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Some new general integral inequalities for P-functions
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Abstract

In this paper, we derive new estimates for the remainder term of the midpoint, trapezoid, and Simpson for-
mulae for functions whose derivatives in absolute value at certain power are P-functions. Some applications
to special means of real numbers are also given.
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1 Introduction

Let f : I ⊆ R → R be a convex function defined on the interval I of real numbers and a, b ∈ I with a < b.
The following inequality holds:

f
(

a + b
2

)
≤ 1

b− a

b∫
a

f (x)dx ≤ f (a) + f (b)
2

. (1.1)

This double inequality is well known as Hermite-Hadamard integral inequality for convex functions in the
literature .

In [2] Dragomir et al. defined the concept of P-function as the following:

Definition 1.1. We say that f : I → R is a P-function, or that f belongs to the class P(I), if f is a non-negative
function and for all x, y ∈ I, α ∈ [0, 1], we have

f (αx + (1− α)y) ≤ f (x) + f (y).

P(I) contain all nonnegative monotone convex and quasi convex functions.

In [2], Dragomir et al., proved following inequalities of Hadamard’s type for P-function

Theorem 1.1. Let f ∈ P(I), a, b ∈ I with a < b and f ∈ L [a, b] . Then the following inequality holds

f
(

a + b
2

)
≤ 2

b− a

b∫
a

f (x)dx ≤ 2 [ f (a) + f (b)] . (1.2)
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The following inequality is well known in the literature as Simpson’s inequality .
Let f : [a, b]→ R be a four times continuously differentiable mapping on (a, b) and

∥∥∥ f (4)
∥∥∥

∞
= sup

x∈(a,b)

∣∣∣ f (4)(x)
∣∣∣ <

∞. Then the following inequality holds:∣∣∣∣∣∣1
3

[
f (a) + f (b)

2
+ 2 f

(
a + b

2

)]
− 1

b− a

b∫
a

f (x)dx

∣∣∣∣∣∣ ≤ 1
2880

∥∥∥ f (4)
∥∥∥

∞
(b− a)4 .

In recent years many authors have studied error estimations for Simpson’s inequality and Hermite-
Hadamard inequalitiy; for refinements, counterparts, generalizations, see ([1]-[10]).

In [3], Iscan obtained a new generalization of some integral inequalities for differentiable convex mapping
which are connected Simpson and Hadamard type inequalities by using the following lemma.

Let f : I ⊆ R → R be a differentiable mapping on I◦ such that f ′ ∈ L[a, b], where a, b ∈ I with a < b and
α, λ ∈ [0, 1]. Then the following equality holds:

λ (α f (a) + (1− α) f (b)) + (1− λ) f (αa + (1− α) b)− 1
b− a

b∫
a

f (x)dx

= (b− a)

 1−α∫
0

(t− αλ) f ′ (tb + (1− t)a) dt

+

1∫
1−α

(t− 1 + λ (1− α)) f ′ (tb + (1− t)a) dt

 .

The aim of this paper is to establish some new general integral inequalities for functions whose derivatives in
absolute value at certain power are P-functions. Some applications of these results to special means is to give
as well.

Let f : I ⊆ R → R be a differentiable function on I◦, the interior of I. Throughout this section we will take

I f (λ, α, a, b)

= λ (α f (a) + (1− α) f (b)) + (1− λ) f (αa + (1− α) b)− 1
b− a

b∫
a

f (x)dx

where a, b ∈ I◦ with a < b and α, λ ∈ [0, 1].

Theorem 1.2. Let f : I ⊆ R → R be a differentiable mapping on I◦ such that f ′ ∈ L[a, b], where a, b ∈ I◦ with a < b
and α, λ ∈ [0, 1]. If | f ′|q is P-function on [a, b], q ≥ 1, then the following inequality holds:∣∣∣I f (λ, α, a, b)

∣∣∣ ≤ (b− a)
(∣∣ f ′(b)

∣∣q +
∣∣ f ′(a)

∣∣q
) 1

q (1.3)

×


γ2(α, λ) + γ2(1− α, λ) αλ ≤ 1− α ≤ 1− λ (1− α)
γ2(α, λ) + γ1(1− α, λ) αλ ≤ 1− λ (1− α) ≤ 1− α

γ1(α, λ) + γ2(1− α, λ) 1− α ≤ αλ ≤ 1− λ (1− α)
,

where

γ1(α, λ) = (1− α)
[

αλ− (1− α)
2

]
, (1.4)

γ2(α, λ) = (αλ)2 − γ1(α, λ) .

Proof. Suppose that q ≥ 1.Since | f ′|q is P-function on [a, b], from Lemma 1 and using the well known power
mean inequality, we have∣∣∣I f (λ, α, a, b)

∣∣∣
≤ (b− a)

 1−α∫
0

|t− αλ|
∣∣ f ′ (tb + (1− t)a)

∣∣ dt +

1∫
1−α

|t− 1 + λ (1− α)|
∣∣ f ′ (tb + (1− t)a)

∣∣ dt
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≤ (b− a)


 1−α∫

0

|t− αλ| dt

1− 1
q
 1−α∫

0

|t− αλ|
∣∣ f ′ (tb + (1− t)a)

∣∣q dt


1
q

+

 1∫
1−α

|t− 1 + λ (1− α)| dt

1− 1
q
 1∫

1−α

|t− 1 + λ (1− α)|
∣∣ f ′ (tb + (1− t)a)

∣∣q dt


1
q


≤ (b− a)

(∣∣ f ′(b)
∣∣q +

∣∣ f ′(a)
∣∣q

) 1
q


1−α∫
0

|t− αλ| dt +

1∫
1−α

|t− 1 + λ (1− α)| dt

 (1.5)

Additionally, by simple computation

1−α∫
0

|t− αλ| dt =
{

γ2(α, λ), αλ ≤ 1− α

γ1(α, λ), αλ ≥ 1− α
, (1.6)

γ1(α, λ) = (1− α)
[

αλ− (1− α)
2

]
, γ2(α, λ) = (αλ)2 − γ1(α, λ) ,

1∫
1−α

|t− 1 + λ (1− α)| dt =

α∫
0

|t− (1− α) λ| dt (1.7)

=
{

γ1(1− α, λ), 1− λ (1− α) ≤ 1− α

γ2(1− α, λ), 1− λ (1− α) ≥ 1− α
,

Thus, using (1.6) and (1.7) in (1.5), we obtain the inequality (1.3). This completes the proof.

Corollary 1.1. Under the assumptions of Theorem 1.2 with q = 1, we have∣∣∣I f (λ, α, a, b)
∣∣∣ ≤ (b− a)

(∣∣ f ′(b)
∣∣ +

∣∣ f ′(a)
∣∣)

×


γ2(α, λ) + γ2(1− α, λ) αλ ≤ 1− α ≤ 1− λ (1− α)
γ2(α, λ) + γ1(1− α, λ) αλ ≤ 1− λ (1− α) ≤ 1− α

γ1(α, λ) + γ2(1− α, λ) 1− α ≤ αλ ≤ 1− λ (1− α)
,

Corollary 1.2. In Theorem 1.2 , if we take α = 1
2 and λ = 1

3 , then we have the following Simpson type inequality∣∣∣∣∣∣1
6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]
− 1

b− a

b∫
a

f (x)dx

∣∣∣∣∣∣ ≤ 5 (b− a)
36

(∣∣ f ′(b)
∣∣q +

∣∣ f ′(a)
∣∣q

) 1
q

Corollary 1.3. In Theorem 1.2 , if we take α = 1
2 and λ = 0, then we have following midpoint inequality∣∣∣∣∣∣ f

(
a + b

2

)
− 1

b− a

b∫
a

f (x)dx

∣∣∣∣∣∣ ≤ b− a
4

(∣∣ f ′(b)
∣∣q +

∣∣ f ′(a)
∣∣q

) 1
q

Corollary 1.4. In Theorem 1.2 , if we take α = 1
2 , and λ = 1, then we get the following trapezoid inequality which is

identical to the inequality in [1, Theorem 2.3].∣∣∣∣∣∣ f (a) + f (b)
2

− 1
b− a

b∫
a

f (x)dx

∣∣∣∣∣∣ ≤ b− a
4

(∣∣ f ′(b)
∣∣q +

∣∣ f ′(a)
∣∣q

) 1
q

Using Lemma 1 we shall give another result for convex functions as follows.
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Theorem 1.3. Let f : I ⊆ R → R be a differentiable mapping on I◦ such that f ′ ∈ L[a, b], where a, b ∈ I◦ with a < b
and α, λ ∈ [0, 1]. If | f ′|q is P-function on [a, b], q > 1, then the following inequality holds:

∣∣∣I f (λ, α, a, b)
∣∣∣ ≤ (b− a)

(
1

p + 1

) 1
p

(1.8)

×


[
ε

1/p
1 (α, λ, p)c1/q

f (α, q) + ε
1/p
1 (1− α, λ, p)k1/q

f (α, q)
]

, αλ ≤ 1− α ≤ 1− λ (1− α)[
ε

1/p
1 (α, λ, p)c1/q

f (α, q) + ε
1/p
2 (1− α, λ, p)k1/q

f (α, q)
]

, αλ ≤ 1− λ (1− α) ≤ 1− α[
ε

1/p
2 (α, λ, p)c1/q

f (α, q) + ε
1/p
1 (1− α, λ, p)k1/q

f (α, q)
]

, 1− α ≤ αλ ≤ 1− λ (1− α)

,

where

c f (α, q) = (1− α)
[∣∣ f ′ ((1− α) b + αa)

∣∣q +
∣∣ f ′ (a)

∣∣q
]

, (1.9)

k f (α, q) = α
[∣∣ f ′ ((1− α) b + αa)

∣∣q +
∣∣ f ′ (b)

∣∣q
]

,

ε1(α, λ, p) = (αλ)p+1 + (1− α− αλ)p+1 , ε2(α, λ, p) = (αλ)p+1 − (αλ− 1 + α)p+1 ,

and 1
p + 1

q = 1.

Proof. Since | f ′|q is P-function on [a, b], from Lemma 1 and by Hölder’s integral inequality, we have∣∣∣I f (λ, α, a, b)
∣∣∣

≤ (b− a)

 1−α∫
0

|t− αλ|
∣∣ f ′ (tb + (1− t)a)

∣∣ dt +

1∫
1−α

|t− 1 + λ (1− α)|
∣∣ f ′ (tb + (1− t)a)

∣∣ dt



≤ (b− a)


 1−α∫

0

|t− αλ|p dt


1
p
 1−α∫

0

∣∣ f ′ (tb + (1− t)a)
∣∣q dt


1
q

(1.10)

+

 1∫
1−α

|t− 1 + λ (1− α)|p dt


1
p
 1∫

1−α

∣∣ f ′ (tb + (1− t)a)
∣∣q dt


1
q

 .

By the inequality (1.2), we get

1−α∫
0

∣∣ f ′ (tb + (1− t)a)
∣∣q dt = (1− α)

 1
(1− α) (b− a)

(1−α)b+αa∫
a

∣∣ f ′ (x)
∣∣q dx


≤ (1− α)

[∣∣ f ′ ((1− α) b + αa)
∣∣q +

∣∣ f ′ (a)
∣∣q

]
. (1.11)

The inequality (1.11) also holds for α = 1. Similarly, for α ∈ (0, 1] by the inequality (1.2), we have

1∫
1−α

∣∣ f ′ (tb + (1− t)a)
∣∣q dt = α

 1
α (b− a)

b∫
(1−α)b+αa

∣∣ f ′ (x)
∣∣q dx


≤ α

[∣∣ f ′ ((1− α) b + αa)
∣∣q +

∣∣ f ′ (b)
∣∣q

]
. (1.12)

The inequality (1.12) also holds for α = 0. By simple computation

1−α∫
0

|t− αλ|p dt =


(αλ)p+1+(1−α−αλ)p+1

p+1 , αλ ≤ 1− α

(αλ)p+1−(αλ−1+α)p+1

p+1 , αλ ≥ 1− α
, (1.13)
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and
1∫

1−α

|t− 1 + λ (1− α)|p dt =


[λ(1−α)]p+1+[α−λ(1−α)]p+1

p+1 , 1− α ≤ 1− λ (1− α)
[λ(1−α)]p+1−[λ(1−α)−α]p+1

p+1 , 1− α ≥ 1− λ (1− α)
, (1.14)

thus, using (1.11)-(1.14) in (1.10), we obtain the inequality (1.8). This completes the proof.

Corollary 1.5. In Theorem 1.3, if we take α = 1
2 and λ = 1

3 , then we have the following Simpson type inequality∣∣∣∣∣∣1
6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]
− 1

b− a

b∫
a

f (x)dx

∣∣∣∣∣∣ ≤ b− a
12

(
1 + 2p+1

3 (p + 1)

) 1
p

×


(∣∣∣∣ f ′

(
a + b

2

)∣∣∣∣q
+

∣∣ f ′ (a)
∣∣q

) 1
q

+
(∣∣∣∣ f ′

(
a + b

2

)∣∣∣∣q
+

∣∣ f ′ (b)
∣∣q

) 1
q

 .

Corollary 1.6. In Theorem 1.3, if we take α = 1
2 and λ = 0, then we have the following midpoint inequality∣∣∣∣∣∣ f

(
a + b

2

)
− 1

b− a

b∫
a

f (x)dx

∣∣∣∣∣∣ ≤ b− a
4

(
1

p + 1

) 1
p

×


(∣∣∣∣ f ′

(
a + b

2

)∣∣∣∣q
+

∣∣ f ′ (a)
∣∣q

) 1
q

+
(∣∣∣∣ f ′

(
a + b

2

)∣∣∣∣q
+

∣∣ f ′ (b)
∣∣q

) 1
q

 .

We note that by inequality ∣∣∣∣ f ′
(

a + b
2

)∣∣∣∣q
≤

∣∣ f ′ (a)
∣∣q +

∣∣ f ′ (b)
∣∣q

we have ∣∣∣∣∣∣ f
(

a + b
2

)
− 1

b− a

b∫
a

f (x)dx

∣∣∣∣∣∣
≤ b− a

4

(
1

p + 1

) 1
p
{(∣∣ f ′ (b)

∣∣q + 2
∣∣ f ′ (a)

∣∣q
) 1

q +
(∣∣ f ′ (a)

∣∣q + 2
∣∣ f ′ (b)

∣∣q
) 1

q
}

.

Corollary 1.7. In Theorem 1.3, if we take α = 1
2 and λ = 1, then we have the following trapezoid inequality∣∣∣∣∣∣ f (a) + f (b)

2
− 1

b− a

b∫
a

f (x)dx

∣∣∣∣∣∣ ≤ b− a
4

(
1

p + 1

) 1
p

×


(∣∣∣∣ f ′

(
a + b

2

)∣∣∣∣q
+

∣∣ f ′ (a)
∣∣q

) 1
q

+
(∣∣∣∣ f ′

(
a + b

2

)∣∣∣∣q
+

∣∣ f ′ (b)
∣∣q

) 1
q

 .

2 Some applications for special means

We now recall the following well-known concepts. For arbitrary real numbers a, b, a 6= b, we define

1. The unweighted arithmetic mean

A (a, b) :=
a + b

2
, a, b ∈ R.

2. Then n−Logarithmic mean

Ln (a, b) :=
(

bn+1 − an+1

(n + 1)(b− a)

) 1
n

, n ∈ N, n ≥ 1, a, b ∈ R, a < b.
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Now we give some applications of the new results derived in section 2 to special means of real numbers.

Proposition 2.1. Let a, b ∈ R with a < b and n ∈ N, n ≥ 2. Then∣∣∣∣1
3

A(an, bn) +
2
3

An(a, b)− Ln
n(a, b)

∣∣∣∣ ≤ 5n (b− a)
36

(
|b|(n−1)q + |a|(n−1)q

) 1
q

Proof. The assertion follows from Corollary 1.2 applied to the function f (x) = xn, x ∈ R, because | f ′|q is a
P-function.

Proposition 2.2. Let a, b ∈ R with a < b and n ∈ N, n ≥ 2. Then

|An(a, b)− Ln
n(a, b)| ≤ n (b− a)

4

(
|b|(n−1)q + |a|(n−1)q

) 1
q

and

|A(an, bn)− Ln
n(a, b)| ≤ n (b− a)

4

(
|b|(n−1)q + |a|(n−1)q

) 1
q

Proof. The assertion follows from Corollary 1.3 and Corollary 1.4 applied to the function f (x) = xn, x ∈ R,
because | f ′|q is a P-function.

Proposition 2.3. Let a, b ∈ R with a < b and n ∈ N, n ≥ 2. Then∣∣∣∣1
3

A(an, bn) +
2
3

An(a, b)− Ln
n(a, b)

∣∣∣∣ ≤ n (b− a)
12

(
1 + 2p+1

3 (p + 1)

) 1
p

×
{(

|A(a, b)|(n−1)q + |a|(n−1)q
) 1

q +
(
|A(a, b)|(n−1)q + |b|(n−1)q

) 1
q
}

.

Proof. The assertion follows from Corollary 1.5 applied to the function f (x) = xn, x ∈ R, because | f ′|q is a
P-function.

Proposition 2.4. Let a, b ∈ R with a < b and n ∈ N, n ≥ 2. Then

|An(a, b)− Ln
n(a, b)| ≤ n (b− a)

4

(
1

p + 1

) 1
p

×
{(

|A(a, b)|(n−1)q + |a|(n−1)q
) 1

q +
(
|A(a, b)|(n−1)q + |b|(n−1)q

) 1
q
}

.

and

|A(an, bn)− Ln
n(a, b)| ≤ b− a

4

(
1

p + 1

) 1
p

×
{(

|A(a, b)|(n−1)q + |a|(n−1)q
) 1

q +
(
|A(a, b)|(n−1)q + |b|(n−1)q

) 1
q
}

.

Proof. The assertion follows from Corollary 1.6 and Corollary 1.7 applied to the function f (x) = xn, x ∈ R,
because | f ′|q is a P-function.
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