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Abstract

In the present paper we introduce some vector-valued statistical convergent sequence spaces defined by
a sequence of modulus functions associated with multiplier sequences and we also make an effort to study
some topological properties and inclusion relation between these spaces.
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1 Introduction and Preliminaries

The study on vector-valued sequence spaces was exploited by Kamthan [11], Ratha and Srivastava [18],
Leonard [14], Gupta [9], Tripathy and Sen [26] and many others. The scope for the studies on sequence
spaces was extended on introducing the notion of associated multiplier sequences. Goes and Goes [8] defined
the differentiated sequence space dE and integrated sequence space

∫
E for a given sequence space E, with

the help of multiplier sequences (k−1) and (k) respectively. Kamthan used the multiplier sequence (k!) see
[11]. The study on multiplier sequence spaces were carried out by Colak [2], Colak et al. [3], Srivastava
and Srivastava [25], Tripathy and Mahanta [28] and many others. Let w be the set of all sequences of real
or complex numbers and let l∞, c and c0 be the Banach spaces of bounded, convergent and null sequences
x = (xk) respectively with the usual norm ||x|| = sup |xk|, where k ∈ N, is the set of positive integers.
Throughout the paper, for all k ∈ N, Ek are seminormed spaces seminormed by qk and X is a seminormed
space seminormed by q. By w(Ek), c(Ek), l∞(Ek) and lp(Ek) we denote the spaces of all, convergent, bounded
and p-absoluetly summable Ek-valued sequences. In the case Ek = C (the field of complex numbers) for all
k ∈ N, one has the scalar valued sequence spaces respectively. The zero element of Ek is denoted by θk and
the zero sequence is denoted by θ̄ = (θk).
The notion of difference sequence spaces was introduced by Kizmaz [12], who studied the difference sequence
spaces l∞(∆), c(∆) and c0(∆). The notion was further generalized by Et and Colak [4] by introducing the
spaces l∞(∆n), c(∆n) and c0(∆n). Let w be the space of all complex or real sequences x = (xk) and let m, s be
non-negative integers, then for Z = l∞, c, c0 we have sequence spaces

Z(∆m
s ) = {x = (xk) ∈ w : (∆m

s xk) ∈ Z},

where ∆m
s x = (∆m

s xk) = (∆m−1
s xk − ∆m−1

s xk+1) and ∆0
s xk = xk for all k ∈ N, which is equivalent to the

following binomial representation

∆m
s xk =

m

∑
v=0

(−1)v
(

m
v

)
xk+sv.

Taking s = 1, we get the spaces which were studied by Et and Colak [4]. Taking m = s = 1, we get the spaces
which were introduced and studied by Kizmaz [12].
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Definition 1.1. A modulus function is a function f : [0, ∞) → [0, ∞) such that

1. f (x) = 0 if and only if x = 0,

2. f (x + y) ≤ f (x) + f (y) for all x ≥ 0, y ≥ 0,

3. f is increasing,

4. f is continuous from right at 0.

It follows that f must be continuous everywhere on [0, ∞). The modulus function may be bounded or un-
bounded. For example, if we take f (x) = x

x+1 , then f (x) is bounded. If f (x) = xp, 0 < p < 1, then the
modulus f (x) is unbounded. Subsequently, modulus function has been discussed in ([1], [16], [19], [20], [23])
and many others.

Definition 1.2. Let X be a linear metric space. A function p : X → R is called paranorm, if

1. p(x) ≥ 0, for all x ∈ X,

2. p(−x) = p(x), for all x ∈ X,

3. p(x + y) ≤ p(x) + p(y), for all x, y ∈ X,

4. if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a sequence of vectors with p(xn − x) →
0 as n → ∞, then p(λnxn − λx) → 0 as n → ∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair (X, p) is called a total
paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm
(see [29], Theorem 10.4.2, P-183).

Let p = (pk) be a bounded sequence of positive real numbers, let F = ( fk) be a sequence of modulus function.
Also let t = tk = p−1

k and suppose u = (uk) is a sequence of strictly positive real numbers. In this paper we
define the following sequence spaces:

W0(∆m
s , F, Q, p, u, t) =

{
(xk) : xk ∈ Ek for all k ∈ N and there exists r > 0 such that

1
n ∑n

k=1

[
fk

(
qk

(
p−tk

k uk∆m
s xkr

))]pk → 0 as n → ∞
}

,

W1(∆m
s , F, Q, p, u, t) =

{
(xk) : xk ∈ Ek for all k ∈ N and there exists r > 0 such that

1
n ∑n

k=1

[
fk

(
qk

(
p−tk

k uk∆m
s xkr − l

))]pk → 0 as n → ∞, l ∈ Ek

}
and

W∞(∆m
s , F, Q, p, u, t) =

{
(xk) : xk ∈ Ek for all k ∈ N and there exists r > 0 such that

supn
1
n ∑n

k=1

[
fk

(
qk

(
p−tk

k uk∆m
s xkr

))]pk
< ∞

}
.

In the case fk = f and qk = q for all k ∈ N, we write W0(∆m
s , f , q, p, u, t), W1(∆m

s , f , q, p, u, t) and W∞(∆m
s , f , q, p, u, t)

instead of W0(∆m
s , F, Q, p, u, t), W1(∆m

s , F, Q, p, u, t) and
W∞(∆m

s , F, Q, p, u, t) respectively.
Throughout the paper Z denotes any of the values 0, 1 and ∞. If x = (xk) ∈ W1(∆m

s , f , q, p, u, t), we say that x
is strongly uq,t Cesaro summable with respect to the modulus function f and write xk → l W1(∆m

s , f , q, p, u, t);
l is called the uq,t limit of x with respect to the modulus function f .
The main aim of this paper is to introduced the sequence spaces WZ(∆m

s , F, Q, p, u, t), Z = 0, 1 and ∞. We
also make an effort to study some topological properties and inclusion relations between these spaces.
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2 Main Results

Theorem 2.1. Let F = ( fk) be a sequence of modulus functions and p = (pk) be a bounded sequence of positive real
numbers. Then the spaces WZ(∆m

s , F, Q, p, u, t), Z = 0, 1, ∞ are linear spaces over the complex field C .

Proof. We shall prove the result for Z = 0. Let x = (xk) ∈ W0(∆m
s , F, Q, p, u, t). Then there exists r > 0 such

that 1
n

[
fk

(
qk

(
p−tk

k uk∆m
s xkr

))]pk → 0 as n → ∞. Let λ ∈ C. Without loss of generality we can take λ 6= 0. Let

ρ = r(|λ|)−1 > 0, then we have

1
n

[
fk

(
qk

(
p−tk

k uk∆m
s λxk

)
ρ
)]pk

=
1
n

[
fk

(
qk

(
p−tk

k uk∆m
s xkr

))]pk → 0 as n → ∞.

Therefore λx ∈ W0(∆m
s , F, Q, p, u, t), for all λ ∈ C and for all x = (xk) ∈ W0(∆m

s , F, Q, p, u, t). Next, suppose
that x = (xk), y = (yk) ∈ W0(∆m

s , F, Q, p, u, t). Then there exists r1, r2 > 0 such that

1
n

n

∑
k=1

[
fk

(
qk

(
p−tk

k uk∆m
s xkr1

))]pk → 0 as n → ∞

and
1
n

n

∑
k=1

[
fk

(
qk

(
p−tk

k uk∆m
s ykr2

))]pk → 0 as n → ∞.

Thus given ε > 0, there exists k1, k2 > 0 such that

1
n

n

∑
k=1

[
fk

(
qk

(
p−tk

k uk∆m
s xkr1

))]pk
< εpk, for all k ≥ k1

and
1
n

n

∑
k=1

[
fk

(
qk

(
p−tk

k uk∆m
s ykr2

))]pk
< εpk, for all k ≥ k2.

Let r = r1r2(r1 + r2)−1 and k0 = max(k1, k2). Then we have for all k ≥ k0,
1
n

n

∑
k=1

[
fk

(
qk

(
p−tk

k uk∆m
s (xk + yk)r

))]pk

≤ 1
n

n

∑
k=1

[
fk

(
qk

(
p−tk

k uk∆m
s xkr1

)
r2(r1 + r2)−1 + fk

(
qk

(
p−tk

k uk∆m
s ykr2

)
r1(r1 + r2)−1

]pk
< εpk.

Hence x + y ∈ W0(∆m
s , F, Q, p, u, t). Thus W0(∆m

s , F, Q, p, u, t) is a linear space. Similarly we can prove that
W1(∆m

s , F, Q, p, u, t) and W∞(∆m
s , F, Q, p, u, t) are linear spaces.

Theorem 2.2. Let F = ( fk) be a sequence of modulus functions and p = (pk) be a bounded sequence of positive real
numbers. Then the space W0(∆m

s , F, Q, p, u, t) is a complete paranormed space with paranorm defined by

g(x) = sup
n

( 1
n

n

∑
k=1

[
fk

(
qk

(
p−tk uk∆m

s xkr
))]pk

) 1
M ,

where M = max{1, sup pk}.

Proof. Let (x(i)) be a Cauchy sequence in W0(∆m
s , F, Q, p, u, t). Then for a given ε > 0, there exists n0 such that

g(xi − xj) < ε, for all i, j ≥ n0. Thus, we have

[ ∞

∑
k=1

(
fk

(
qk

(
p−tk

k uk∆m
s (xi

k − xj
k)r

)))pk
] 1

M
< ε, for all i, j ≥ n0. (2.1)

=⇒
(

fk
(
qk

(
p−tk

k uk∆m
s (xi

k − xj
k)r

)))
< ε, for all i, j ≥ n0.

=⇒ ∆m
s (xi

k − xj
k) < ε, for all i, j ≥ n0, for all k ∈ N.
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Hence (xi
k)

∞
i=1 is a Cauchy sequence in Ek, for each k ∈ N. Since Ek

′s are complete for each k ∈ N, so (xi
k)

∞
i=1

converges in Ek, for each k ∈ N. On taking limit as j → ∞ in (2.1), we have[ ∞

∑
k=1

(
fk

(
qk

(
p−tk

k uk∆m
s (xi

k − xk)r
)))pk

] 1
M

< ε, for all i ≥ n0.

=⇒ ∆m
s (xi

k − x) ∈ W0(∆m
s , F, Q, p, u, t).

Since W0(∆m
s , F, Q, p, u, t) is a linear space, so we have x = x(i) − (x(i) − x) ∈ W0(∆m

s , F, Q, p, u, t). Thus
W0(∆m

s , F, Q, p, u, t) is a complete paranormed space. This completes the proof of the theorem.

Theorem 2.3. Let F = ( fk) be a sequence of modulus functions and p = (pk) be a bounded sequence of positive real
numbers. Then

W0(∆m
s , F, Q, p, u, t) ⊂ W1(∆m

s , F, Q, p, u, t) ⊂ W∞(∆m
s , F, Q, p, u, t).

Proof. It is easy to prove so we omit the details.

Theorem 2.4. Let F = ( fk) and G = (gk) be any two sequences of modulus functions. For any bounded sequences
p = (pk) and t = (tk) of strictly positive real numbers and any two sequences of seminorms Q = (qk), V = (vk), the
following are true:
(i) WZ(∆m

s , f , Q, u, t) ⊂ WZ(∆m
s , f ◦ g, Q, u, t),

(ii) WZ(∆m
s , F, Q, p, u, t) ∩WZ(∆m

s , F, V, p, u, t) ⊂ WZ(∆m
s , F, Q + V, p, u, t),

(iii) WZ(∆m
s , F, Q, p, u, t) ∩WZ(∆m

s , G, Q, p, u, t) ⊂ WZ(∆m
s , F + G, Q, p, u, t),

(iv) if q is stronger than v, then WZ(∆m
s , F, Q, p, u, t) ⊂ WZ(∆m

s , F, V, p, u, t),
(v) if q is equivalent v, then WZ(∆m

s , F, Q, p, u, t) = WZ(∆m
s , F, V, p, u, t),

(vi) WZ(∆m
s , F, Q, p, u, t) ∩WZ(∆m

s , F, V, p, u, t) 6= ϕ.

Proof. We shall prove (i) for the case Z = 0. Let ε > 0. We choose δ, 0 < δ < 1, such that f (t) < ε for 0 ≤ t ≤ δ

and all k ∈ N. We write yk = g
(
qk

(
p−tk

k uk∆m
s xkr

))
and consider

n

∑
k=1

[
f (yk)

]
= ∑

1

[
f (yk)

]
+ ∑

2

[
f (yk)

]
,

where the first summation is over yk ≤ δ and the second summation is over yk > δ. Since f is continuous, we
have

∑
1

[
f (yk)

]
< nε. (2.2)

By the definition of f , we have the following relation for yk > δ:

f (yk) < 2 f (1)
yk
δ

.

Hence
1
n ∑

2

[
f (yk)

]
≤ 2δ−1 f (1)

1
n

n

∑
k=1

yk. (2.3)

It follows from (2.2) and (2.3) that WZ(∆m
s , f , Q, u, t) ⊂ WZ(∆m

s , f ◦ g, Q, u, t). Similarly, we can prove the result
for other cases.

Theorem 2.5. Let f be a modulus function. Then WZ(∆m
s , Q, u, t) ⊂ WZ(∆m

s , f , Q, u, t).

Proof. It is easy to prove in view of Theorem 2.4(i).

Theorem 2.6. Let 0 < pk < rk and
(

rk
pk

)
be bounded. Then

WZ(∆m
s , F, Q, r, u, t) ⊂ WZ(∆m

s , F, Q, p, u, t).

Proof. By taking yk =
[

fk
(
qk

(
p−tk

k uk∆m
s xkr

))]rk
for all k and using the same technique as in Theorem 5 of

Maddox [15], one can easily prove the theorem.

Theorem 2.7. Let f be a modulus function. If lim
m→∞

f (m)
m

= β > 0, then W1(∆m
s , Q, p, u, t) ⊂ W1(∆m

s , f , Q, p, u, t).

Proof. It is easy to prove so we omit the details.
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3 uq,t-Statistical Convergence

The notion of statistical convergence was introduced by Fast [6] and Schoenberg [24] independently. Over the
years and under different names, statistical convergence has been discussed in the theory of Fourier analysis,
ergodic theory and number theory. Later on, it was further investigated from the sequence space point of view
and linked with summability theory by Fridy [7], Connor [5], Salat [21], Murasaleen [17], Isik [10], Savas [22],
Malkowsky and Savas [16], Kolk [13], Maddox [15], Tripathy and Sen [27] and many others. In recent years,
generalizations of statistical convergence have appeared in the study of strong integral summability and the
structure of ideals of bounded continuous functions on locally compact spaces. Statistical convergence and
its generalizations are also connected with subsets of the Stone-Cech compactification of natural numbers.
Moreover, statistical convergence is closely related to the concept of convergence in probability. The notion
depends on the density of subsets of the set N of natural numbers.

Definition 3.3. A subset E of N is said to have the natural density δ(E) if the following limit exists:

δ(E) = lim
n→∞

1
n

n

∑
k=1

χE(k),

where χE is the characteristic function of E. It is clear that any finite subset of N has zero natural density and δ(Ec) =
1− δ(E).

Definition 3.4. A sequence x = (xk) is said to be uq,t-statistical convergent to l if for every ε > 0,

δ
({

k ∈ N : q
(

p−tk
k uk∆m

s xkr − l
)
≥ ε

})
= 0.

In this case we write xk − l
(
Sq

u,t
)
. The set of all uq,t-statistical convergent sequences is denoted by Sq

u,t. By S, we denote
the set of all statistically convergent sequences.

If q(x) = |x|, uk = pk = tk = 1 for all k ∈ N and r = 1, then Sq
u,t is same as S. In case l = 0 we write Sq

0u,t
instead of Sq

u,t.

Theorem 3.8. Let p = (pk) be a bounded sequence and 0 < h = inf pk ≤ pk ≤ sup pk = H < ∞ and let f be a
modulus function. Then

W1(∆m
s , f , q, p, u, t) ⊂ Sq

u,t.

Proof. Let x ∈ W1(∆m
s , f , q, p, u, t) and let ε > 0 be given. Let ∑1 and ∑2 denote the sums over k ≤ n with

q(p−tk
k uk∆m

s xkr − l) ≥ ε and q(p−tk
k uk∆m

s xkr − l) < ε, respectively. Then

1
n

n

∑
k=1

[
f
(
q
(

p−tk
k uk∆m

s xkr − l
))]pk

≥ 1
n ∑

1

[
f
(
q
(

p−tk
k uk∆m

s xkr − l
))]pk

≥ 1
n ∑

1

[
f (ε)

]pk

≥ 1
n ∑

1
min

([
f (ε)

]h,
[

f (ε)
]H

)
≥ 1

n

∣∣∣{k ≤ n : q(p−tk
k uk∆m

s xk − l) ≥ ε}
∣∣∣ min

([
f (ε)

]h,
[

f (ε)
]H

)
.

Hence, x ∈ Sq
u,t.

Theorem 3.9. Let f be a bounded modulus function. Then Sq
u,t ⊂ W1(∆m

s , f , q, p, u, t).

Proof. Suppose that f is bounded. Let ε > 0 and let ∑1 and ∑2 be the sums introduced in the Theorem 3.1.
Since f is bounded, there exists an integer K such that f (x) < K for all x ≥ 0. Then
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1
n

n

∑
k=1

[
f
(
q
(

p−tk
k uk∆m

s xkr − l
))]pk

≤ 1
n

(
∑
1

[
f
(
q
(

p−tk
k uk∆m

s xkr − l
))]pk

+ ∑
2

[
f
(
q
(

p−tk
k uk∆m

s xkr − l
))]pk

)
≤ 1

n ∑
1

max(Kh, KH) +
1
n ∑

2

[
f (ε)

]pk

≤ max(Kh, KH)
1
n

∣∣∣{k ≤ n : q(p−tk
k uk∆m

s xk − l) ≥ ε}
∣∣∣ + max( f (ε)h, f (ε)H).

Hence, x ∈ W1(∆m
s , f , q, p, u, t).

Theorem 3.10. Sq
u,t = W1(∆m

s , f , q, p, u, t) if and only if f is bounded.

Proof. Let f be bounded. By Theorems 3.1 and 3.2, we have Sq
u,t = W1(∆m

s , f , q, p, u, t).
Conversely, suppose that f is unbounded. Then there exists a sequence (tk) of positive numbers with f (tk) =
k2 for k = 1, 2, · · · . If we choose

p−tk
k ui∆m

s xir =
{

tk, i = k2, k = 1, 2, · · ·
0, otherwise.

Then we have
1
n
|{k ≤ n : |p−tk

k uk∆m
s xkr| ≥ ε}| ≤

√
n

n

for all n, and so x ∈ Sq
u,t but x /∈ W1(∆m

s , f , q, p, u, t) for X = C, q(x) = |x| and pk = 1 for all k ∈ N. This
contradicts the assumption that Sq

u,t = W1(∆m
s , f , q, p, u, t).
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