
t

∫ t

t0

sα+1

a(s)
P`(s)ds > 1 (2.26)

then x(t) is either oscillatory or satisfies limt→∞ x(t) = 0.

As a matter of fact we can slightly simplify the function P`(t) in (2.26).

Corollary 2.3. Assume that (2.5) holds and a′(t) ≥ 0. Let x(t) be a solution of equation (1.1). If

lim
t→∞

sup
1
t

∫ t

t0

sτ2α(s)q(s) max[σ(t),t](1− p(s))α

a(s)
ds > 2α

then x(t) is either oscillatory or satisfies limt→∞ x(t) = 0.

3 Examples

In this section we present some examples to illustrate the main results.
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Example 3.1. Consider the differential equation(
t3
(

(x(t) +
1
3

x(t/2))′′
)3
)′

+
750
27t4 max

[t/2,t]
x3(s) = 0, t ≥ 0. (3.1)

One can easily verify that all conditions of Theorem 2.1 are satisfied and hence every solution of equation (1.1) is almost
oscillatory. Infact x(t) = 1

t is one such solution of equation (3.1).

Example 3.2. Consider the differential equation(
t1/3

(
(x(t) +

1
2

x(t/2))′′
)1/3

)′
+

1
3

(
2
t

)4/3
max
[t/2,t]

x1/3(s) = 0, t ≥ 1. (3.2)

One can easily verify that all conditions of Theorem 2.2 are satisfied and hence every solution of equation (1.1) is almost
oscillatory. In fact x(t) = 1

t is one such solution of equation (3.2).
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