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Abstract

In this paper we consider the third order nonlinear neutral difference equation of the form

∆(rn(∆2(xn ± pnxσ(n)))
α) + f (n, xτ(n)) = 0,

we establish some sufficient conditions which ensure that every solution of this equation are either oscillatory
or converges to zero. Examples are provided to illustrate the main results.
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1 Introduction

In this paper, we establish oscillation criteria for third order nonlinear neutral difference equation of the form

∆
(

rn(∆2(xn ± pnxσ(n)))
α
)

+ f (n, xτ(n)) = 0, n ∈ N0 (1)

where N0 = {n0, n0 + 1, n0 + 2, . . .}, and n0 is a nonnegative integer subject to the following conditions:

(C1) {rn} is a positive real sequence with ∑∞
n=n0

1
r1/α

n
= ∞ and α is a ratio of odd positive integers;

(C2) {pn} is a nonnegative real sequence with −µ ≤ pn ≤ 1 for µ ∈ (0, 1);

(C3) {σ(n)} is a nonnegative sequence of integers with σ(n) ≤ n such that limn→∞ σ(n) = ∞;

(C4) {τ(n)} is a nonnegative sequence of integers with τ(n) ≤ n such that limn→∞ τ(n) = ∞;

(C5) f : N0 ×R → [0, ∞) and there is a nonnegative real sequence {qn} such that f (n, u)
uα ≥ Lqn, for u 6= 0

where L > 0.

By a solution of equation (1) we mean a real sequence {xn} and satisfying equation (1) for all n ∈ N0. We
consider only those solution {xn} of equation (1) which satisfy sup{|xn| : n ≥ N} > 0 for all N ∈ N0. A
solution of equation (1) is said to be oscillatory if it is neither eventually positive nor eventually negative and
nonoscillatory otherwise.

In recent years, much research has been done on the oscillatory behavior of solutions of third order
difference equations, see for example ([1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15]) and the
references cited therein.
In ([13], [14]), the authors consider the following third order neutral difference equations of the form

∆(rn(∆2(xn ± pnxn−σ))α) + qnxα
n+1−τ = 0, (2)
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and
∆(rn(∆2(xn ± pnh(xn−σ)))α) + qn f (xn+1−τ) = 0, (3)

and established some criteria for the oscillation and asymptotic behavior of all solutions of equations (2) and
(3).
In [12], the authors studied the following third order difference equation

∆(cn∆(dn∆(xn + pnxn−k))) + qn f (xn−m) = en (4)

and established some criteria for the oscillation and asymptotic behavior of all solutions of equation (4).
In [15], the authors considered the following third order difference equation

∆(an(∆2(xn + pnxn−σ))α) + qnxα
n−τ = 0 (5)

and established some criteria for the oscillation and asymptotic behavior of all solutions of equation (5).
The oscillatory properties of oscillation of equation (1) was studied by the authors in [7], when pn ≡ 0.
Following this trend, in this paper, we establish some new sufficient conditions for the oscillation of all
solutions of equation (1). In Section 2, we present some oscillation theorems and in Section 3, we provide
examples to illustrate the main results.

2 Oscillation Theorems

First we consider the following difference equation

∆
(

rn(∆2(xn + pnxσ(n)))
α
)

+ f (n, xτ(n)) = 0, n ∈ N0, (6)

and establish some sufficient conditions for the oscillation and asymptotic behavior of its solutions. We begin
with the following lemma.

Lemma 2.1. Let {xn} be a positive solution of equation (6), then the corresponding function zn = xn + pnxσ(n) satisfies
only of the following two cases:

(I) zn > 0, ∆zn > 0, ∆2zn > 0;

(I I) zn > 0, ∆zn < 0, ∆2zn > 0

for n ≥ n1 ∈ N0, where n1 is sufficiently large.

Proof. The proof can be found in [13, 14], and hence the details are omitted.

Lemma 2.2. Let {xn} be a positive solution of equation (6), and let the corresponding function {zn} satisfies the Case
(I I) of Lemma 2.1. If

∞

∑
n=n0

∞

∑
s=n

[ 1
rs

∞

∑
t=s

qt

]1/α
= ∞, (7)

then limn→∞ xn = limn→∞ zn = 0.

Proof. The proof is similar to that of Lemma 2.2 in [13], and hence the details are omitted.

Before stating the next lemma, we define

An =
∞

∑
s=n0

r−1/α
s ,

Qn = (1− pτ(n))
αLqn,

and

Rn =
n−1

∑
s=n0

Qs for all n ∈ N0.



218 G.Ayyappan / Oscillation Criteria...

Lemma 2.3. Let {xn} be a positive solution of equation (6) and the corresponding zn satisfies Case(I) of Lemma 2.1.
Then there exists a positive real sequence {wn} such that

wn ≥ Rn +
∞

∑
s=n

αAτ(s)w
1+1/α
s+1 , (8)

lim
n→∞

sup[wn+1 Aα/(α+1)
τ(n) ] ≤ c, (9)

for some constant c > 0, and
∞

∑
n=n0

Qn < ∞,
∞

∑
n=n0

Aτ(n)R1+1/α
n+1 < ∞. (10)

Proof. Let {xn} be a positive solution of equation (6). Assume that xn > 0, xσ(n) > 0 and xτ(n) > 0 for all
n ≥ n1 ≥ n0. Then zn > xn > 0 and satisfies Case(I) of Lemma 2.1, for all n ≥ N ≥ n1. From (6), we have

∆(rn(∆zn)α) ≤ − f (n, xτ(n))

≤ −xα
τ(n)Lqn, n ≥ n1. (11)

From the monotone nature of zn, we have

xn = zn − pnxσ(n)

or
xτ(n) ≥ (1− pτ(n))zτ(n). (12)

From (11) and (12), we have
∆(rn(∆2zn)α) ≤ −(1− pτ(n))zα

τ(n)Lqn

or
∆(rn(∆2zn)α)

zα
τ(n)

≤ −(1− pτ(n))Lqn. (13)

Define

wn =
rn(∆2zn)α

zα
τ(n)

. (14)

Then wn > 0 for all n ≥ n1, and

∆wn =
∆(rn(∆2zn)α)

zα
τ(n)

− rn+1(∆2zn+1)α

zα
τ(n) zα

τ(n+1)
∆(zα

τ(n)).

Using (13) and (14) in the last inequality, we obtain

∆wn ≤ −(1− pτ(n))
αLqn − wn+1

∆(zα
τ(n))

zα
τ(n)

. (15)

By Mean Value Theorem
∆zα

τ(n) = αtα−1∆zτ(n),

where zτ(n) ≤ t ≤ zτ(n+1). Since α ≥ 1, we have

∆zα
τ(n) ≥ αzα−1

τ(n)∆zτ(n). (16)

Using (16) in the inequality (15), we obtain

∆wn ≤ −Qn − αwn+1
∆zτ(n)

zτ(n)
. (17)

From the monotonicity property of {∆2zn}, we have

∆zn = ∆zn0 +
n−1

∑
s=n0

∆2zs ≥
n−1

∑
s=n0

∆2zs
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or

∆zn ≥
n−1

∑
s=n0

r−1/α
s (rs(∆2zs)α)1/α

≥ (rn(∆2zn)α)1/α An.

Then
∆zτ(n) ≥ (rτ(n)(∆2zτ(n))

α)1/α Aτ(n). (18)

Using (18) in the inequality (17), we get

∆wn ≤ −Qn − αw1+1/α
n+1 Aτ(n)

or
∆wn + Qn + αw1+1/α

n+1 Aτ(n) ≤ 0, n ≥ N. (19)

Summing the last inequality from N to n− 1, we have

wn ≤ wN −
n−1

∑
s=N

Qs −
n−1

∑
s=N

αAτ(s)w
1+1/α
s+1 for n ≥ N. (20)

We claim that ∑∞
n=N Qn < ∞ for all n ≥ N. Otherwise from the inequality (21), we obtain

wn ≤ wN −
n−1

∑
s=N

Qs,

and letting limit n → ∞ we obatin wn → −∞, which contradicts the positivity of wn. Similarly we can show
that

∞

∑
s=N

Aτ(s)w
1+1/α
s+1 < ∞. (21)

Now, letting limit as n → ∞ in (20) we have

w∞ − wN +
∞

∑
s=N

Qs +
∞

∑
s=N

αAτ(s)w
1+1/α
s+1 ≤ 0

or

wn ≥ Rn +
∞

∑
s=n

αAτ(s)w
1+1/α
s+1 for n ≥ N. (22)

Since Qn > 0 and wn > 0 for n ≥ N, we have from (19) that ∆wn < 0 and limn→∞ wn = M, for some constant
M > 0. Now from (19), we have

∆wn ≤ −αAτ(n)w
1+1/α
n+1

or

− ∆wn

w1+1/α
n+1

≥ αAτ(n)

or
wn

αw1+1/α
n+1

≥ Aτ(n).

Taking limit supreme, we obtain
M ≥ lim

n→∞
sup(w1+1/α

n+1 Aτ(n))

or
lim

n→∞
sup(wn+1 Aα/(α+1)

τ(n) ) ≤ c,

for some constant c > 0. This completes the proof.
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Theorem 2.1. Assume that

lim
n→∞

inf
1

Rn

∞

∑
s=n

PsR1+1/α
s+1 >

α

(α + 1)(α+1)/α
, (23)

where Pn = αAτ(n) then every solution of equation (6) is either oscillatory or converges to zero as n → ∞.

Proof. Assume that {xn} is a nonoscillatory solution of equation (6). Without loss of generality we may assume
that xn > 0, xσ(n) > 0 and xτ(n) > 0 for all n ≥ n1 ≥ n0 and the corresponding {zn} satisfies two cases of
Lemma 2.1.
Case(I). Let {zn} satisfies Case (I) of Lemma 2.1. From Lemma 2.3, we obtain (8), then

wn

Rn
≥ 1 +

1
Rn

∞

∑
s=n

αAτ(s)w
1+1/α
s+1

≥ 1 +
1

Rn

∞

∑
s=n

PsR1+1/α
s+1

(ws+1

Rs+1

)1+1/α
. (24)

From the assumption of the theorem, there exists a β > α
(α+1)(α+1)/α ,

lim
n→∞

inf
1

Rn

∞

∑
s=n

PsR1+1/α
s+1 > β (25)

and let
λ = inf

n≥n0

wn

Rn
, (26)

then λ ≥ 1. Using (25) and (26) in the inequality (24) we have

λ ≥ 1 + βλ1+1/α.

Therefore
λ− βλ1+1/α ≤ α

(α + 1)α

1
βα

.

Then, we get β ≤ αα

(α+1)(α+1)/α , which is a contradicts to our assumption.
If {zn} satisfies Case(II) of Lemma 2.1, then by the condition (7) we have limn→∞ xn = 0. This completes the
proof.

Theorem 2.2. Assume that

lim
n→∞

sup
[

Aα/(α+1)
τ(n)

(
Rn+1 +

∞

∑
s=n+1

αAτ(s)R1+1/α
s+1

)]
= ∞ (27)

then every solution of equation (6) is either oscillatory or converges to zero as n → ∞.

Proof. Assume that {xn} is a nonoscillatory solution of equation (6). Without loss of generality we may assume
that xn > 0, xσ(n) > 0 and xτ(n) > 0 for all n ≥ n1 ≥ n0 and the corresponding {zn} satisfies two cases of
Lemma 2.1.
Case(I). Let {zn} satisfies Case (I) of Lemma 2.1. From Lemma 2.3, we obtain (8), then

wn ≥ Rn +
∞

∑
s=n

αAτ(s)w
1+1/α
s+1 .

Since wn ≥ Rn, we have

wn ≥ Rn +
∞

∑
s=n

αAτ(s)R1+1/α
s+1 .

Using this in (9), we have

lim
n→∞

sup
[

Aα/(α+1)
τ(n)

(
Rn+1 +

∞

∑
s=n+1

αAτ(s)R1+1/α
s+1

)]
≤ c,

which is a contradiction. If {zn} satisfies Case(II) of Lemma 2.1, then by the condition (7) we have limn→∞ xn =
0. This completes the proof.
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Next, we consider the case −µ ≤ pn ≤ 0, and the equation (1) takes the form

∆
(

rn(∆2(xn − pnxσ(n)))
α
)

+ f (n, xτ(n)) = 0, n ∈ N0. (28)

Lemma 2.4. Let {xn} be a positive solution of equation (28) and the corresponding {zn} satisfies Case(I) of Lemma 2.1.
Then there exists a positive function {wn} such that

wn ≥ Qn +
∞

∑
s=n

αAτ(s)w
1+1/α
s+1 , (29)

lim
n→∞

sup[wn+1 Aα/(α+1)
τ(n) ] ≤ c, (30)

for some constant c > 0, and

Qn < ∞,
∞

∑
s=n

Aτ(s)Q1+1/α
s+1 < ∞. (31)

Proof. Let {xn} be a positive solution of equation (28). Assume that xn > 0, xσ(n) > 0 and xτ(n) > 0 for all
n ≥ n1 ≥ n0. Then zn > xn > 0 and satisfies Case(I) of Lemma 2.1, for all n ≥ N ≥ n1. We have (11)

∆(rn(∆zn)α) ≤ −xα
τ(n)Lqn, n ≥ n1. (32)

We have two possible cases for zn:

(i) zn > 0

(ii) zn < 0.

Case (i). zn > 0, the proof is similar to that of Lemma 2.3 and hence the details are omitted.
Case (ii). zn < 0 eventually for all n ≥ n2 ≥ n1 ≥ n0, then we have two cases for xn:

(a) xn is unbounded,

(b) xn is bounded.

Case (a). Assume that xn is unbounded, then

xn = zn − pnxσ(n) < −pnxσ(n) < xσ(n). (33)

Since {xn} is unbounded, we can choose a sequence {xnk} satisfying limk→∞ xk = ∞ from which limk→∞ xNk =
∞ and max xn = xNn by choosing N large such that σ(Nk) > N1 for all Nk > n2. Thus max xn = xNn . This
contradicts with (33).
Case (b). Assume that {xn} is bounded, and we show that xn → 0 as n → ∞. Since

lim
n→∞

sup zn ≤ 0,

then we have

lim
n→∞

sup(xn + pnxσ(n)) ≤ 0

lim
n→∞

sup xn + lim
n→∞

sup pnxσ(n) ≤ 0

lim
n→∞

sup xn − µ lim
n→∞

sup xσ(n) ≤ 0

(1− µ) lim
n→∞

sup xn ≤ 0.

This shows that xn → 0 as n → ∞. This completes the proof.

Theorem 2.3. Assume that

lim
n→∞

inf
1

Qn

∞

∑
s=n

PsQ1+1/α
s+1 >

α

(α + 1)(α+1)/α
, (34)

where Pn = αAτ(n) then every solution of equation (28) is either oscillatory or converges to zero as n → ∞.
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Proof. The proof is similar to that of Theorem 2.1 and hence the details are omitted.

Theorem 2.4. Assume that

lim
n→∞

sup
[

Aα/(α+1)
τ(n)

(
Qn+1 +

∞

∑
s=n+1

αAτ(s)Q1+1/α
s+1

)]
= ∞ (35)

then every solution of equation (28) is either oscillatory or converges to zero as n → ∞.

Proof. The proof is similar to that of Theorem 2.2 and hence the details are omitted.

3 Examples

In this section, we present some examples to illustrate the main results.

Example 3.1. Consider the third order difference equation

∆
(

n(∆2
(

xn +
1
2

xn−2

)
)3

)
+

1
(n + 1)(n + 2)

x3
n−3 = 0, n ≥ 1. (36)

Here rn = n, pn = 1
2 , qn = 1

(n+1)(n+2) , α = 3 σ(n) = n − 2, τ(n) = n − 3 and L = 1. It is easy to see that all
conditions of Theorem 2.1 are satisfied. Hence every solution of equation (36) is either oscillatory or converges to zero as
n → ∞.

Example 3.2. Consider the third order difference equation

∆
( 1

n
∆2

(
xn +

1
2

xn−2

))
+

1
(n + 1)(n + 2)

xn−1 = 0, n ≥ 1. (37)

Here rn = 1
n , pn = 1

2 , qn = 1
(n+1)(n+2) , α = 1 σ(n) = n − 2, τ(n) = n − 1 and L = 1. It is easy to see that all

conditions of Theorem 2.2 are satisfied. Hence every solution of equation (37) is either oscillatory or converges to zero as
n → ∞.

Example 3.3. Consider the third order difference equation

∆3
(

xn −
1
3

xn−1

)
+ nxn−2 = 0, n ≥ 1. (38)

Here rn = 1, pn = 1
3 , qn = n, α = 1 σ(n) = n− 1, τ(n) = n− 2 and L = 1. It is easy to see that all conditions of

Theorem 2.3 are satisfied. Hence every solution of equation (38) is either oscillatory or converges to zero as n → ∞.

Example 3.4. Consider the third order difference equation

∆3
(

xn −
1
2

xn−1

)
+ 12xn−2 = 0, n ≥ 1. (39)

Here rn = 1, pn = 1
2 , qn = 12, α = 1 σ(n) = n− 1, τ(n) = n− 2 and L = 1. It is easy to see that all conditions of

Theorem 2.4 are satisfied. Hence every solution of equation (39) is either oscillatory or converges to zero as n → ∞. In
fact {xn} = {(−1)n} is one such oscillatory solution of equation (39) is oscillatory or converging to zero.

We conclude this paper with the following remark.

Remark 3.1. It would be interesting to extend the results of this paper to the equation (1) when ∑∞
n=n0

1
r1/α

n
< ∞.
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