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The planar and outerplanar indices of Cayley graphs of finite groups
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Abstract. In our study, we consider the Cayley graph of finite groups and its iterated line graphs. We present a complete
characterization of finite groups with planar and outerplanar indices.
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1. Introduction and Background

Let S generates group G. We define the Cayley graph
−−→
Cay(G,S) of generators S on G as follows. The vertices

of
−−→
Cay(G,S) are the elements of G, and there is an arc from g to gs whenever g ∈ G and s ∈ S. The Cayley

graph Cay(G,S) of S on G is obtained by replacing each arc in Cay(G,S) with an (undirected) edge. One can
identify Cay(G,S) with

−−→
Cay(G,S ∪ S−1), where S−1 = {s−1; s ∈ S}.

Cayley graphs of groups enjoy a rich research history and they are a classic point of interaction of graph
theory and algebra. The original definition of the Cayley graph of a group was introduced by Cayley in 1878 [1]
to explain the concept of abstract groups described by a set of generators. In the last 50 years, the theory of Cayley
graphs have grown into a substantial branch in algebraic graph theory. We refer the reader to [3, 6, 7, 10, 14], for
more details.

It is interesting to find graphs that can be drawn respecting certain geometric or topological criteria. This
work is done for some Cayley graphs on some algebraic structures. Also, there are some characterizations for
these algebraic structures which their Cayley graphs can be drawn in a plane. For example see [9], and [11, 12].

A group is called planar if it admits a generating system such that the resulting Cayley graph is planar, that
is, it admits a plane drawing. In 1896, Maschke characterized planar finite groups, that is groups which admit a
generating system such that the resulting Cayley graph is planar.

Theorem 1.1. [12, Maschke’s Theorem] The groups and minimal generating systems in Table 1 are exactly those
pairs having a planar Cayley graph.

https://www.malayajournal.org/index.php/mjm/index ©2022 by the authors.



The planar and outerplanar indices of Cayley graphs of finite groups

Group Minimal generating systems
Zn 1

Z2 × Z2 (1, 0), (0, 1)
Z2 × Zn (1, 0), (0, 1)

D3 (123), (12), (23)

D4 (1234), (13)

Dn (12), (13)

(12 . . . n), (12)

Z2 ×Dn (1, e), (0, (12)), (0, (13))

A4 (123), (12)(34)

(123), (234)

(123), (234), (13)(24)

Z2 ×A4 (0, (123)), (1, (12)(34))

S4 (123), (34)

(12), (23), (34)

(12), (1234)

(123), (1234)

(1234), (123), (34)

Z2 × S4 (1, (12)), (0, (23)), (0, (34))
A5 (124), (23)(45)

(12345), (23)(45)

(12345), (124)

(12345), (124), (23)(45)

Z2 ×A5 (1, (12)(35)), (1, (24)(35)), (1, (23)(45))

Table 1: The planar groups and their minimal generating systems giving planar Cayley graphs

In this paper, we will focus on embeddability of the Cayley graph and its iterated line graphs into a plane.
Given a graph G, its line graph L(G) is a graph such that each vertex of L(G) represents an edge of G and two
vertices of L(G) are adjacent if and only if their corresponding edges share a common endpoint in G. Also, we
denote the kth iterated line graph of G by Lk(G) and define it as follows: Lk(G) = L(Lk−1(G)) for k ⩾ 1 and
L0(G) = G and L1(G) = L(G) is the line graph of G. We define the planar index of G, denoted by ξ(G), as the
smallest k such that Lk(G) is non-planar. If Lk(G) is planar for all k ⩾ 0, we define ξ(G) = ∞. Further, the
outerplanar index of G is defined as the smallest k such that Lk(G) is non-outerplanar. We denote the outerplanar
index of G by ζ(G). As well as, if Lk(G) is outerplanar for all k ⩾ 0, we define ζ(G) = ∞.

This paper is organized as follows. At first, we deal with planar index of the Cayley graph of a finite group.
In addition, we classify all finite groups which admit outerplanar Cayley graph. Also, we study the outerplanar
index of the Cayley graph when G is a finite group.

In order to make this paper easier to follow, let recall some standard definitions and notation of group theory
and graph theory we use in this paper. Let n be a positive integer. The group of integers modulo n is denoted
by Zn = {0, . . . , n − 1}. Also, the notation Dn stands for the dihedral group. The elements of Dn are the
symmetries of the n-gon with the vertices 1, . . . , n and so |Dn| = 2n. Further, An and Sn are the alternating
group and the symmetric group on n points, respectively. The identity element is denoted by e for all groups G
except for Zn, where we use 0.

Now let us summarize some notations, concepts of graph theory which will be needed in the subsequent
sections. For basic definitions on graphs, one may refer to [2]. Let G be a graph. Then the degree of a vertex v,
denoted by deg(v), is the number of edges of G incident to v. Also, an r-regular graph is a graph where every
vertex has the degree r. The maximum degree of G, denoted by ∆(G), is the maximum degree of its vertices. The
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3-prism 4-prism 5-prism

Figure 1: n-prisms

graph G is connected if for every pair of vertices, there is a path in the graph between those vertices, otherwise
G is said to be disconnected. A connected component of a disconnected graph is a maximal connected subgraph
of the graph. A cut vertex v is a vertex that when we removed it (with its boundary edges) from G creates more
connected components than previously in G. We use the notations Kn and Cn for complete graphs and cycles on
n vertices, respectively. The Cartesian product G×H of graphs G and H is a graph such that

(i) the vertex set of the graph G×H is the Cartesian product V (G)× V (H); and

(ii) any two vertices (u, u′) and (v, v′) are adjacent in G×H if and only if either u = vand u′ is adjacent with
v′ in H , or u′ = v′ and u is adjacent with v in G.

An n-prism graph is a simple graph which can be constructed as the Cartesian product of the cycle Cn with K2.
In Figure 1, 3-prism, 4-prism and 5-prism are drawn.

2. The planar index of Cay(G,S)

This section consists on classifying all finite groups with respect to planar index of their Cayley graphs. At first,
we determine when L(Cay(G,S)) is planar. Sedláček [13], characterized graphs whose their line graph is planar.
He showed that the line graph of a graph G is planar if and only if G is planar, ∆(G) ⩽ 4, and every vertex of
degree 4 in G is a cut-vertex. Using Sedláček’s characterization, in the following lemma, we characterizes all
Cayley graphs whose their line graph is planar.

Lemma 2.1. The groups and minimal generating systems in Table 2 are exactly those pairs which L(Cay(G,S))

is planar.

Proof. By using Sedláček’s characterization, if L(Cay(G,S)) is planar, then G is planar. So, we must only check
the planar groups. By Maschke’s Theorem, Theorem 1.1, we have the following cases:

Case 1. G ∼= Zn with S = {1} and G ∼= Dn with S = {(12), (13)}. In both cases, the graph Cay(G,S) is
2-reqular graph which implies that these graphs are cycles. So, L(Cay(G,S)) is planar.

Case 2. G ∼= Z2 × Z2 with S = {(1, 0), (0, 1)}. In this case the Cayley graph Cay(G,S) is a cycle with 4 vertices
and so L(Cay(G,S)) is planar.

Case 3. G ∼= Z2 × Zn with S = {(1, 0), (0, 1)} and G ∼= Dn with S = {(12 . . . n), (12)} where n ⩾ 3. In both
these cases, it is not hard to see that the graph Cay(G,S) is a n-prism graph. Since n-prisms are 3-regular
graphs we have that L(Cay(G,S)) is planar.

Case 4. G ∼= D3 with S = {(123), (12), (23)}. Since |S ∪ S−1| = 4, the graph Cay(G,S) is a 4-reqular graph.
This graph is drawn in Figure 2. By this figure, we see that the graph Cay(G,S) has a vertex of degree 4
which is not a cut vertex. Hence L(Cay(G,S)) is not planar.

Case 5. G ∼= D4 with S = {(1234), (13)}. The graph Cay(G,S) is a 4-prism graph. So it is a 3-regular graph and
we have that L(Cay(G,S)) is planar.
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Group Minimal generating systems
Zn 1

Z2 × Z2 (1, 0), (0, 1)
Z2 × Zn (1, 0), (0, 1)

where n ⩾ 3

D3 (123), (12), (23)

D4 (1234), (13)

Dn (12), (13)

(12 . . . n), (12)

Z2 ×Dn (1, e), (0, (12)), (0, (13))

A4 (123), (12)(34),
Z2 ×A4 (0, (123)), (1, (12)(34))

S4 (123), (34)

(12), (23), (34)

(12), (1234)

Z2 × S4 (1, (12)), (0, (23), (0, (34))
A5 (124), (23)(45)

(12345), (23)(45)

Z2 ×A5 (1, (12)(35)), (1, (24)(35)), (1, (23)(45))

Table 2: The groups and their minimal generating systems which the line of their cayley graphs are planar

Figure 2: Cay(D3, {(123), (12), (23)})

Case 6. G ∼= Z2×Dn and S = {(1, e), (0, (12)), (0, (13))}. The Cayley graph Cay(G,S) is a 2n-prism. Therefore
this graph is a 3-regular graph which implies that L(Cay(G,S)) is planar.

Case 7. G ∼= A4 and S = {(123), (12)(34)}. Since |S ∪ S−1| = 3, the Cayley graph Cay(G,S) is a 3-regular
graph (Figure 3) and so L(Cay(G,S)) is planar.

Case 8. G ∼= A4 and S = {(123), (234)}. By Figure 4, Cayley graph Cay(G,S) is a 4-regular graph and it has a
vertex of degree 4 which is not a cut vertex. So L(Cay(G,S)) is not planar.

Case 9. G ∼= A4 and S = {(123), (234), (13)(24)}. Since |S ∪ S−1| = 5, Cayley graph Cay(G,S) is a 5-regular
graph and so L(Cay(G,S)) is not planar.

Case 10. G ∼= Z2×A4 with S = {(0, (123)), (1, (12)(34))} and G ∼= S4 with S = {(123), (34)}. Since |S∪S−1| =
3, in both cases the Cayley graph Cay(G,S) is a 3-regular graph. It is not hard to see that

Cay(Z2 ×A4, {(0, (123)), (1, (12)(34))}) ∼= Cay(S4, {(123), (34)}).

The graph is pictured in Figure 5. Hence we can conclude that L(Cay(G,S)) is planar.
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Figure 3: Cay(A4, {(123), (12)(34)})

Figure 4: Cay(A4, {(123), (234)})

Case 11. G ∼= S4 with S = {(12), (23), (34)} or S = {(12), (1234)}. It is easy to see that the Cayley graph
Cay(G,S) is a 3-regular graph and they are isomorphic to Figure 6. Hence L(Cay(G,S)) is planar.

Case 12. G ∼= S4 with S = {(123), (1234)}. It is easy to see that the Cayley graph Cay(G,S) is a 4-regular graph
and none of the vertices is a cut vertex. So L(Cay(G,S)) is not planar.

Case 13. G ∼= S4 with S = {(1234), (123), (34)}. Since |S ∪ S−1| = 5, the Cayley graph Cay(G,S) is a 5-regular
graph. Therefore L(Cay(G,S)) is not planar.

Case 14. G ∼= Z2×S4 with S = {(1, (12)), (0, (23)), (0, (34))}. Since |S∪S−1| = 3, the Cayley graph Cay(G,S)

is a 3-regular graph which is pictured in Figure 7. Therefore L(Cay(G,S)) is planar.

Case 15. G ∼= A5 with S = {(124), (23)(45)}. Since |S ∪ S−1| = 3, the Cayley graph Cay(G,S) is a 3-regular
graph (Figure 8). Therefore L(Cay(G,S)) is planar.

Case 16. G ∼= A5 with S = {(12345), (23)(45)}. Since |S ∪ S−1| = 3, the Cayley graph Cay(G,S) is a 3-regular
graph which is drawn in Figure 9. Hence L(Cay(G,S)) is planar.

Figure 5: Cay(Z2 ×A4, {(0, (123)), (1, (12)(34))})
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Figure 6: Cay(S4, {(12), (23), (34)}) ∼= Cay(S4, {(12), (1234)})

Figure 7: Cay(Z2 × S4, {(1, (12)), (0, (23)), (0, (34))})

Case 17. G ∼= A5 with S = {(12345), (124)}. Since |S ∪ S−1| = 4, the Cayley graph Cay(G,S) is a 4-regular
graph. It is easy to see that none of the vertices of this graph is a cut vertex. Therefore L(Cay(G,S)) is not
planar.

Case 18. G ∼= A5 with S = {(12345), (124), (23)(45)}. Since |S ∪ S−1| = 5, the Cayley graph Cay(G,S) is a
5-regular graph, which implies that L(Cay(G,S)) is not planar.

Case 19. G ∼= Z2 × A5 with S = {(1, (12)(35)), (1, (24)(35)), (1, (23)(45))}. Since |S ∪ S−1| = 3, the Cayley
graph Cay(G,S) is a 3-regular graph(Figure 10), which implies that L(Cay(G,S)) is planar.

■

Figure 8: Cay(A5, {(124), (23)(45)})
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Figure 9: Cay(A5, {(12345), (23)(45)})

Figure 10: Cay(Z2 ×A5, {(1, (12)(35)), (1, (24)(35)), (1, (23)(45))})

In the rest of this section, we deal with planar index of Cay(G,S). It was shown in [13] that if G is non-planar,
then L(G) is also non-planar. Also, if H is a subgraph of G, in [4, Lemma 4], it was shown that ξ(G) ⩽ ξ(H),
and hence the planar index of a graph is the minimum of the planar indices of its connected components. Further,
in [4], the authors gave a full characterization of connected graphs with respect to their planar index.

Theorem 2.2. [4, Theorem 10] Let G be a connected graph. Then:

(i) ξ(G) = 0 if and only if G is non-planar.

(ii) ξ(G) = ∞ if and only if G is either a path, a cycle, or K1,3.

(iii) ξ(G) = 1 if and only if G is planar and either ∆(G) ⩾ 5 or G has a vertex of degree 4 which is not a
cut-vertex.

(iv) ξ(G) = 2 if and only if L(G) is planar and G contains one of the graphs Hi in Figure 11 as a subgraph.

(v) ξ(G) = 4 if and only if G is one of the graphs Xk or Yk (Figure 11) for some k ⩾ 2.

(vi) ξ(G) = 3 otherwise.

In the next theorem we classify the Cayley graphs Cay(G,S) of finite groups with respect to their planar
index.

Theorem 2.3. Let G be a finite group. Then:
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Figure 11: Figures of Theorem 2.2

Group Minimal generating systems
Zn 1

Z2 × Z2 (1, 0), (0, 1)
Dn (12), (13)

Table 3: The groups and their minimal generating systems which ξ(Cay(G,S)) = ∞.

(i) ξ(Cay(G,S)) = 0 if and only if Cay(G,S) is non-planar.

(ii) ξ(Cay(G,S)) = ∞ if and only if G and S are as in Table 3.

(iii) ξ(Cay(G,S)) = 1 if and only if G and S are as in Table 4.

(iv) ξ(Cay(G,S)) = 2 if and only if G and S are as in Table 5.

Proof. We know ξ(Cay(G,S)) = 0 if Cay(G,S) is non-planar. Thus we may assume that Cay(G,S) is planar.
So, by Maschke’s Theorem, we must consider the groups and minimal generating sets which were stated in Table
1. By comparing Tables 1 and 2, we can conclude that ξ(Cay(G,S)) = 1 for the groups and minimal generating
sets of Table 4. Now, by Lemma 2.1 and Table 2, we have the following cases:

Case 1. Let G ∼= Zn with S = {1}, G ∼= Dn with S = {(12), (13)} and G ∼= Z2 × Z2 with S = {(1, 0), (0, 1)}.
Since the Cayley graphs of these groups and their generating sets are cycles, we can conclude that
ξ(Cay(G,S)) = ∞.

Case 2. Let G ∼= Z2 × Zn with S = {(1, 0), (0, 1)}, G ∼= Dn with S = {(12 . . . n), (12)} and G ∼= Z2 ×Dn and

Group Minimal generating systems
A4 (123), (234)

(123), (234), (13)(24)

S4 (123), (1234)

(1234), (123), (34)

A5 (12345), (124)

(12345), (124), (23)(45)

Table 4: The groups and their minimal generating systems which ξ(Cay(G,S)) = 1.
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Group Minimal generating system
Z2 × Zn where n ⩾ 3 (1, 0), (0, 1)

D3 (123), (12), (23)

D4 (1234), (13)

Dn (12 . . . n), (12)

Z2 ×Dn (1, e), (0, (12)), (0, (13))

A4 (123), (12)(34)

Z2 ×A4 (0, (123)), (1, (12)(34))

S4 (123), (34)

(12), (23), (34)

Z2 × S4 (1, (12)), (0, (23), (0, (34))
A5 (124), (23)(45)

(12345), (23)(45)

(12345), (124)

Z2 ×A5 (1, (12)(35)), (1, (24)(35)), (1, (23)(45))

Table 5: The groups and their minimal generating systems which ξ(Cay(G,S)) = 2.

S = {(1, e), (0, (12)), (0, (13))}. In these cases, the graph Cay(G,S) is a prism and so they have H3 as a
subgraph. Hence ξ(L(Cay(G,S)) = 2.

Case 3. Assume that G ∼= D3 and S = {(123), (12), (23)} be the minimal generating set of it. By Figure 2, the
Cayley graph Cay(G,S) has H4 as a subgraph which implies that ξ(L(Cay(G,S)) = 2.

Case 4. Suppose that G ∼= A4 and S = {(123), (12)(34)}. By Figure 3, the Cayley graph of this group has H3 as
a subgraph. Hence ξ(L(Cay(G,S)) = 2.

Case 5. G ∼= A4 and S = {(123), (234)}. By Figure 4, the Cayley graph of this group has H2 as a subgraph.
Hence ξ(L(Cay(G,S)) = 2.

Case 6. G ∼= Z2 ×A4 with S = {(0, (123)), (1, (12)(34))} and G ∼= S4 with S = {(123), (34)}. By Figure 5, the
Cayley graph of this group has H2 as a subgraph. Hence ξ(L(Cay(G,S)) = 2.

Case 7. G ∼= S4 with S = {(12), (23), (34)} or S = {(12), (1234)}. It is easy to see that the Cayley graph
Cay(G,S) has H3 as a subgraph (Figure 6). Hence ξ(L(Cay(G,S)) = 2.

Case 8. G ∼= Z2×S4 with S = {(1, (12)), (0, (23)), (0, (34))}. Since the Cayley graph Cay(G,S) has a subgraph
isomorphic to H3 (Figure 7). Therefore ξ(Cay(G,S)) = 2.

Case 9. G ∼= A5 with S = {(124), (23)(45)}. By Figure 8, it is easy to see that the Cayley graph Cay(G,S) has a
subgraph which is isomorphic to H3. Thus ξ(Cay(G,S)) = 2.

Case 10. G ∼= A5 with S = {(12345), (23)(45)}. It is easy to see that the Cayley graph Cay(G,S) has H3 as a
subgraph (Figure 9). Hence ξ(Cay(G,S)) = 2.

Case 11. G ∼= Z2 × A5 with S = {(1, (12)(35)), (1, (24)(35)), (1, (23)(45))}. By Figure 10, the Cayley graph
Cay(G,S) has a subgraph isomorphic to H3 which implies that ξ(Cay(G,S)) = 2

■
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Group Minimal generating systems
Zn 1

Z2 × Z2 (1, 0), (0, 1)
Dn (12), (13)

Table 6: The groups and their minimal generating systems giving outerplanar Cayley graphs.

3. Outerplanar index of Cayley graphs

In this section, we study the outerplanar index of the Cayley graphs of finite groups. An undirected graph is an
outerplanar graph if it can be drawn in the plane without crossings in such a way that all of the vertices belong
to the unbounded face of the drawing. There is a characterization of outerplanar graphs that says a graph is
outerplanar if and only if it does not contain a subdivision of the complete graph K4 or the complete bipartite
graph K2,3. At first, we deal with the investigation of when Cayley graphs of finite groups are outerplanar.

Lemma 3.1. The groups and minimal generating systems in Table 6 are exactly those pairs having an outerplanar
Cayley graph.

Proof. It is well known that every outerplanar graph is planar. So, we must only check planar groups. By
Maschke’s Theorem, we must consider the groups and minimal generating sets which were stated in Table 1. If
G ∼= Zn with S = {1}, G ∼= Dn with S = {(12), (13)} and G ∼= Z2 × Z2 with S = {(1, 0), (0, 1)}, since the
Cayley graphs of these groups and their generating sets are cycles, we can conclude Cay(G,S) is outerplanar.
For other groups and their minimal generating sets of Table 1, it is easy to see that their Cayley graphs have a
subgraph homeomorphic to K2,3 which implies that Cay(G,S) is not outerplanar. ■

Recall that the outerplanar index of a graph G, which is denoted by ζ(G), is the smallest integer k such that
the kth iterated line graph of G is non-outerplanar. If Lk(G) is outerplanar for all k ⩾ 0, we define ζ(G) = ∞.
In [5], the authors gave a full characterization of all graphs with respect to their outerplanar index which is stated
in the following theorem.

Theorem 3.2. Let G be a connected graph. Then:

(i) ζ(G) = 0 if and only if G is non-outerplanar.

(ii) ζ(G) = ∞ if and only if G is a path, a cycle, or K1,3.

(iii) ζ(G) = 1 if and only if G is planar and G has a subgraph homeomorphic to K1,4 or K1 + P3 in Figure
12.

(iv) ζ(G) = 2 if and only if L(G) is planar and G has a subgraph isomorphic to one of the graphs G2 and G3

in Figure 12.

(v) ζ(G) = 3 if and only if G ∈ I(d1, d2, . . . , dt) where di ⩾ 2 for i = 2, . . . , t− 1, and d1 ⩾ 1 (Figure 12).

Theorem 3.3. Let G be a finite group. Then:

(i) ζ(G) = ∞ if and only if G and S are as in Table 6.

(ii) ζ(Cay(G,S)) = 0 otherwise.

Proof. It follows from Lemma 3.1 and Theorem 3.2. ■
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K1 +P3 G2

e

e

Ck

k ⩾ 3

G3

d1 d1 + d2 d1 + d2 + d3 d1 + d2 + · · ·dt

Figure 12: Figures of Theorem 3.2
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