Malaya Journal of Matematik

MIM

an international journal of mathematical sciences with computer applications...

www.malayajournal.org

Line gracefulness in the context of switching of a vertex

S K Vaidya a* and N J Kothari b

^aDepartment of Mathematics, Saurashtra University, Rajkot - 360005, Gujarat, INDIA.

^bAtmiya Institute of Technology & Science, Rajkot - 360005, Gujarat, INDIA.

Abstract

We investigate line graceful labeling of graphs obtained by switching of vertex operation.

Keywords: Edge graceful labeling, line graceful labeling, graceful labeing, switching of vertex.

2010 MSC: 05C78, 05C38, 05C76.

©2012 MJM. All rights reserved.

1 Introduction

Labeling of discrete structures is a one of the potential area of research due to its potential applications. The optimal linear arrangement concern to network problems in electrical engineering and placement problems in production engineering can be formalized as a graph labeling problems as stated by Yegnanaryanan and Vaidhyanathan [13]. A dynamic survey on different graph labeling schemes with an extensive bibliography can be found in Gallian [2].

In this paper, the term "graph" means finite, connected, undirected and simple graph G = (V(G), E(G)) with p vertices and q edges. For standard terminology and notation we refer to Balakrishnan and Ranganathan [1].

Definition 1.1. A graph labeling is an assignment of numbers to the vertices or edges or both subject to certain condition(s).

Definition 1.2. A function f is called graceful labeling of graph if $f: V(G) \to \{0,1,2,3,...,q\}$ is injective and the induced function $f^*: E(G) \to \{1,2,...,q\}$ defined as $f^*(e=uv) = |f(x) - f(y)|$ is bijective. A graph which admits graceful labeling is called a graceful graph.

Most of the graph labeling techniques trace their origin with graceful labeling which was introduced independently by Rosa [7] and Golomb [4]. A variant of graceful labeling termed as edge graceful labeling is introduced by Lo [6].

Definition 1.3. A graph G = (V(G), E(G)) is said to be edge graceful if there exists a bijection $f : E(G) \rightarrow \{1, 2, 3, ..., q\}$ such that the induced mapping $f^* : V(G) \rightarrow \{0, 1, ..., p-1\}$ defined by $f^*(v) = \sum_{vv_i \in E(G)} f(vv_i)$ (mod p) is bijection.

Lo [6] derived a necessary condition for a graph to be edge graceful and also investigate edge graceful labeling of many graph families. Wilson and Risking [12] proved that the cartesian product of any number of odd cycle is edge graceful. All trees of odd order are edge graceful was conjunctured by Lee [5]. Shiu, Lee and Schaffer [8] investigated the edge gracefulness of multigraphs. Gnanajothi [3] introduced and studied line graceful labeling in her Ph.D. thesis which is little weaker than edge graceful labeling.

^{*}Corresponding author.

Definition 1.4. A mapping $f: E(G) \to \{0,1,2,...,p\}$ is called line graceful of graph with p vertices, if induced function $f^*: V(G) \to \{0,1,2,...,p-1\}$ defined by $f^*(v) = \sum_{vv_i \in E(G)} f(vv_i) \pmod{p}$ is bijective.

Definition 1.5. The triangular snake T_n is obtained from the path P_n by replacing every edge of a path by a triangle C_3

Definition 1.6. A vertex switching G_v of a graph G is the graph obtained by taking a vertex v of G, removing all the edges to v and adding edges joining v to every other vertex which are not adjacent to v in G.

Definition 1.7. The helm H_n is the graph obtained from a wheel W_n by attaching a pendant edge to every rim vertex.

Definition 1.8. The fan f_n is a graph on n + 1 vertices obtained by joining all the vertices of P_n to a new vertex called the center.

Vaidya and Kothari [9, 10, 11] have investigated many results on line gracefulness of graphs in various contexts while this paper is focus on line gracefulness on the graph obtained by switching of a vertex.

2 Main results

Proposition 2.1. [3] If the graph is line graceful then its order is not congruent to 2 (mod 4).

Theorem 2.1. Switching of a pendant vertex in path P_n is line graceful except $n \equiv 2 \pmod{4}$.

Proof. Let v_1, v_2, \ldots, v_n be vertices of path P_n . Let G_v be the graph obtained by switching pendant vertex v of P_n . Without loss of generality let the switched vertex be v_n . We note that $|V(G_v)| = n$ and $|E(G_v)| = 2n - 4$. Define edge labeling $f: E(G_v) \to \{0, 1, \ldots, n-1\}$ as follows.

Case 1: $n \equiv 0 \, (\text{mod } 4)$

for odd i

$$f(v_i v_{i+1}) = \begin{cases} \frac{i+1}{2} & \text{for } 1 \le i \le \frac{n}{2} \\ \frac{i+1}{2} + 1 & \text{for } \frac{n}{2} \le i \le n-3 \end{cases}$$

for even i

$$f(v_i v_{i+1}) = \frac{i+2}{2}$$
 for $2 \le i \le n-3$
 $f(v_{n-2} v_{n-1}) = \frac{n}{2} + 2$
 $f(v_n v_i) = 0$ for $1 \le i \le n-2$

Case 2: $n \equiv 1 \pmod{4}$

for odd i

$$f(v_i v_{i+1}) = \begin{cases} \frac{i+1}{2} & \text{for } 1 \le i \le \lfloor \frac{n}{2} \rfloor \\ \frac{i+3}{2} & \text{for } \lceil \frac{n}{2} \rceil \le i \le n-3 \end{cases}$$

for even *i*

$$f(v_i v_{i+1}) = \frac{i+2}{2}$$
 for $2 \le i \le n-3$
 $f(v_{n-2} v_{n-1}) = 2$
 $f(v_n v_i) = 0$ for $1 \le i \le n-2$

Case 3: $n \equiv 3 \pmod{4}$ for odd i

$$f(v_i v_{i+1}) = \begin{cases} \frac{i+1}{2} & \text{for } 1 \le i \le \lfloor \frac{n}{2} \rfloor \\ \frac{i+3}{2} & \text{for } \lceil \frac{n}{2} \rceil \le i \le n-2 \end{cases}$$

for even i

$$\begin{array}{ll} f(v_iv_{i+1}) &= \frac{i+2}{2} & \text{for } 2 \leq i \leq n-3 \\ f(v_{n-2}v_{n-1}) &= \left\lfloor \frac{n}{2} \right\rfloor + 3 \\ f(v_nv_i) &= 0 & \text{for } 1 \leq i \leq n-2 \end{array}$$

Case 4: $n \equiv 2 \pmod{4}$

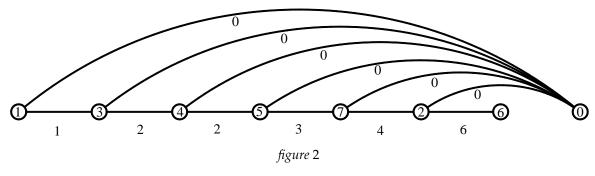
In this case $|V(G_v)| = n \equiv 2 \pmod{4}$.

Then according to Proposition 2.1 G_v is not line graceful.

In view of above defined edge labeling function will induce the bijective vertex labeling function $f^*: V(G_v) \to \{0,1,...,n-1\}$ such that $f^*(v) = \sum_{e \in E(G_v)} f(e) \pmod{(n)}$ for $n \equiv 0,1,3 \pmod{4}$. Hence we proved that graph

 G_v obtained from switching of pendant vertex in path P_n is line graceful except $n \equiv 2 \pmod{4}$.

Illustration 2.1. Switching of vertex v_8 in path P_8 and its line graceful labeling is shown in figure 2.



Theorem 2.2. *Switching of vertex in cycle* C_n *is line graceful except* $n \equiv 2 \pmod{4}$.

Proof. Let v_1, v_2, \ldots, v_n be the vertices of cycle C_n and G_{v_1} be the graph obtained by switching of vertex v_1 of cycle C_n . Here without loss of generality, we have switched the vertex v_1 . Note that $|V(G_{v_1})| = n$ and $|E(G_{v_1})| = 2n - 5$. Define edge labeling $f : E(G_{v_1}) \to \{0, 1, \ldots, n - 1\}$ as follows.

Case 1: $n \equiv 0 \, (\text{mod } 4)$

$$f(v_1v_i) = 0$$
 for $3 \le i \le n-1$

for odd *i*

$$f(v_i v_{i+1}) = \frac{i+1}{2} \quad \text{for } 3 \le i \le n-3$$

for even i

$$f(v_i v_{i+1}) = \begin{cases} \frac{i}{2} & \text{for } 2 \le i \le \frac{n}{2} \\ \frac{i}{2} + 1 & \text{for } \frac{n}{2} < i \le n - 2 \end{cases}$$

$$f(v_{n-1}v_n) = f(v_{n-2}v_{n-1}) + 2$$

Case 2: $n \equiv 1 \, (\bmod \, 4)$

$$f(v_1v_i) = 0$$
 for $3 \le i \le n-1$

for odd i

$$f(v_i v_{i+1}) = \frac{i+1}{2}$$
 for $3 \le i \le n-2$

for even i

$$f(v_i v_{i+1}) = \begin{cases} \frac{i}{2} & \text{for } 2 \le i \le \lfloor \frac{n}{2} \rfloor \\ \frac{i}{2} + 1 & \text{for } \lceil \frac{n}{2} \rceil \le i \le n - 3 \end{cases}$$
$$f(v_{n-1} v_n) = 2$$

Case 3: $n \equiv 3 \pmod{4}$

$$f(v_1v_i) = 0$$
 for $3 \le i \le n-1$

for odd i

$$f(v_i v_{i+1}) = \frac{i+1}{2}$$
 for $3 \le i \le n-2$

for even i

$$f(v_i v_{i+1}) = \begin{cases} \frac{i}{2} & \text{for } 2 \le i \le \lceil \frac{n}{2} \rceil \\ \frac{i}{2} + 1 & \text{for } \lceil \frac{n}{2} \rceil < i \le n - 3 \end{cases}$$
$$f(v_{n-1} v_n) = \lceil \frac{n}{2} \rceil + 2$$

Case 4: $n \equiv 2 \pmod{4}$

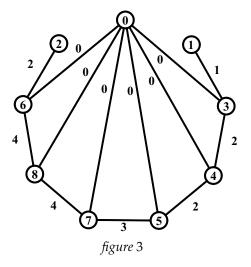
In this case $|V(G_{v_1})| = n \equiv 2 \pmod{4}$.

Then according to Proposition 2.1 G_{v_1} is not line graceful.

In view of above defined edge labeling function will induce the bijective vertex labeling function $f^*: V(G_{v_1}) \to \{0,1,...,n-1\}$ such that $f^*(v) = \sum_{e \in E(G_{v_1})} f(e) \pmod{(n)}$ for $n \equiv 0,1,3 \pmod{4}$. Hence we

proved that graph G_{v_1} obtained from switching of vertex v_1 in cycle C_n is line graceful except $n \equiv 2 \pmod{4}$.

Illustration 2.2. *Switching of vertex* v_1 *in cycle* C_9 *and its line graceful labeling is shown in figure* 3.



Theorem 2.3. For n > 3, switching of a rim vertex in wheel W_n is line graceful except $n \equiv 1 \pmod{4}$.

Proof. Let v be a apex vertex, v_1, v_2, \ldots, v_n be rim vertices of W_n and G_{v_1} be the graph obtained by switching a rim vertex v_1 of W_n . Here without loss of generality, we have switched vertex v_1 . Observe that $|V(G_{v_1})| = n+1$ and $|E(G_{v_1})| = 3n-5$. Define edge labeling $f: E(G_{v_1}) \to \{0,1,\ldots,n\}$. as follows.

Case 1: n = 4

The graph G_{v_1} and its line graceful labeling is shown in figure 4.

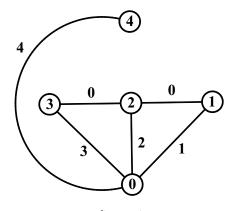
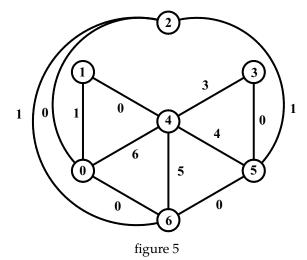


figure 4

Case 2: n = 6

The graph G_{v_1} and its line graceful labeling is shown in figure 5.



Case 3: $n \equiv 0, 2 \pmod{4}$

$$f(vv_i) = i+1 \text{ for } 2 \le i \le n$$

$$f(v_iv_{i+1}) = \begin{cases} 0 \text{ for } 2 \le i \le n-2 \\ 1 \text{ for } i = n-1 \end{cases}$$

$$f(v_1v_i) = \begin{cases} 0 \text{ for } 3 \le i \le n-4, i = n-1 \\ 1 \text{ } n-3 \le i \le n-2 \end{cases}$$

Case 4: $n \equiv 3 \pmod{4}$

$$f(vv_i) = i-1$$
 for $2 \le i \le n$
 $f(v_1v_i) = 0$ for $3 \le i \le n-1$

for $2 \le i \le \left\lceil \frac{n}{2} \right\rceil + 1$

$$f(v_i v_{i+1}) = 0$$

for $\left\lceil \frac{n}{2} \right\rceil + 2 \le i \le n - 1$

$$f(v_i v_{i+1}) = \begin{cases} 1 & \text{for even } i \\ 0 & \text{for odd } i \end{cases}$$

Case 5: $n \equiv 1 \pmod{4}$

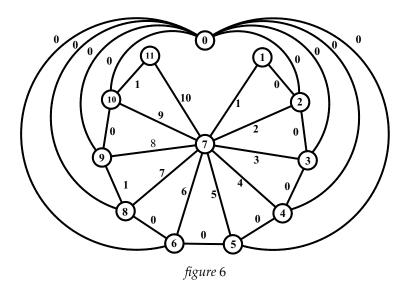
In this case $|V(G_{v_1})| = n + 1 \equiv 2 \pmod{4}$.

Then according to Proposition 2.1 G_{v_1} is not line graceful.

In view of above defined edge labeling function will induce the bijective vertex labeling function $f^*: V(G_{v_1}) \to \{0,1,...,n\}$ such that $f^*(v) = \sum_{e \in E(G_{v_1})} f(e) \pmod{(n+1)}$ for $n \equiv 0,2,3 \pmod{4}$. Hence we

proved that for n > 3, the graph G_{v_1} obtained from switching of a rim vertex v_1 in wheel W_n is line graceful except $n \equiv 1 \pmod{4}$.

Illustration 2.3. Switching of vertex v_1 in cycle W_{11} and its line graceful labeling is shown in figure 6.



Theorem 2.4. Switching of apex vertex in helm H_n is line graceful for all n.

Proof. Let v be a apex vertex, v_1, v_2, \ldots, v_n be rim vertices and u_1, u_2, \ldots, u_n be pendant vertices of helm H_n . G_v be the graph obtained from switching apex vertex v of helm. Observe that $|V(G_v)| = 2n + 1$ and $|E(G_v)| = 3n$. Define edge labeling $f: E(G_v) \to \{0, 1, \ldots, 2n\}$ as follows.

$$f(vu_i) = n+1$$

 $f(v_iv_{i+1}) = 0$ for $1 \le i \le n-1$
 $f(v_nv_1) = 0$

for odd n

$$f(v_i u_i) = \lfloor \frac{n}{2} \rfloor + i \text{ for } 1 \le i \le n$$

for even n

$$f(v_i u_i) = \frac{3n}{2} + i$$
 for $1 \le i \le n$

In view of above defined edge labeling function will induce the bijective vertex labeling function $f^*: V(G_v) \to \{0,1,...,2n\}$ such that $f^*(v) = \sum_{e \in E(G_v)} f(e) \pmod{(2n+1)}$. Thus we proved that graph G_v obtained by switching apex vertex of helm admits line graceful labeling for all n.

Illustration 2.4. *Switching of apex vertex v in helm H*₇ *and its line graceful labeling is shown in figure* 7.

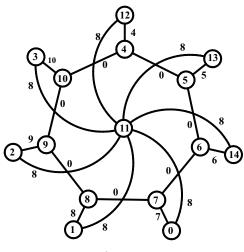


figure 7

Theorem 2.5. Switching of vertex having degree 2 in fan f_n is line graceful except $n \equiv 1 \pmod{4}$.

Proof. Let v be the apex vertex and v_1, v_2, \ldots, v_n be the vertices of f_n . Let G_{v_1} denotes graph obtained by switching of a vertex v_1 having degree 2 of f_n . Note that $|V(G_{v_1})| = n + 1$ and $|E(G_{v_1})| = 3n - 5$. We define $f: E(G_{v_1}) \to \{1, 2, \ldots, n + 1\}$ as follows.

Case 1: $n \equiv 0, 2 \pmod{4}$

$$f(vv_i) = n \text{ for } 2 \le i \le n$$

$$f(v_iv_{i+1}) = 0 \text{ for } 2 \le i \le n-1$$

$$f(v_1v_i) = \begin{cases} i-2 \text{ for } i = 3,4\\ i-1 \text{ for } 5 \le i \le n \end{cases}$$

Case 2: $n \equiv 3 \pmod{4}$

$$f(vv_i) = \lfloor \frac{n}{4} \rfloor \quad \text{for } 2 \le i \le n$$

$$f(v_iv_{i+1}) = 0 \quad \text{for } 2 \le i \le n-1$$

$$f(v_1v_i) = \begin{cases} i-2 & \text{for } 3 \le i \le 5 + \lfloor \frac{n}{4} \rfloor \\ i-1 & \text{for } 6 + \lfloor \frac{n}{4} \rfloor \le i \le n \end{cases}$$

Case 3: $n \equiv 1 \pmod{4}$

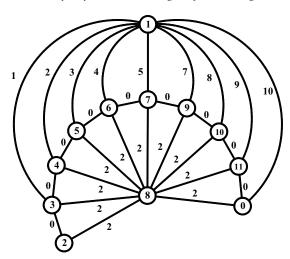
In this case $|V(G_{v_1})| = n + 1 \equiv 2 \pmod{4}$.

Then according to Proposition 2.1 G_{v_1} is not line graceful.

In view of above defined edge labeling function will induce the bijective vertex labeling function $f^*: V(G_{v_1}) \to \{0,1,...,n\}$ such that $f^*(v) = \sum_{e \in E(G_{v_1})} f(e) \pmod{(n+1)}$ for $n \equiv 0,2,3 \pmod{4}$. Hence we

proved that the graph G_{v_1} obtained by switching a vertex of degree 2 in fan f_n is line graceful except $n \equiv 1 \pmod{4}$.

Illustration 2.5. Switching of vertex v_1 in fan f_{11} and its line graceful labeling is shown in figure 8.



3 Concluding Remarks

Edge gracefulness and line gracefulness of a graph are independent concepts. A graph may posses one or both of these or neither as mentioned below.

figure 8

- C_{2n+1} is edge graceful as well as line graceful.
- P_n is neither edge graceful nor line graceful for $n \equiv 2 \pmod{4}$.
- C_{4n} is not edge graceful but line graceful.
- Triangular snake T_n is edge graceful only for n = 3 while it is line graceful for all n.

4 Acknowledgment

The authors are highly thankful to the anonymous referee for kind suggestions and comments.

References

- [1] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Springer, 2nd edition, 2012.
- [2] J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 16(2013), #DS6.
- [3] R. B. Gnanajothi, *Topics in Graph Theory*, Ph.D. Thesis, Madurai Kamaraj University, Tamil Nadu(India), 1991.
- [4] S.W. Golomb, How to number a graph, in: *Graph Theory and Computing, R C Read*, ed., Academic Press, New York (1972), 23-37.
- [5] S. M. Lee, A conjecture on edge-graceful trees, Scientia Series A: Math. Sciences, 3(1989), 45-47.
- [6] S. Lo, On edge-graceful labelings of graphs, Congr. Numer., 50(1985), 231-241.
- [7] A. Rosa, On certain valuations of the vertices of a graph, in: *Theory of Graphs*, (*International Symposium*, *Rome*, (*July 1966*), *Gordon and Breach*), *N.Y. and Dunod Paris*, (1967), 349-355.
- [8] W. C. Shiu, S. M. Lee, and K. Schaffer, Some k-fold edge-graceful labelings of (p, p-1)-graphs, *J. Combin. Math. Comput.*, 38(2001), 81-95.
- [9] S. K. Vaidya and N. J. Kothari, Some new families of line graceful graphs, *International Journal of Mathematics and Scientific Computing*, 1(2)(2011), 26-28.
- [10] S. K. Vaidya and N. J. Kothari, Line Gracefulness of Some Path Related Graphs, *International Journal of Mathematics and Scientific Computing*, 4(1)(2014), 15-19.
- [11] S. K. Vaidya and N. J. Kothari, Line gracefulness of some cycle related graphs, *IOSR Journal of Mathematics*, 10(6) (2014), 31-37.
- [12] S. Wilson and A. Riskin, Edge-graceful labelings of odd cycles and their products, *Bulletin of the ICA*, 24(1998), 57-64.
- [13] V. Yegnanaryanan and P. Vaidhyanathan, Some Interesting Applications of Graph Labellings, *J. Math. Comput. Sci.*, 2(5)(2012), 1522-1531.

Received: October 10, 2014; Accepted: May 10, 2015

UNIVERSITY PRESS

Website: http://www.malayajournal.org/