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Abstract

In this paper, we investigate a time-discretized 2-dimensional Navier-Stokes equation with a slip-like
boundary condition, which arises in the melting ice problem with obstacle. We study the existence and
uniqueness of a approximate solution. We also study the numerical solution of melting ice problem using
Continuous Galerkin method.
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1 Introduction

The incompressible Navier-Stokes system is one of the main equations studied in mathematical physics
and fluid mechanics fields and there is a huge literature written on the subject. For example, we quote [1]
for finite difference methods, [2, 3, 4] for finite element methods, and [5] for finite volume methods. Com-
putational fluid dynamics models are in general based on the solution of the Navier-Stokes equations and its
discretization scheme, for instance, finite element methods and finite volume methods. To accurately capture
the physical properties of the fluid flow being simulated, we usually need highly refined meshes on the entire
flow domain which can cause a large scale computation possibly beyond the capability of a single computer.
Therefore, to utilize the computational power of modern high-performance computers, much effort is thrown
into the development of efficient computing methods for the Navier-Stokes equations.

Let Ω be an open and bounded domain in R2 with Lipschitz continuous boundary Γ. Throughout the
paper we will use the standard notation for Sobolev spaces Wm,p(Ω) with norm ||.||m,p,Ω (see[6]). Specially
Hm(Ω) = Wm,2(Ω), where m is an integer greater than zero, will denotes the Sobolev space of real-valued
functions with square integrable derivatives of order up to m equipped with the usual norm which we denote
||.||m. We will denote H0(Ω) by L2(Ω) and the standard L2 inner product by (., .). Also Hm(Ω) will denote the
space of vector-valued functions each of whose n components belong to Hm(Ω), and the dual space of Hm(Ω)
will be denoted by H−m(Ω) of particular interest to us will be the constrained space

L2
0(Ω) = {ξ ∈ L2(Ω),

∫
Ω

ξdΩ = 0}

and
H1

0 (Ω) = {v ∈ H1(Ω), v|Γ = 0}.
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In [8], the authors studied only the existence and uniqueness of weak solution of Navier-Stokes equa-
tion with slip-like boundary condition. In this paper we study the existence and uniqueness of approximate
solution and numerical solution of melting ice problem using Continuous Galerkin finite element method.

2 Problem Formulation

Consider an ice plate, placed upright, whose vertical face is exposed to the air and melting. So this face
is covered by the layer of flowing water, and the shapes of the ice and the water-layer vary as time t goes
on. Therefore, in the water region, this system can be described by Navier-Stokes equations with two free
boundaries of the ice-water interface Γ1 and the water-air interface Γ2, whose movements would depend on
the unknown functions. However, as a first step of analysis, we here consider the discretized Navier-Stokes
equation in the time variable t with the discretization parameters τ > 0 in the fixed domain Ω with given
interfaces Γ1 and Γ2. Experiments for this kind of problems can be found in [14] and mathematical treatments
for problems similar to ours are discussed by several authors see [11, 12].

Fix the x-axis vertically and downward, the y-axis in the direction of the thickness and outward, and the
z-axis orthogonally to the x and y axes. The ice-water interface and the water-air interface are represented
by y = l(x, z) and y = d(x, z) respectively. Further suppose that the size of ice plate in z-direction is so large
that we can regard l and d as constant in z. So our problem can be formulated in the following 2-dimensional
setting.

Define the domain Ω which is occupied by water by

Ω = {(x, y) : 0 < x < 1, l(x) < y < d(x)},

where l, d ∈ C0,1([0, 1]); that is, l and d are Lipschitsz continuous on [0, 1] and

0 ≤ l(x) < d(x) ≤ 1 for all 0 ≤ x ≤ 1.

Hence Ω is of class C0,1([0, 1]). Define the ice-water interface Γ1, the water-air interface Γ2, the lower boundary
Γ3, and the upper boundary Γ4 by

Γ1 = {(x, y) : 0 ≤ x ≤ 1, y = l(x)},
Γ2 = {(x, y) : 0 ≤ x ≤ 1, y = d(x)},
Γ3 = {(x, y) : x = 1, l(1) ≤ y ≤ d(1)},
Γ4 = {(x, y) : x = 0, l(0) ≤ y ≤ d(0)},

by respectively, We consider the following two-dimensional Navier-Stokes equations with Slip-like boundary
condition

1
τ

(u− u0) + (u · ∇)u +
1
ρ
∇p− ν∆u = g in Ω,

div u = 0 in Ω,

(1)

for the fixed discretization parameter τ > 0 with the boundary conditions

u = 0 on Γ1, (2)

UY = VY = 0 on Γ2, (3)

v = 0 on Γ3, (4)

u = 0 on Γ4. (5)

Here, the velocity vector u = (u, v) and the pressure p are unknown functions of (x, y). The initial velocity
u0, the gravity force g, the density ρ, and the kinematic viscosity ν are given data. The unit time τ is to be
determined later. Put U = u · t, V = u · n, where n designates the outer unit normal vector of Γ2 and t
designates the downward unit tangential vector of Γ2. Denote by (X, Y ) the local coordinate with directions
t and n. The original slip boundary condition is stated as

UY + VX = 0 on Γ2,
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(see [13]) and condition (3) is its linearized version. In the original problem, both Γ1 and Γ2 move after the
unit time τ . But in our setting, the interfaces stay invariant.

To approximate the solutions of the governing equations derived in section 2 we use the Continuous
Galerkin finite element method, which is also know as Ritz-Galerkin method. In this method we formu-
late a weak formulation of the 2-dimensional Navier-Stokes equation with a slip-like boundary condition that
we observe. Discretizing the equations offers the possibility to obtain the approximated solution numerically.

First we discretize the Navier-Stokes equation with a slip-like boundary condition by using the arbitrari-
ness of the variational derivatives with respect to each variable. Note that they are elements of the test
function-space C∞0 (Dh) on the domain, which can be restricted to the test functions on each element Ki with
the test function space C∞0 (K+). Hereby then we formulate the finite element weak formulations.

3 The Variational Formulation

The variational formulation for problem (1) is written as

(
1
τ

(u− u0)− g, δu) + νa(u, δu) + a1(u,u, δu)− b(p, δu) = 0 ∀δu ∈ V (6)

b(q, δu) = 0 ∀q ∈ H

where

V = {u ∈
(
H1(Ω)

)2
: div u = 0, u = 0 on Γ1 and Γ4,v = 0 on Γ3},

H = {u ∈ (L2(Ω))2 : div u = 0},
Pσis the orthogonal projection from (L2(Ω))2 onto H,

L4 = {u ∈ (L4(Ω))2 : div u = 0}

and let (·, ·) and | · | denote the inner product and the norm of the space H.
Define a bounded positive bilinear form a(·, ·) on V by

a(u, δu) :=
∫

Ω

(∇u · ∇ δu +∇ v · ∇ δv) dx

for u = (u, v), δu = (δu, δv) ∈ V. Also define a trilinear form b(·, ·, ·) on (L4)2 ×V by

a1(w,u, δu) :=
∫

Ω

(w1uxδu + w1vxδv + w2uyδu + w2vyδv) dx

for w = (w1, w2) ∈ L4, u = (u, v) ∈ V, δu = (δu, δv) ∈ L4, where x = (x, y).
The above trilinear form a1(.; ., .) satisfies the following properties [2, 3]

a1(u; δu, δu) = 0, a1(u; δu,w) = −a1(u;w, δu),∀u, δu,w ∈ V

|a1(u; δu,w)| ≤ N ||∇u||0||∇δu||0||∇w||0, ∀u, δu,w ∈ V

where

N = sup
u,δu,w∈V

|a1(u; δu,w)|
||∇u||0||∇δu||0||∇w||0

is a positive constant depending only on the domain Ω.
We note that Hölder’s inequality gives

|a1(w,u, δu)| ≤ |w|4|∇u||δu|4 for ũ ∈ L4, u ∈ V, δu ∈ L4. (7)

Here | · |4 denotes the norm of L4 and

|∇u| = |(|∇u|, |∇v|)|, |∇u| =
( ∣∣∣∣∂u

∂x

∣∣∣∣2 +
∣∣∣∣∂u

∂y

∣∣∣∣2 )1/2

.
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Let Z = {δu ∈ V, b(q, δu) = 0∀q ∈ H} = {δu ∈ H, divδu = 0} denote the divergence-free subspace of
V. Then u ∈ V is said to be a week solution of (1) with boundary conditions (2)-(5) if the following relations
holds (1

τ
(u− u0)− g, δu

)
+ νa(u, δu) + a1(u,u, δu) = 0 for all δu ∈ Z. (8)

We remark that if a sufficiently smooth function u, say in (C2(Ω̄))2 ∩V, satisfies (8), then u should satisfy
equation (1) and boundary condition (3) on Γ2. In fact, let u ∈ (C2(Ω̄))2 ∩V and let
f = − 1

ν

(
1
τ (u− u0)− g + Pσ(u · ∇)u

)
∈ H, then (8) gives

a(u, δu) = (f , δu) for all δu ∈ V.

Here we note that since v ≡ 0, div u = ux + vy ≡ 0 on Γ3, vy ≡ 0 and hence ux ≡ 0 on Γ3. Consequently,
integration by parts yields

a(u, δu) = (f , δu)

=
∫

Ω

(−∆uδu−∆vδv)dx +
∫

Γ2

(uY δu + vY δv)dS +
∫

Γ3

uxδudS

=
∫

Ω

(−∆uδu−∆vδv)dx +
∫

Γ2

(UY δU + VY δV )dS,

(9)

where δU and δV are t and n components of δu on Γ2.
If we take δu ∈ (C∞0 (Ω))2 ∩V, then the term of the integration on Γ2 in (9) vanishes, whence follows

(f , δu) = (−∆u, δu) for all δu ∈ (C∞0 (Ω))2 ∩V.

This says that f = −Pσ∆u in the sense of distribution. Hence f = −Pσ∆u holds a.e. in Ω, which implies that
u gives a solution of (1). Furthermore, plugging this relation into (9), we get∫

Γ2

(UY δU + VY δV )dS = 0 for any δu ∈ V,

whence easily follows that u should satisfy (3).
From [8], we have the following result.

Theorem 3.1. Let u0 ∈ V and g ∈ H. There exists a positive number τ0 = τ0(|g|, |∇u0|) such that for all τ ∈ (0, τ0],
(8) admits a unique weak solution u ∈ V.

4 Existence and Uniqueness of the Approximated Solution

We introduce the bilinear forms ah(., .), bh(., .) and trilinear form ah
1 (.; ., .) as follows

ah(uh, δuh) :=
∑

K∈Th

∫
K

(∇uh · ∇ δuh +∇ vh · ∇ δvh) dx

for uh = (uh, vh), δuh = (δuh, δvh) ∈ Vh.

ah
1 (wh,uh, δuh) :=

∑
K∈Th

∫
K

(w1h

∂uh

∂x
δuh + w1h

∂vh

∂x
δvh + w2h

∂uh

∂y
δuh + w2h

∂vh

∂y
δvh) dx

for wh = (w1h, w2h) ∈ L4, uh = (uh, vh) ∈ Vh, δuh = (δuh, δvh) ∈ L4, where x = (x, y), respectively. Then
the approximation of problem (1) reads as follows.

Find (uh, ph) ∈ Vh ×Hh, such that

(
1
τ

(uh − u0h)− g, δuh) + νah(uh, δuh)

+ah
1 (uh,uh, δuh)− bh(ph, δuh) = 0 ∀δuh ∈ Vh (10)

bh(qh, δuh) = 0 ∀qh ∈ Hh
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The above forms ah(., .), bh(., .) and ah
1 (.; ., .) have the following properties [2, 3]

ah(δuh, δuh) = ν||δuh||2h,∀δuh ∈ Vh, (11)

|ah(uh, δuh)| ≤ C||uh||h||δuh||h, |bh(ph, δuh)| ≤ C||ph||0||δuh||h, ∀uh, δuh ∈ Vh, ph ∈ Hh,

ah
1 (uh; δuh, δuh) = 0, ah

1 (uh; δuh,wh) = −ah
1 (uh;wh, δuh), ∀uh, δuh,wh ∈ δuh,

|ah
1 (uh; δuh,wh)| ≤ Nh||uh||h||δuh||h||wh||h, ∀uh, δuh,wh ∈ H1

h(Ω)2 ∪ Vh,

where

Nh = sup
uh,δuh,wh∈Vh

|ah
1 (uh; δuh,wh)|

||∇uh||0||∇δuh||0||∇wh||0
Now, we state the discrete embedding inequality over Vh, the same proof as one constructed by [17] ahows
that

||δuh||0,2k,Ω ≤ C(k)||δuh||h, ∀δuh ∈ Xh, k = 1, 2, ....

Using the discrete embedding inequality (12), we have

Nh ≤ N0, N0 > 1, ∀ 0 < h ≤ 1.

Therefore,

|ah
1 (uh; δuh,wh)| ≤ N0||uh||h||δuh||h||wh||h, ∀uh, δuh,wh ∈ H1(Ω)2 ∪ Vh,

Let Zh = {δu ∈ Vh, bh(q, δu) = 0, ∀q ∈ Hh} denote the divergence-free subspace of Vh. Then, the solution
uh of (10) lies in Zh and satisfies(1

τ
(uh − u0)h − g, δuh

)
+ νa(uh, δuh) + ah

1 (uh,uh, δuh) = 0 for all δuh ∈ Zh. (12)

Next, we discuss the existence and uniqueness of the solution to problem (10). To do this, from [9], the
following assumption is necessary.

Nh||f ||∗h
ν2

≤ 1− δ1, 0 < δ1 < 1, (13)

where

||f ||∗h = sup
δuh∈Vh

(f, δuh)
||δuh||h

.

Lemma 4.1. The space Vh and Hh satisfy the discrete inf-sup condition, that is,

sup
δuh∈Vh

bh(qh, δuh)
||δuh||h

≥ β||qh||0, ∀ qh ∈ Vh,

where β is a positive constant independent of h.
Under condition (13), by (11) and lemma 4.1, the existence and uniqueness of the approximated solution is
obvious (see [2] for details).

5 Numerical Examples

In this section, we present numerical example to conform our theoretical analysis with the algorithms
described below.

We consider the following Navier-Stokes equations with slip-like boundary conditions,

1
τ

(u− u0) + (u · ∇)u +
1
ρ
∇p− ν∆u = g in Ω,

div u = 0 in Ω,

(14)
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with Ω = ([0, 2.2] × [0, .41] - Ωs) where Ωs is semi circular and rectangular obstacle with diameter=0.1 and
hight = 0.1 respectively for the fixed discretizing parameter τ > 0 with the boundary conditions

u = 0 on Γ1, (15)

UY = VY = 0 on Γ2, (16)

v = 0 on Γ3, (17)

u = 0 on Γ4. (18)

Navier-Stokes equations are difficult to be solved directly due to its nonlinearity. So many iteration algorithms,
such as the Uzawa type algorithm, the Arrow Hurwicz algorithm, Schur complement pre-conditioners, and
so on, are proposed in the literature [2, 3]. In this paper, we adopt the simpler and often more efficient method
such as the Chorin-Teman Projection method with the following scheme.

5.1 Numerical Algorithm

This section describes the essential steps of the classical Chorin-Teman projection method
Step 1

Computing tentative velocity u∗ by

(
u∗ − un

∆t
, v) + ((u∗.∇)u∗∗, v) + (∇u∗,∇v)− (g, v) = 0

including boundary conditions for the velocity.
Step 2

Computing new pressure pn+1 by

(∇pn+1,∇q) +
1

∆t
(∇.u∗, q) = 0

including boundary conditions for pressure,
Step 3

Compute corrected velocity by

(un+1 − u∗, v) + ∆t(∇pn+1, v) = 0

including boundary conditions for the velocity.
Set the kinematic viscosity ν = 0.001 m2/s and ρ = 1.0 kg/m2. A do-nothing boundary condition is

assumed at the outlet. Defining the inflow condition is given by

U = 4y(H − y)sin(πt/8)/H2, V = 0 (19)

and computing the flow on the time interval [0, 8] with time-step dt = 0.001.
The figures of numerical solutions of problem (14) are shown in Figs [1−8]. The discrete velocity uh, while

the discrete pressure ph are shown in Figs [1 − 8], for different time interval for the Navier-Stokes equation
with Slip-Like boundary condition.
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Figure 1: The Numerical pressure ph and Numerical velocity uh for Navier-Stokes equations at time t=4

Figure 2: The Numerical pressure ph and Numerical velocity uh for Navier-Stokes equations at time t=8

Figure 3: The Numerical pressure ph and Numerical velocity uh for Navier-Stokes equations at time t=4

Figure 4: The Numerical pressure ph and Numerical velocity uh for Navier-Stokes equations at time t=8
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Figure 5: The Numerical pressure ph and Numerical velocity uh for Navier-Stokes equations at time t=4

Figure 6: The Numerical pressure ph and Numerical velocity uh for Navier-Stokes equations at time t=8

Figure 7: The Numerical pressure ph and Numerical velocity uh for Navier-Stokes equations at time t=4

Figure 8: The Numerical pressure ph and Numerical velocity uh for Navier-Stokes equations at time t=8
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5.2 Conclusion

The flow around obstacle in the ice plate flow was simulated. The effects of four different sets of boundary
conditions on a two-dimensional fluid flow across a fixed, rectangular, Semi Circular solid obstruction have
been studied numerically using Continuous Galerkin method. Both wave structure far away the obstacle and
boundary layer are well resolved. The number, position and wave length are practically identical and are in
the good agreement with the theoretical prediction.

The Navier-Stokes Equation and the continuity equation, have been used under the approximations of
incompressibility of the fluid, time independence and absence of external, potential dependent forces. The
differentiations required have been carried out by the finite element method. The final flow field, the stream
function, the vorticity and the velocity fields along at grid points upstream from the leading face of a fixed
obstacle have been examined. The variation in the final solutions during the change in the Reynolds number
and the size of the obstacle was investigated. The starting field was tested for higher values of the relaxation
parameter to generate the reliable solutions.

The small differences are in the predicted maxima and minima of the computed quantities, which are
higher in the multidomain approach. For the deeper understanding of the behavior of these models (e.g.
dependency on the mesh density) further research is necessary.

For the kinematic viscosity ν = 0.001 m2/s and density ρ = 1.0 kg/m2, the region of almost dead flow
behind the obstacle of size 1×1 was vanished before ending the domain length for the forced conditions at the
downstream edge of free flow. The weak flow region remained up to the downstream edge for the conditions
of no x derivatives at the downstream edge. The dead region was wider for the flow with higher Reynolds
number. The region behind the bigger obstacle of size was also found to have a bigger dead region. The stream
function drawn just ahead of the leading edge of the obstacle was such that it was bent to cross the height and
went linearly. Vorticity was non zero only for a small region, near the leading corner of the obstacle. It was
found to be more disturbed for higher Reynolds numbers for certain number of iterations. The curling of the
fluid was more while using a taller obstacle. The velocity profiles along the x and y directions were found to
obey the same nature for all the studied values of the kinamatic viscosity and density. They had higher higher
peaks while using a taller obstacle.

References

[1] Nicolaides R A. Analysis and convergence of the MAC scheme II: Navier-Stokes equations. SIAM J Numerical
Anal, 1992, 65(213):29-44

[2] Girault V, Raviart P A. Finite Element Method for Navier-Stokes Equations: Theory and Algorithms. New York:
Springer-Verlag, 1986.

[3] Temam R. Navier-Stokes Equation, Theory and Numerical Analysis. Amstedam, New York: North Holland,
1984.

[4] Thomasset F. Implementation of Finite Element Methods for Navier-Stokes Equations. Berlin: Springer, 1981.

[5] Eymard R, Herbin R.A staggered Finite volume scheme on general meshes for the Navier-Stokes Equations in
two space dimensions. Int J Finite Volumes, 2005, 2(1).

[6] R.A. Adams, Sobolev Space, Academic Press, New York, 1975.

[7] A.O.Ammi, M.Marior, Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the
Navier-Stokes equations, Numer. Math. 68(1994) 189-213.

[8] K. Hashizume, T. Koyama, M. Otani, Navier-Stokes equation with slip-like boundary condition, Electronic J
Differential Equations.

[9] Cai Z Q, Douglas J Jr, Ye X. A stable nonconforming quadrilateral finite element method for the stationary stokes
and Navier-Stokes equations. Calcolo, 1999, 36(4): 215-232.

[10] S.R.Djeddi, Ali Masoudi, P.Ghadimi, Numerical Simulation of Flow around Diamond-Shaped Obstacles at Low
to Moderate Reynolds Numbers American Journal of Applied Mathematics and Statistics, 2013, vol. 1, 11-20.



526 A.Anguraj et al. / Comparison of ...

[11] T. Fukao and N. Kenmochi, Stefan problems with convection governed by Navier-Stokes equations, Adv. Math.
Sci. Appl, 15, 29-48, (2005).

[12] Y. Kusaka, A. Tani, Classical solvability of the two-phase Stefan problem in a viscous incompressible fluid flow,
Mathematical Models and Methods in Applied Sciences, 12, 365-391, (2002).

[13] J. Hron,C.LeRoux,J.Malek, K.R. Rajagopal, Flows of Incompressible Fluids subject to Naviers slip on the bound-
ary, Com. Math. App. Volume 56, Issue 8 2128-2143 (2008).

[14] K. Taghavi-Tafreshi and V. K. Dhir, Analytical and experimental investigation of simultaneous melting-
condensation on a vertical wall, Trans. ASME, 104, 24-33 (1982).

[15] R. Temam, Navier-Stokes Equations, Theory and numerical analysis, 3rd ed., Studies in Mathematics and its
Applications, 2, North Holland Amsterdam-New York-Oxford (1984).

[16] Alfio Quarteroni, Numerical models for differential problems, Springer volume 2 (2009).

[17] Li K T, Huang A X, Huang Q H, The Finite Element Methods and Applications(II). Xian: Xian Jiaotong,
University Press (1987).

Received: May 12, 2014; Accepted: Jun 27, 2014

UNIVERSITY PRESS

Website: http://www.malayajournal.org/


	Introduction
	Problem Formulation
	The Variational Formulation
	Existence and Uniqueness of the Approximated Solution
	Numerical Examples
	Numerical Algorithm
	Conclusion


