
Malaya J. Mat. 3(3)(2015) 346-359

Hermite-Hadamard Inequalities for L(j)-convex Functions and

S(j)-convex Functions

Ilknur Yesilcea,∗ and Gabil Adilovb

aDepartment of Mathematics, Faculty of Science and Letters, Mersin University, Ciftlikkoy Campus, 33343, Mersin, Turkey.

bDepartment of Mathematics, Faculty of Education, Akdeniz University, Dumlupinar Boulevard 07058, Campus, Antalya, Turkey.

Abstract

In this article, Hermite-Hadamard Inequalities for L(j)-convex functions are analyzed. S(j)-convex
functions which is founded upon B−1−convexity concept, are defined and for this functions,
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1 Introduction

Integral inequalities have played an important role in the development of all branches of mathematics.
Also, Hermite-Hadamard inequalities are one of the integral inequalities. Recently, Hermite-Hadamard
inequalities and their applications have attracted considerable interest. Hence the Hermite-Hadamard
inequalities have been studied for varied families of functions which are obtained by many authors. (e.g. [1],
[5], [6], etc.)

In this paper, we examine Hermite-Hadamard Type Inequalities for L(j)-convex functions. L(j)-convex
functions are founded upon the B-convexity concept in Rn

+ [2] (Section 3). In section 4, S(j)-convex functions
which is related to B−1−convexity concept are defined. After, for this family of functions, Hermite-Hadamard
Type Inequalities are analyzed (Section 5). Additionally, different examples about both cases are discussed and
studied.

2 L(j)-convex Functions

The sets which are given the following forms, are discussed to define the L(j)-convex functions [2]. For all
z ∈ Rn

++

N0 (z) =
{
x ∈ Rn

++ : 0 < xi ≤ zi, i = 1, n
}

Nj (z) =
{
x ∈ Rn

++ : zj ≤ xj and xizj ≤ zixj ,∀i = 1, n
}
, j = 1, n.

N0 (z) is closed, convex and radiant set, Nj (z)
(
j = 1, n

)
are closed, convex and co-radiant sets [4].

Using these sets, (n+ 1) relations are defined as follows ([2]): for x, y ∈ Rn
++

x≺0y ⇔ x ∈ N0 (y)
x≺jy ⇔ y ∈ Nj (x) , j = 1, n.
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≺j , j = 0, n are partial order relation on Rn
++ (see [4]).

We can write Minkowski functions according to Nj (y)
(
y ∈ Rn

++ , j = 0, n
)

sets and ≺j order relations.
For y ∈ Rn

++, N0 (y) is radiant set and ≺0 is coordinate-wise order relation hence Minkowski gauge is

µN0(y) (x) := inf {α > 0 : x ∈ αN0 (y)} = inf {α > 0 : x≺0αy} .

Let us show this function with l0,y , namely

l0,y (x) := µN0(y) (x) , x ∈ Rn
++.

For j = 1, n and y ∈ Rn
++, the sets Nj (y) are co-radiant, thus Minkowski co-gauges are defined by

υNj(y) (x) := sup {α : x ∈ αNj (y)} = sup
{
α : αy≺jx

}
we denote these functions with lj,y , namely

lj,y (x) := υNj(y) (x) , x ∈ Rn
++.

Remark 2.1. Let y ∈ Rn
++ and j = 1, n. Then the sets Nj (y) coincides with the intersection of the cone

Vj (y) =
{
x ∈ Rn

+ :
xi

yi
≤ xj

yj

(
i = 1, n

)}
and the half-space

Hj (y) = {x ∈ Rn : xj ≥ yj} .

Using the cone Vj (y), lj,y can be shown another form. If x ∈ Vj (y), then

lj,y (x) = sup
{
α : αy≺jx

}
= sup {α : αyj ≤ xj} =

xj

yj
.

If x /∈ Vj (y), then for all α > 0 the inequality αy≺jx does not hold therefore lj,y (x) = 0. Consequently,

lj,y (x) =

{
xj

yj
, x ∈ Vj (y)

0 , x /∈ Vj (y)
.

For j = 0, n, let us analyze the convexity with respect to the family of functions L(j) =
{
lj,y : y ∈ Rn

++

}
.

Definition 2.1. Let j = 0, n. A function f : Rn
++ → R+∞ = R ∪ {+∞} is an IPH(j) function if f is positively

homogeneous of degree one and increasing according to order relation ≺j .

Theorem 2.1. For all j = 0, n and y ∈ Rn
++, lj,y functions are IPH(j) functions.

Proof. For j = 0

l0,y (λx) = inf {α > 0 : λx ∈ αN0 (y)} = inf {α > 0 : λx≺0αy}

= inf
{
α > 0 : x≺0

α

λ
y
}

= λ inf {α′ > 0 : x≺0α
′y} = λl0,y (x) .

For j = 1, n

lj,y (λx) = sup {α : λx ∈ αNj (y)} = sup
{
α : αy≺jλx

}
= sup

{
α :

α

λ
y≺jx

}
= λ sup

{
α′ : α′y≺jx

}
= λlj,y (x) .

Namely, lj,y
(
j = 0, n

)
are positively homogeneous of degree one.

Now, let us prove that the functions lj,y
(
j = 0, n

)
are increasing. Let j = 0. If x1≺0x2, then

{α > 0 : x2≺0αy} ⊂ {α > 0 : x1≺0αy} and hence l0,y (x1) ≤ l0,y (x2). For j = 1, n, if x1≺jx2, then{
α > 0 : αy≺jx1

}
⊂
{
α > 0 : αy≺jx2

}
and thus lj,y (x1) ≤ lj,y (x2).

Following theorem can be proved using Corollary 2.6 in [2].

Theorem 2.2. The function f : Rn
++ → R+∞ is L(j)-convex function

(
j = 0, n

)
if and only if f is IPH(j) function.

Moreover, some important properties of IPH(j) functions are given, in [2].
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3 Hermite-Hadamard Type Inequalities for L(j)-convex Functions

We begin with the following theorem which has an important role in Hermite-Hadamard Type Inequalities
for L(j)-convex functions [2].

Theorem 3.3. For j = 1, n and p : Rn
++ → R+∞, the following statements are equivalent:

(i) p is an IPH(j) function.
(ii) p (x) ≥ λp (y) for all ∀x, y ∈ Rn

++ and λ > 0 such that λy≺jx.
(iii) p (x) ≥ lj,y (x) p (y) for all ∀x, y ∈ Rn

++.

We can obtain Hermite-Hadamard Type Inequalities for L(j)-convex functions as a corollary of the above
theorem.

Corollary 3.1. Let D ⊂ Rn
++, p : D → R+∞ be a L(j)-convex function and integrable function on D. Then, for all

y ∈ D, we have

p (y)
∫

D

lj,y (x) dx ≤
∫

D

p (x) dx. (3.1)

Let us investigate Hermite-Hadamard Type Inequalities via Q(D) sets given in [6].
Let D ⊂ Rn

++ be bounded and hold condition of cl (intD) = D. We denote by Q(D) the sets of all x∗ ∈ D
such that

1
A (D)

∫
D

lj,x∗ (x) dx = 1 (3.2)

where A (D) =
∫

D
dx

Theorem 3.4. Let p be L(j)-convex function defined on D and integrable on D. If Q(D) is nonempty, then one has the
inequality:

sup
x∗∈Q(D)

p (x∗) ≤ 1
A (D)

∫
D

p (x) dx (3.3)

Proof. If p (x∗) = +∞, then by using p (x) ≥ lj,y (x) p (y), it can be shown that p cannot be integrable. It
conflicts integrable of p. So p (x∗) < +∞. From Theorem 3.3 (iii), for all x ∈ D

p (x) ≥ lj,x∗ (x) p (x∗) .

Since x∗ ∈ Q (D), by (3.2)

p (x∗) = p (x∗)
1

A (D)

∫
D

lj,x∗ (x) dx

=
1

A (D)

∫
D

p (x∗) lj,x∗ (x) dx ≤ 1
A (D)

∫
D

p (x) dx.

Remark 3.2. As it is clear that, for each x∗ ∈ Q (D), inequality

p (x∗) ≤ 1
A (D)

∫
D

p (x) dx (3.4)

is hold. If we get p (x) = lj,x∗ (x), (3.4) is an equality.

Let p be a L(j)-convex function defined onD ⊂ Rn
++ and be integrable onD. For all x, y ∈ D, the inequality

p (x) ≥ lj,y (x) p (y)

is hold. Hence,
p (y) ≤ ϕj,x (y) p (x) (3.5)

where

ϕj,x (y) =
1

lj,y (x)
=

{
yj

xj
, x ∈ Vj (y)

∞, x /∈ Vj (y)
=

{
yj

xj
, y /∈ intVj (x)

∞, y ∈ intVj (x)
.

The following theorem can be proved, using the inequality (3.5).
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Theorem 3.5. Let D ⊂ Rn
++, p : D → R+∞ be an integrable, L(j)-convex function and D ∩ intVj (y) = ∅. Then, the

following inequality holds: ∫
D

p (x) dx ≤ p (y)
∫

D

ϕj,y (x) dx (3.6)

for all y ∈ D.

Examples:
On some special domains of R2

++, Hermite-Hadamard Type Inequalities for L(j)-convex functions have
been implied with concrete form.

Firstly, for D ⊂ R2
++ and every y ∈ D, let us derive computation formula of the integral

∫
D
lj,y (x) dx.

Let D ⊂ R2
++ and y = (y1, y2) ∈ D. Then, on R2

++

V1 (y) =
{
x ∈ R2

++ :
x2

y2
≤ x1

y1

}
, V2 (y) =

{
x ∈ R2

++ :
x1

y1
≤ x2

y2

}
and

l1,y (x) =

{
x1
y1
, x ∈ V1 (y)

0, x /∈ V1 (y)
, l2,y (x) =

{
x2
y2
, x ∈ V2 (y)

0, x /∈ V2 (y)
.

Let V c
j (y) (j = 1, 2) be the complement of Vj (y) (j = 1, 2). Therefore, with the above assumptions, we can

separate the region D into two regions: Dj (y) = D
⋂
Vj (y) and D \Dj (y) = D

⋂
V c

j (y). Thus, we have∫
D

lj,y (x) dx =
∫

Dj(y)

lj,y (x) dx+
∫

D\Dj(y)

lj,y (x) dx

=
∫

Dj(y)

xj

yj
dx+

∫
D\Dj(y)

0dx =
1
yj

∫
Dj(y)

xjdx.

Example 3.1. Consider the triangle D defined as

D =
{
(x1, x2) ∈ R2

++ : 0 < x1 ≤ a, 0 < x2 ≤ vx1

}
.

For y ∈ D, Dj (y) would be as follows:

D1 (y) =
{
x ∈ D : 0 < x1 ≤ a, 0 < x2 ≤

y2
y1
x1

}
D2 (y) =

{
x ∈ D : 0 < x1 ≤ a,

y2
y1
x1 < x2 ≤ vx1

}
.

For j = 1; we deduce that:∫
D

l1,y (x) dx =
1
y1

∫
D1(y)

x1dx =
1
y1

∫ a

0

∫ y2x1
y1

0

x1dx2dx1 =
y2
y2
1

a3

3
.

Hence, for the given region D, the inequality (3.1) will be as follows:

p (y1, y2) ≤
3y2

1

a3y2

∫
D

p (x1, x2) dx1dx2.

For j = 2; we have ∫
D

l2,y (x)dx =
1
y2

∫
D2(y)

x2dx =
1
y2

∫ a

0

∫ vx1

y2x1
y1

x2dx2dx1

=
1

2y2

∫ a

0

[
v2 −

(
y2
y1

)2
]
x2

1dx1 =
v2y2

1 − y2
2

2y2y2
1

a3

3
.

Then, for the same region D, the inequality (3.1) is as follows:

p (y1, y2) ≤
6y2

1y2
a3 (v2y2

1 − y2
2)

∫
D

p (x1, x2) dx1dx2.
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Let’s derive the set Q(D) for the given triangular domain D. Since A (D) = va2

2 , y∗ ∈ D is element of Q(D) if and
only if, for j = 1;

2
va2

y∗2

(y∗1)2
a3

3
= 1 ⇔ y∗2 =

3v (y∗1)2

2a

for j = 2;

2
va2

(
v2 (y∗1)2 − (y∗2)2

)
a3

6 (y∗1)2 y∗2
= 1 ⇔ y∗1 =

(
a (y∗2)2

av2 − 3y∗2v

) 1
2

.

Figure 1. In case of j = 1, the set Q(D) for triangular domain D

Example 3.2. Let the triangular region D be as follows:

D =
{

(x1, x2) ∈ R2
++ :

x1

a
+
x2

b
≤ 1
}
.

In this region, for y ∈ D, the sets Dj (y) (j = 1, 2) are as following forms:

D1 (y) =
{
x ∈ D : 0 < x2 ≤

aby2
ay2 + by1

,
y1
y2
x2 ≤ x1 ≤ a− a

b
x2

}
D2 (y) =

{
x ∈ D : 0 < x1 ≤

aby1
ay2 + by1

,
y2
y1
x1 ≤ x2 ≤ b− b

a
x1

}
.

If j = 1, then we have

∫
D

l1,y (x) dx =
1
y1

∫
D1(y)

x1dx =
1
y1

∫ aby2
ay2+by1

0

∫ a− ax2
b

y1x2
y2

x1dx1dx2

=
1

2y1

∫ aby2
ay2+by1

0

[(
a− a

b

)2

−
(
y1
y2

)2
]
x2

2dx2 =
a3by2

[
(ab− a)2 y2

2 − b2y2
1

]
6y1 (ay2 + by1)

3 .
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For j = 2; we get

∫
D

l2,y (x) dx =
1
y2

∫
D2(y)

x2dx =
1
y2

∫ aby1
ay2+by1

0

∫ b− bx1
a

y2x1
y1

x2dx2dx1

=
1

2y2

∫ aby1
ay2+by1

0

[(
b− b

a

)2

−
(
y2
y1

)2
]
x2

1dx1 =
b3ay1

[
(ba− b)2 y2

1 − a2y2
2

]
6y2 (ay2 + by1)

3 .

Thereby, in D, to j = 1; the inequality is

p (y1, y2) ≤
6y1 (ay2 + by1)

3

a3by2

[
(ab− a)2 y2

2 − b2y2
1

] ∫
D

p (x1, x2) dx1dx2

for j = 2; the inequality (3.1) is

p (y1, y2) ≤
6y2 (ay2 + by1)

3

b3ay1

[
(ba− b)2 y2

1 − a2y2
2

] ∫
D

p (x1, x2) dx1dx2.

Let us construct Q(D) for the given region D. Since A (D) = ab
2 , if we get j = 1, then we obtain

y∗ ∈ Q (D) ⇔
a2y∗2

[
(ab− a)2 (y∗2)2 − b2 (y∗1)2

]
3y∗1 (ay∗2 + by∗1)3

= 1

also, if we get j = 2, then we have

y∗ ∈ Q (D) ⇔
b2y∗1

[
(ba− b)2 (y∗1)2 − a2 (y∗2)2

]
3y∗2 (ay∗2 + by∗1)3

= 1.

Example 3.3. Now, let us get a rectangular region D which is defined as follows:

D =
{
(x1, x2) ∈ R2

++ : x1 ≤ a , x2 ≤ b
}
.

In this type region, it can be two cases: For y ∈ D
1) y2

y1
≤ b

a

2) y2
y1
≥ b

a

1) Let y2
y1
≤ b

a . Under this condition, the sets Dj (y) will be:

D1 (y) =
{
x ∈ D : 0 < x1 ≤ a, 0 < x2 ≤ y2

y1
x1

}
D2 (y) =

{
x ∈ D : 0 < x1 ≤ a, y2

y1
x1 < x2 ≤ b

}
.

Hence, for j = 1; we have∫
D

l1,y (x) dx =
∫

D1(y)

l1,y (x) dx =
1
y1

∫
D1(y)

x1dx

=
1
y1

∫ a

0

∫ y2x1
y1

0

x1dx2dx1 =
1
y1

∫ a

0

(
y2
y1

)
x2

1dx1 =
a3y2
3y2

1

for j = 2; we obtain ∫
D

l2,y (x) dx =
1
y2

∫
D2(y)

x2dx =
1
y2

∫ a

0

∫ b

y2x1
y1

x2dx2dx1

=
1

2y2

∫ a

0

[
b2 −

(
y2
y1

)2

x2
1

]
dx1 =

3y2
1b

2a− y2
2a

3

6y2
1y2

.
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By taking into account these, (3.1) becomes following inequalities: for j = 1;

p (y1, y2) ≤
3y2

1

a3y2

∫
D

p (x1, x2) dx1dx2

for j = 2;

p (y1, y2) ≤
6y2

1y2
3y2

1b
2a− y2

2a
3

∫
D

p (x1, x2) dx1dx2.

Let us derive the set Q(D). Since A (D) = ab, then while j = 1;

y∗ ∈ Q (D) ⇔ y∗2 =
3b (y∗1)2

a2

while j = 2;

y∗ ∈ Q (D) ⇔ y∗1 =

(
(y∗2)2 a4b

3b3a2 − 6y∗2

) 1
2

.

2) Now, let us consider the second case. Namely, let y2
y1
≥ b

a . Therefore, we have that

D1 (y) =
{
x ∈ D : y1

y2
x2 ≤ x1 ≤ a, 0 < x2 ≤ b

}
D2 (y) =

{
x ∈ D : 0 < x1 ≤ y1

y2
x2, 0 < x2 ≤ b

}
.

To j = 1; we have ∫
D

l1,y (x) dx =
1
y1

∫
D1(y)

x1dx =
1
y1

∫ b

0

∫ a

y1x2
y2

x1dx1dx2

=
1

2y1

∫ b

0

(
a2 −

(
y1
y2

)2

x2
2

)
dx2 =

3y2
2a

2b− b3y2
1

6y1y2
2

.

Thereby, in this case, the inequality (3.1) is

p (y1, y2) ≤
6y1y2

2

3y2
2a

2b− b3y2
1

∫
D

p (x1, x2) dx1dx2.

In case j = 2, we get ∫
D

l2,y (x) dx =
∫

D2(y)

l2,y (x) dx =
1
y2

∫
D2(y)

x2dx

=
1
y2

∫ b

0

∫ y1x2
y2

0

x2dx1dx2 =
1
y2

∫ b

0

y1
y2
x2

2dx2 =
b3y1
3y2

2

.

Thus, the inequality (3.1) will be as follows:

p (y1, y2) ≤
3y2

2

b3y1

∫
D

p (x1, x2) dx1dx2.

By taking into account both cases, Q(D) becomes as follows: for j = 1;

Q (D) =

{
y∗ ∈ D :

y∗2
y∗1
≤ b

a
, y∗2 =

3b (y∗1)2

a2

}⋃
y∗ ∈ D :

y∗2
y∗1
≥ b

a
, y∗2 =

(
b2 (y∗1)2

3a2 − 6y∗1a

) 1
2


for j = 2;

Q (D) =

y∗ ∈ D :
y∗2
y∗1
≤ b

a
, y∗1 =

(
(y∗2)2 a4b

3b3a2 − 6y∗2

) 1
2

⋃{
y∗ ∈ D :

y∗2
y∗1
≥ b

a
, y∗1 =

3a (y∗2)2

b2

}
.
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Example 3.4. We shall now consider the case where the set D is part of the disk defined as

D =
{
(x1, x2) ∈ R2

++ : x2
1 + x2

2 ≤ r2
}
.

For y ∈ D, the set D1 (y) is combination of

D∗
1 (y) =

{
x ∈ D : 0 < x1 ≤

ry1√
y2
1 + y2

2

, 0 < x2 ≤
y2
y1
x1

}

and

D∗∗
1 (y) =

{
x ∈ D :

ry1√
y2
1 + y2

2

≤ x1 ≤ r , 0 < x2 ≤
√
r2 − x2

1

}
.

Namely, D1 (y) = D∗
1 (y)

⋃
D∗∗

1 (y). The set D2 (y) will be as follows:

D2 (y) =

{
x ∈ D : 0 < x1 ≤

ry1√
y2
1 + y2

2

,
y2
y1
x1 ≤ x2 ≤

√
r2 − x2

1

}
.

To j = 1; we have∫
D

l1,y (x) dx =
1
y1

∫
D1(y)

x1dx =
1
y1

∫
D∗

1 (y)

x1dx+
1
y1

∫
D∗∗

1 (y)

x1dx

=
1
y1

∫ ry1√
y2
1+y2

2

0

∫ y2
y1

x1

0

x1dx2dx1 +
1
y1

∫ r

ry1√
y2
1+y2

2

∫ √r2−x2
1

0

x1dx2dx1

=
1
y1

∫ ry1√
y2
1+y2

2

0

(
y2
y1
x2

1

)
dx1 +

1
y1

∫ r

ry1√
y2
1+y2

2

x1

√
r2 − x2

1dx1 =
r3y2

3y1
√
y2
1 + y2

2

.

In this case, for the given region D, the inequality (3.1) will be following form:

p (y1, y2) ≤
3y1
√
y2
1 + y2

2

r3y2

∫
D

p (x1, x2) dx1dx2.

To j = 2; we obtain that∫
D

l2,y (x) dx =
1
y2

∫
D2(y)

x2dx =
1
y2

∫ ry1√
y2
1+y2

2

0

∫ √r2−x2
1

y2
y1

x1

x2dx2dx1

=
1

2y2

∫ ry1√
y2
1+y2

2

0

(
r2 −

(
1 +

y2
2

y2
1

)
x2

1

)
dx1 =

r3y1

3y2
√
y2
1 + y2

2

and by using the equality above, the inequality (3.1) will be as follows:

p (y1, y2) ≤
3y2
√
y2
1 + y2

2

r3y1

∫
D

p (x1, x2) dx1dx2.

Since A (D) = πr2

4 , let us give the conditions for becoming elements of the set Q(D). For j = 1; we have

y∗ ∈ Q (D) ⇔ 4r (y∗2)2

3π (y∗1)2
(
(y∗1)2 + (y∗2)2

) 1
2

= 1.

For j = 2; we get

y∗ ∈ Q (D) ⇔ 4r (y∗1)2

3π (y∗2)2
(
(y∗1)2 + (y∗2)2

) 1
2

= 1.

Remark 3.3. From Theorem 3.5, the right hand side of Hermite-Hadamard Inequalities can be also analyzed for concrete
domains. But, in this case, D ∩ intVj (y) = ∅ is required because of integrability of the function ϕj,y on D.
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Example 3.5. As in the Example 3.1, we discuss the triangle

D =
{
(x1, x2) ∈ R2

++ : 0 < x1 ≤ a, 0 < x2 ≤ vx1

}
.

If j = 1, then D ∩ intV1 (y) 6= ∅ for ∀y ∈ R2
++. Thus, from Theorem 3.5, the right hand side of Hermite-Hadamard

Inequalities for L(1)-convex functions is not obtained.
Let j = 2. It is obvious that D ∩ intV2 (y) = ∅ ⇔ y2 ≥ vy1. From Theorem 3.5, we have∫

D

p (x1, x2) dx1dx2 ≤ p (y1, y2)
∫

D

x2

y2
dx1dx2.

Since ∫
D

x2

y2
dx1dx2 =

1
y2

∫ a

0

∫ vx1

0

x2dx2dx1 =
v2

2y2

∫ a

0

x2
1dx1 =

a3v2

6y2
.

for all y ∈ D which satisfy the condition y2 ≥ vy1 (namely, y on the long side of the triangle) and all p that are
L(2)-convex, integrable on D, the inequality∫

D

p (x1, x2) dx1dx2 ≤
v2a3

6y2
p (y1, y2)

is hold, or since A(D) is area of triangular domain, we obtain the inequality

1
A(D)

∫
D

p (x1, x2) dx1dx2 ≤
va

3y2
p (y1, y2) .

4 S(j)-convex Functions

Firstly, let us recall the definition of B−1−convex set [3]:

Definition 4.2. A subset M of Rn
++ is B−1−convex if for all x1, x2 ∈M and all t ∈ [1,∞) one has tx1 ∧ x2 ∈M .

Here, ∧ is the greatest lower bound of x1, x2, that is,

x1 ∧ x2 = (min {x1,1, x2,1} , ...,min {x1,n, x2,n}) .

For every z ∈ Rn
++, Rn

++ can be written as the combination of (n + 1)-parts which are given with the
following forms:

M0 (z) =
{
x ∈ Rn

++ : zi ≤ xi, i = 1, n
}

Mj (z) =
{
x ∈ Rn

++ : xj ≤ zj and xjzi ≤ zjxi,∀i = 1, n
}
.

The sets Mj (z)
(
j = 0, n

)
are closed and convex sets. The following theorem gives construction of the sets

Mj (z)
(
j = 0, n

)
.

Theorem 4.6. M0 (z) is co-radiant, B−1−convex set and Mj (z)
(
j = 1, n

)
are radiant, B−1−convex sets.

Proof. Let us show that M0 (z) is co-radiant, namely x ∈ M0 (z) , λ ≥ 1 ⇒ λx ∈ M0 (z). Since x ∈ M0 (z),
then zi ≤ xi

(
i = 1, n

)
. λ ≥ 1, so zi ≤ xi ≤ λxi

(
i = 1, n

)
. Consequently, we have λx ∈M0 (z).

Now, let us prove that M0 (z) is B−1−convex. Let x, y ∈ M0 (z), t ∈ [1,∞). Hence, for ∀i = 1, n, we have
zi ≤ xi and zi ≤ yi. By using these inequalities; since zi ≤ xi ≤ txi and zi ≤ yi, we obtain zi ≤ txi∧yi, i = 1, n.
We have shown that tx ∧ y ∈M0 (z).

And now, we have to see thatMj (z)
(
j = 1, n

)
are radiant. Let x ∈Mj (z) and 0 < λ ≤ 1. Since x ∈Mj (z),

we have xj ≤ zj and xjzi ≤ zjxi, i = 1, n. 0 < λ ≤ 1 so that λxj ≤ xj ≤ zj then λxj ≤ zj . Also, λ > 0, hence
we can derive λxjzi ≤ zjλxi, i = 1, n. By taking into account both cases, λx ∈Mj (z).

Finally, let us show that Mj (z) are B−1−convex. Let x, y ∈Mj (z), t ∈ [1,∞).

x ∈Mj (z) ⇔ xj ≤ zj and xjzi ≤ zjxi, i = 1, n
y ∈Mj (z) ⇔ yj ≤ zj and yjzi ≤ zjyi, i = 1, n.

There are two possible cases: for t ∈ [1,∞)
I) it can be txj ≤ zj . In this case, from yj ≤ zj , we obtain txj ∧ yj ≤ zj .
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II) let txj > zj . Again, since yj ≤ zj , we have txj ∧ yj ≤ zj . Hence, we deduce that txj ∧ yj ≤ zj .
In second part, for z ∈ Rn

++

(txj ∧ yj) zi = txjzi ∧ yjzi ≤ txizj ∧ yizj = (txi ∧ yi) zj .

Thus, we have shown that tx ∧ y ∈Mj (z).

The (n+ 1)-relations according to Mj (z)
(
j = 0, n

)
can be given by

x 40 y ⇔ y ∈M0 (x)
x 4j y ⇔ x ∈Mj (y) , j = 1, n.

Let us see that 4j ,
(
j = 0, n

)
are partial order relations.

Theorem 4.7. 4j ,
(
j = 0, n

)
are partial order relations.

Proof. Let j = 0. 40 is coordinate-wise order relation, namely,

x 40 y ⇔ y − x ∈ Rn
++.

So that 40 is a partial order relation.
Let j = 1, n.
Firstly, we show that 4j

(
j = 1, n

)
are reflexivity. For all x ∈ Rn

++ and all j = 1, n, then xj ≤ xj . Also, for
all i = 1, n, we have xjxi ≤ xjxi. Consequently, x 4j x.

Let us show that 4j

(
j = 1, n

)
are antisymmetric: Let x, z ∈ Rn

++, x 4j z and z 4j x. We deduce that

x 4j z ⇔ xj ≤ zj and xjzi ≤ zjxi , i = 1, n
z 4j x ⇔ zj ≤ xj and zjxi ≤ xjzi , i = 1, n.

From the first part, for j = 1, n, we get xj = zj .
By using this equality and the second part, for all i = 1, n, since

xjzi ≤ zjxi ⇒ zi ≤ xi

zjxi ≤ xjzi ⇒ xi ≤ zi

thus, it is xi = zi.
Accordingly, we obtain x = z.
Now, we have to prove that 4j

(
j = 1, n

)
are transitive. Let x, y, z ∈ Rn

++ x 4j y and y 4j z. Hence, we
have that

x 4j y ⇔ xj ≤ yj and xjyi ≤ yjxi , i = 1, n
y 4j z ⇔ yj ≤ zj and yjzi ≤ zjyi , i = 1, n.

Since xj ≤ yj ≤ zj , then we obtain
xj ≤ zj . (4.7)

Taking into account that the above inequalities hold, we have that

xjyi ≤ yjxi ⇒ xjyi (yjzi) ≤ yjxi (yjzi) ≤ yjxi (zjyi)

xjzi (yiyj) ≤ xizj (yjyi)

xjzi ≤ zjxi. (4.8)

From (4.7) and (4.8), we have x 4j z. The theorem is proved.

Now, we can write Minkowski functions according to Mj (z)
(
z ∈ Rn

++, j = 0, n
)

sets and 4j partial order
relations. For z ∈ Rn

++, since that M0 (z) is co-radiant;

υM0(z) (x) := sup {α : x ∈ αM0 (z)} = sup {α : αz 40 x}

then, we denote this function with s0,z ,

s0,z (x) := υM0(z) (x) , x ∈ Rn
++.
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For z ∈ Rn
++ and j = 1, n; by taking into account that Mj (z) are radiant sets; Minkowski gauge of Mj (z) are

µMj(z) (x) := inf {α > 0 : x ∈ αMj (z)} = inf {α > 0 : x 4j αz} .

Let us denote this function with the following notation

sj,z (x) := µMj(z) (x) , x ∈ Rn
++.

The sets Mj (z)
(
j = 1, n, z ∈ Rn

++

)
can be written as the intersection of the cone

Uj (z) =
{
x ∈ Rn

++ :
xj

zj
≤ xi

zi
i = 1, n

}
and the half-space

Hj (z) = {x ∈ Rn : xj ≤ zj} .

The functions sj,z can be denoted the following form, if we use the cone Uj (z).

sj,z (x) =

{
xj

zj
, x ∈ Uj (z)

∞ , x /∈ Uj (z).
(4.9)

Let us analyze convexity with respect to the family of functions S(j) = {sj,z : z ∈ Rn
++}, j = 0, n.

Definition 4.3. Let j = 0, n. A function f : Rn
++ → R+∞ is an IPH[j] function if f is positively homogeneous of

degree one and increasing according to order relation 4j .

Theorem 4.8. ∀j = 0, n and ∀z ∈ Rn
++, sj,z are IPH[j] functions.

Proof. Let us show that sj,z are positively homogeneous of degree one.
For j = 0, we have that

s0,z (λx) = sup {α : λx ∈ αM0 (z)} = sup {α : αz 40 λx}
= sup

{
α : αzi ≤ λxi, i = 1, n

}
= sup

{
λα′ : α′zi ≤ xi, i = 1, n

}
= λ sup {α′ : α′z 40 x} = λs0,z (x) .

For j = 1, n, we get

sj,z (λx) = inf {α > 0 : λx ∈ αMj (z)} = inf {α > 0 : λx 4j αz}
= λ inf {α′ > 0 : x 4j α

′z} = λsj,z (x) .

Let us prove that sj,z are increasing according to 4j

(
j = 0, n

)
.

Let j = 0 and x1 40 x2. Then, we have {α : αz 40 x1} ⊂ {α : αz 40 x2}. From properties of supremum,
we obtain that s0,z (x1) ≤ s0,z (x2).

Let j = 1, n and x1 4j x2. Hence, we have {α > 0 : x2 4j αz} ⊂ {α > 0 : x1 4j αz}. Consequently, we
obtain sj,z (x1) ≤ sj,z (x2).

Now, let us give the following theorem which can be easily proved via Corollary 2.6 in [2].

Theorem 4.9. For j = 0, n, f : Rn
++ → R+∞ is S(j)-convex function if and only if f is IPH[j] function.

The following theorem implies some properties of IPH[j] functions.

Theorem 4.10. Let j = 1, n and f : Rn
++ → R+∞ be an IPH[j] function. Then following statements are hold:

(i) f (x) ≥ 0 for all x ∈ Rn
++.

(ii) If f (x∗) = +∞ where x∗ ∈ Rn
++ then f (x) = +∞ on the set{

x ∈ Rn
++ : ∃λ > 0 such that λx∗ 4j x

}
.

(iii) If f (x∗) = 0 where x∗ ∈ Rn
++ then for all x ∈

{
x ∈ Rn

++ : ∃λ > 0 , x 4j λx
∗}, f (x) = 0.

Proof. (i) Let x ∈ Rn
++. Because 1

2x 4j x, we have 1
2f (x) = f

(
x
2

)
≤ f (x). Therefore f (x) ≥ 0.

(ii) Let x ∈ Rn
++ be a point such that there exists λ > 0 with the property λx∗ 4j x. Then f (x) ≥ f (λx∗) =

λf (x∗) = +∞.
(iii) Let x ∈ Rn

++ and let there be λ > 0 such that x 4j λx
∗. Thus, we have that 0 ≤ f (x) ≤ f (λx∗) =

λf (x∗) = 0.
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5 Hermite-Hadamard Type Inequalities for S(j)-convex Functions

Let us prove the following theorem which has an important role in Hermite-Hadamard Type Inequalities for
S(j)-convex functions.

Theorem 5.11. For j = 1, n and p : Rn
++ → R+∞, the following statements are equivalent:

(i) p is an IPH[j] function.
(ii) For all x, z ∈ Rn

++ and λ > 0 such that x 4j λz, we have p (x) ≤ λp (z).
(iii) For all x, z ∈ Rn

++, we have p (x) ≤ sj,z (x) p (z).

Proof. i⇒ ii) Since p is an IPH[j] function, for all λ > 0, we get x 4j λz. Hence p (x) ≤ p (λz) = λp (z).
ii⇒ i) The monotonicity of p follows from (ii) with λ = 1. We now show that p is positively homogeneous.

Let x = λz with λ > 0. Then by (ii), we have p (x) = p (λz) ≤ λp (z). Because z = λ−1x, we conclude that
p (z) ≤ λ−1p (x). Thus p (λz) = λp (z).

ii ⇒ iii) If p (z) = 0, we have 0 ≤ p (x) ≤ sj,z (x) p (z) = 0 for all x. Let p (z) > 0 and λ > 0 be a
number such that x 4j λz. Applying (ii), we conclude that p(x)

p(z) ≤ λ. It follows from the definition of sj,z that

sj,z (x) = inf {λ > 0 : x 4j λz}, therefore p(x)
p(z) ≤ sj,z (x).

iii⇒ ii) follows directly from the definition of sj,z .

If we use the above theorem, then we can deduce the Hermite-Hadamard Type Inequalities for S(j)-convex
functions.

Corollary 5.2. Let p : D → R+∞, D ⊂ Rn
++ be a S(j)-convex function and integrable function onD whereD ⊂ Uj(z).

Then, for all z ∈ D, the following inequality holds:∫
D

p (x) dx ≤ p (z)
∫

D

sj,z (x) dx. (5.10)

Proof. It is proven from Theorem 5.11 (iii) and (4.9).

Let’s analyze the inequality (5.10) via sets Q(D).
Let D ⊂ Rn

++ be bounded and satisfy condition cl (intD) = D. Q(D) consist of all point x∗ ∈ D such that

1
A (D)

∫
D

sj,x∗ (x) dx = 1,

here A (D) =
∫

D
dx.

We can give a theorem about the set Q(D) and Hermite-Hadamard Type Inequalities of S(j)-convex
functions.

Theorem 5.12. Let p be a S(j)-convex function defined and integrable on D. If Q(D) 6= ∅, then one has the inequality:

1
A (D)

∫
D

p (x) dx ≤ inf
x∗∈Q(D)

p (x∗)

Proof. If p (x∗) = 0, from p (x) ≤ sj,x∗ (x) p (x∗) we have p (x) = 0. Thus, let p (x∗) > 0. For all x ∈ D,

p (x) ≤ sj,x∗ (x) p (x∗)

is hold. Because x∗ ∈ Q (D), we have

p (x∗) = p (x∗)
1

A (D)

∫
D

sj,x∗ (x) dx

=
1

A (D)

∫
D

p (x∗) sj,x∗ (x) dx ≥ 1
A (D)

∫
D

p (x) dx.
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For every x∗ ∈ Q (D), the inequality

1
A (D)

∫
D

p (x) dx ≤ p (x∗) (5.11)

is hold. If we take p (x) = sj,x∗ (x), the inequality (5.11) will be turn equality.
Let p be a S(j)-convex function defined and integrable on D which is closed, bounded and connected set.

For all x, z ∈ D, we have
p (x) ≤ sj,z (x) p (z) .

Hence, below inequality is obtained:
p (x)ψj,x (z) ≤ p (z)

where

ψj,x (z) =
1

sj,z (x)
=

{
zj

xj
, x ∈ Uj (z)

0, x /∈ Uj (z)
=

{
zj

xj
, z /∈ intUj (x)

0, z ∈ intUj (x)
(5.12)

In this case, we can write second part of the Hermite-Hadamard Type Inequality for S(j)-convex functions.

Theorem 5.13. Let D ⊂ Rn
++, p : D → R+∞ be S(j)-convex and integrable on D. Then, for all z ∈ D, we have the

inequality:

p (z)
∫

D

ψj,z (x) dx ≤
∫

D

p (x) dx (5.13)

Examples:
On the same domains in previous section, Hermite-Hadamard Inequalities for S(j)-convex functions can

be also considered. For example, let us discuss triangular domain in Example 3.1.

Example 5.6. Let
D =

{
(x1, x2) ∈ R2

++ : 0 < x1 ≤ a, 0 < x2 ≤ vx1

}
.

D ⊂ Uj(z) is necessary in order to the inequality (5.10) can be written on this region.
When j = 1, for all z ∈ R2

++ it is D 6⊂ U1(z). Hence, from Corollary 5.2, for S(1)-convex functions, the right part
of Hermite-Hadamard Inequalities can not computed on this domain.

Let j = 2. This is obvious that D ⊂ U2(z) ⇔ z2 ≥ vz1. From (5.10), we obtain∫
D

p (x1, x2) dx1dx2 ≤ p (z1, z2)
∫

D

x2

z2
dx1dx2.

When the right integral is calculated, for all z ∈ D satisfying the condition z2 ≥ vz1 (thus, z is on the hypotenuse of the
triangle) and for all p that is S(2)-convex, integrable on D, we have

1
A (D)

∫
D

p (x1, x2) dx1dx2 ≤
va

3z2
p (z1, z2)

where A(D) is area of the triangular domain.
For the same domain, if we apply the Theorem 5.13, then we can estimate the left part of Hermite-Hadamard

Inequality.
Let j = 1. From (5.13), we have

p (z1, z2)
∫

D

ψ1,z (x1, x2) dx1dx2 ≤
∫

D

p (x1, x2) dx1dx2

and from (5.12), we obtain ∫
D

ψ1,z (x1, x2) dx1dx2 =
a3z2
3z2

1

.

Thereby, the inequality is

p (z1, z2)
a3z2
3z2

1

≤
∫

D

p (x1, x2) dx1dx2.

Let j = 2. The left part of the Hermite-Hadamard Inequality is

p (z1, z2)
∫

D

ψ2,z (x1, x2) dx1dx2 ≤
∫

D

p (x1, x2) dx1dx2.
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Since, with a simple calculation, we obtain∫
D

ψ2,z (x1, x2) dx1dx2 =
a3
(
z2
1v

2 − z2
2

)
6z2

1z2

and from above inequality, we have

p (z1, z2)
a3
(
z2
1v

2 − z2
2

)
6z2

1z2
≤
∫

D

p (x1, x2) dx1dx2.
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