Malaya \mathcal{M} $\mathcal{I}\mathcal{M}$ Journal of an international journal of mathematical sciences with Matematik computer applications...

Hermite-Hadamard Inequalities for L(j)-convex Functions and S(j)-convex Functions

Ilknur Yesilce^{a,∗} and Gabil Adilov^b

^a*Department of Mathematics, Faculty of Science and Letters, Mersin University, Ciftlikkoy Campus, 33343, Mersin, Turkey.* ^b*Department of Mathematics, Faculty of Education, Akdeniz University, Dumlupinar Boulevard 07058, Campus, Antalya, Turkey.*

Abstract

In this article, Hermite-Hadamard Inequalities for L(j)-convex functions are analyzed. S(j)-convex functions which is founded upon \mathbb{B}^{-1} -convexity concept, are defined and for this functions, Hermite-Hadamard Inequalities are investigated. On some special domains, concrete form of inequalities are denoted.

Keywords: Hermite-Hadamard inequalities, L(j)-convex functions, S(j)-convex functions, abstract convexity.

2010 *MSC:* 26B25, 26D15, 26D07, 52A40, 52A20. (2012 MJM. All rights reserved.

1 Introduction

Integral inequalities have played an important role in the development of all branches of mathematics. Also, Hermite-Hadamard inequalities are one of the integral inequalities. Recently, Hermite-Hadamard inequalities and their applications have attracted considerable interest. Hence the Hermite-Hadamard inequalities have been studied for varied families of functions which are obtained by many authors. (e.g. [\[1\]](#page-13-0), [\[5\]](#page-13-1), [\[6\]](#page-13-2), etc.)

In this paper, we examine Hermite-Hadamard Type Inequalities for L(j)-convex functions. L(j)-convex functions are founded upon the $\mathbb B$ -convexity concept in $\mathbb R^n_+$ [\[2\]](#page-13-3) (Section 3). In section 4, S(j)-convex functions which is related to $\mathbb{B}^{-1}-$ convexity concept are defined. After, for this family of functions, Hermite-Hadamard Type Inequalities are analyzed (Section 5). Additionally, different examples about both cases are discussed and studied.

2 L(j)-convex Functions

The sets which are given the following forms, are discussed to define the L(j)-convex functions [\[2\]](#page-13-3). For all $z \in \mathbb{R}_{++}^n$

$$
N_0(z) = \left\{ x \in \mathbb{R}_{++}^n : 0 < x_i \le z_i, \quad i = \overline{1,n} \right\}
$$
\n
$$
N_j(z) = \left\{ x \in \mathbb{R}_{++}^n : z_j \le x_j \quad \text{and} \quad x_i z_j \le z_i x_j, \forall i = \overline{1,n} \right\}, j = \overline{1,n}.
$$

 $N_0\left(z\right)$ is closed, convex and radiant set, $N_j\left(z\right)\left(j=\overline{1,n}\right)$ are closed, convex and co-radiant sets [\[4\]](#page-13-4). Using these sets, $(n + 1)$ relations are defined as follows ([\[2\]](#page-13-3)): for $x, y \in \mathbb{R}_{++}^n$

$$
x \preceq_0 y \Leftrightarrow x \in N_0(y)
$$

$$
x \preceq_j y \Leftrightarrow y \in N_j(x), \qquad j = \overline{1, n}.
$$

[∗]Corresponding author.

E-mail address: ilknuryesilce@gmail.com (Ilknur Yesilce), gabiladilov@gmail.com(Gabil Adilov).

 $\preceq_j, j = \overline{0, n}$ are partial order relation on \mathbb{R}^n_{++} (see [\[4\]](#page-13-4)).

We can write Minkowski functions according to $N_j(y)$ $(y \in \mathbb{R}^n_{++}, \, j = \overline{0,n})$ sets and \preceq_j order relations. For $y\in \R^n_{++}$, $N_0(y)$ is radiant set and \preceq_0 is coordinate-wise order relation hence Minkowski gauge is

 $\mu_{N_0(y)}(x) := \inf \{ \alpha > 0 : x \in \alpha N_0(y) \} = \inf \{ \alpha > 0 : x \leq_0 \alpha y \}.$

Let us show this function with $l_{0,y}$, namely

$$
l_{0,y}(x) := \mu_{N_0(y)}(x) , \qquad x \in \mathbb{R}_{++}^n.
$$

For $j=\overline{1,n}$ and $y\in \mathbb{R}^n_{++}$, the sets N_j (y) are co-radiant, thus Minkowski co-gauges are defined by

$$
v_{N_j(y)}(x) := \sup \{ \alpha : x \in \alpha N_j(y) \} = \sup \{ \alpha : \alpha y \leq_j x \}
$$

we denote these functions with $l_{j,y}$, namely

$$
l_{j,y}(x) := v_{N_j(y)}(x)
$$
, $x \in \mathbb{R}_{++}^n$.

Remark 2.1. Let $y \in \mathbb{R}_{++}^n$ and $j = \overline{1,n}$. Then the sets $N_j(y)$ coincides with the intersection of the cone

$$
V_j(y) = \left\{ x \in \mathbb{R}_+^n : \frac{x_i}{y_i} \le \frac{x_j}{y_j} \quad (i = \overline{1, n}) \right\}
$$

and the half-space

$$
H_j(y) = \{x \in \mathbb{R}^n : x_j \ge y_j\}.
$$

Using the cone $V_j(y)$, $l_{j,y}$ can be shown another form. If $x \in V_j(y)$, then

$$
l_{j,y}(x) = \sup \left\{ \alpha : \alpha y \preceq_j x \right\} = \sup \left\{ \alpha : \alpha y_j \leq x_j \right\} = \frac{x_j}{y_j}.
$$

If $x \notin V_j(y)$, then for all $\alpha > 0$ the inequality $\alpha y \preceq_j x$ does not hold therefore $l_{j,y}(x) = 0$. Consequently,

$$
l_{j,y}\left(x\right) = \begin{cases} \frac{x_j}{y_j}, & x \in V_j\left(y\right) \\ 0, & x \notin V_j\left(y\right) \end{cases}
$$

.

For $j = \overline{0,n}$, let us analyze the convexity with respect to the family of functions $L(j) = \{l_{j,y} : y \in \mathbb{R}_{++}^n\}$.

Definition 2.1. Let $j = \overline{0,n}$. A function $f : \mathbb{R}_{++}^n \to \mathbb{R}_{+\infty} = \mathbb{R} \cup \{+\infty\}$ is an IPH(j) function if f is positively homogeneous of degree one and increasing according to order relation \preceq_j .

Theorem 2.1. *For all* $j = \overline{0,n}$ *and* $y \in \mathbb{R}_{++}^n$, $l_{j,y}$ *functions are IPH(j) functions.*

Proof. For $j = 0$

$$
l_{0,y}(\lambda x) = \inf \{ \alpha > 0 : \lambda x \in \alpha N_0(y) \} = \inf \{ \alpha > 0 : \lambda x \preceq_0 \alpha y \}
$$

=
$$
\inf \left\{ \alpha > 0 : x \preceq_0 \frac{\alpha}{\lambda} y \right\} = \lambda \inf \{ \alpha' > 0 : x \preceq_0 \alpha' y \} = \lambda l_{0,y}(x).
$$

For $j = \overline{1, n}$

$$
l_{j,y} (\lambda x) = \sup \{ \alpha : \lambda x \in \alpha N_j (y) \} = \sup \{ \alpha : \alpha y \preceq_j \lambda x \}
$$

=
$$
\sup \{ \alpha : \frac{\alpha}{\lambda} y \preceq_j x \} = \lambda \sup \{ \alpha' : \alpha' y \preceq_j x \} = \lambda l_{j,y} (x).
$$

Namely, $l_{j,y}$ $(j = \overline{0,n})$ are positively homogeneous of degree one.

Now, let us prove that the functions $l_{j,y}$ $(j = \overline{0,n})$ are increasing. Let $j = 0$. If $x_1 \preceq_0 x_2$, then $\{\alpha > 0 : x_2 \leq_0 \alpha y\}$ $\subset \{\alpha > 0 : x_1 \leq_0 \alpha y\}$ and hence $l_{0,y}(x_1) \leq l_{0,y}(x_2)$. For $j = \overline{1,n}$, if $x_1 \preceq_j x_2$, then $\left\{\alpha>0:\alpha y_{\leq j}x_1\right\}\subset\left\{\alpha>0:\alpha y_{\leq j}x_2\right\}$ and thus $l_{j,y}\left(x_1\right)\leq l_{j,y}\left(x_2\right)$. \Box

Following theorem can be proved using Corollary 2.6 in [\[2\]](#page-13-3).

Theorem 2.2. The function $f : \mathbb{R}_{++}^n \to \mathbb{R}_{+\infty}$ is $L(j)$ -convex function $(j = \overline{0,n})$ if and only if f is IPH(j) function.

Moreover, some important properties of IPH(j) functions are given, in [\[2\]](#page-13-3).

3 Hermite-Hadamard Type Inequalities for L(j)-convex Functions

We begin with the following theorem which has an important role in Hermite-Hadamard Type Inequalities for L(j)-convex functions [\[2\]](#page-13-3).

Theorem 3.3. For $j = \overline{1,n}$ and $p : \mathbb{R}^n_{++} \to \mathbb{R}_{+\infty}$, the following statements are equivalent:

(i) p is an IPH(j) function. (*ii*) $p(x) \ge \lambda p(y)$ for all $\forall x, y \in \mathbb{R}_{++}^n$ and $\lambda > 0$ such that $\lambda y \preceq_j x$. (*iii*) $p(x) \ge l_{j,y}(x) p(y)$ *for all* $\forall x, y \in \mathbb{R}_{++}^n$.

We can obtain Hermite-Hadamard Type Inequalities for L(j)-convex functions as a corollary of the above theorem.

Corollary 3.1. Let $D \subset \mathbb{R}_{++}^n$, $p: D \to \mathbb{R}_{+\infty}$ be a L(j)-convex function and integrable function on D. Then, for all y ∈ D*, we have*

$$
p\left(y\right)\int_{D}l_{j,y}\left(x\right)dx \le \int_{D}p\left(x\right)dx. \tag{3.1}
$$

Let us investigate Hermite-Hadamard Type Inequalities via $Q(D)$ sets given in [\[6\]](#page-13-2).

Let $D \subset \mathbb{R}_{++}^n$ be bounded and hold condition of cl $(intD) = D$. We denote by $Q(D)$ the sets of all $x^* \in D$ such that

$$
\frac{1}{A(D)} \int_{D} l_{j,x^*}(x) dx = 1
$$
\n(3.2)

where $A(D) = \int_D dx$

Theorem 3.4. *Let* p *be L(j)-convex function defined on* D *and integrable on* D*. If* Q(D) *is nonempty, then one has the inequality:*

$$
\sup_{x^* \in Q(D)} p(x^*) \le \frac{1}{A(D)} \int_D p(x) dx \tag{3.3}
$$

Proof. If $p(x^*) = +\infty$, then by using $p(x) \geq l_{j,y}(x)p(y)$, it can be shown that p cannot be integrable. It conflicts integrable of p. So $p(x^*) < +\infty$. From Theorem [3.3](#page-2-0) (iii), for all $x \in D$

$$
p(x) \geq l_{j,x^*}(x) p(x^*).
$$

Since $x^* \in Q(D)$, by [\(3.2\)](#page-2-1)

$$
p(x^*) = p(x^*) \frac{1}{A(D)} \int_D l_{j,x^*}(x) dx
$$

=
$$
\frac{1}{A(D)} \int_D p(x^*) l_{j,x^*}(x) dx \le \frac{1}{A(D)} \int_D p(x) dx.
$$

 \Box

Remark 3.2. As it is clear that, for each $x^* \in Q(D)$, inequality

$$
p(x^*) \le \frac{1}{A(D)} \int_D p(x) dx \tag{3.4}
$$

is hold. If we get $p(x) = l_{i,x^*}(x)$, [\(3.4\)](#page-2-2) *is an equality.*

Let p be a L(j)-convex function defined on $D \subset \mathbb{R}_{++}^n$ and be integrable on D. For all $x, y \in D$, the inequality

 $p(x) \geq l_{i,y}(x) p(y)$

is hold. Hence,

$$
p(y) \le \varphi_{j,x}(y) \, p(x) \tag{3.5}
$$

where

$$
\varphi_{j,x}(y) = \frac{1}{l_{j,y}(x)} = \begin{cases} \frac{y_j}{x_j}, & x \in V_j(y) \\ \infty, & x \notin V_j(y) \end{cases} = \begin{cases} \frac{y_j}{x_j}, & y \notin int V_j(x) \\ \infty, & y \in int V_j(x) \end{cases}.
$$

The following theorem can be proved, using the inequality [\(3.5\)](#page-2-3).

Theorem 3.5. Let $D \subset \mathbb{R}_{++}^n$, $p: D \to \mathbb{R}_{+\infty}$ be an integrable, L(j)-convex function and $D \cap intV_j(y) = \emptyset$. Then, the *following inequality holds:*

$$
\int_{D} p(x) dx \le p(y) \int_{D} \varphi_{j,y}(x) dx
$$
\n(3.6)

.

for all $y \in D$ *.*

Examples:

On some special domains of \mathbb{R}^2_{++} , Hermite-Hadamard Type Inequalities for L(j)-convex functions have been implied with concrete form.

Firstly, for $D \subset \mathbb{R}^2_{++}$ and every $y \in D$, let us derive computation formula of the integral $\int_D l_{j,y}(x)\,dx$. Let $D \subset \mathbb{R}^2_{++}$ and $y = (y_1, y_2) \in D$. Then, on \mathbb{R}^2_{++}

$$
V_1(y) = \left\{ x \in \mathbb{R}_{++}^2 : \frac{x_2}{y_2} \le \frac{x_1}{y_1} \right\}, \quad V_2(y) = \left\{ x \in \mathbb{R}_{++}^2 : \frac{x_1}{y_1} \le \frac{x_2}{y_2} \right\}
$$

and

$$
l_{1,y}(x) = \begin{cases} \frac{x_1}{y_1}, & x \in V_1(y) \\ 0, & x \notin V_1(y) \end{cases}, \quad l_{2,y}(x) = \begin{cases} \frac{x_2}{y_2}, & x \in V_2(y) \\ 0, & x \notin V_2(y) \end{cases}
$$

Let $V_j^c(y)(j = 1, 2)$ be the complement of $V_j(y)(j = 1, 2)$. Therefore, with the above assumptions, we can separate the region D into two regions: $D_j(y) = D \bigcap V_j(y)$ and $D \setminus D_j(y) = D \bigcap V_j^c(y)$. Thus, we have

$$
\int_{D} l_{j,y}(x) dx = \int_{D_j(y)} l_{j,y}(x) dx + \int_{D \setminus D_j(y)} l_{j,y}(x) dx \n= \int_{D_j(y)} \frac{x_j}{y_j} dx + \int_{D \setminus D_j(y)} 0 dx = \frac{1}{y_j} \int_{D_j(y)} x_j dx.
$$

Example 3.1. *Consider the triangle* D *defined as*

$$
D = \{(x_1, x_2) \in \mathbb{R}_{++}^2 : 0 < x_1 \le a, 0 < x_2 \le vx_1\}.
$$

For $y \in D$, $D_i(y)$ *would be as follows:*

$$
D_1(y) = \left\{ x \in D : 0 < x_1 \le a, \ 0 < x_2 \le \frac{y_2}{y_1} x_1 \right\}
$$
\n
$$
D_2(y) = \left\{ x \in D : 0 < x_1 \le a, \ \frac{y_2}{y_1} x_1 < x_2 \le vx_1 \right\}.
$$

For $j = 1$ *; we deduce that:*

$$
\int_{D} l_{1,y}(x) dx = \frac{1}{y_1} \int_{D_1(y)} x_1 dx = \frac{1}{y_1} \int_0^a \int_0^{\frac{y_2 x_1}{y_1}} x_1 dx_2 dx_1 = \frac{y_2}{y_1^2} \frac{a^3}{3}.
$$

Hence, for the given region D*, the inequality [\(3.1\)](#page-2-4) will be as follows:*

$$
p(y_1, y_2) \le \frac{3y_1^2}{a^3y_2} \int_D p(x_1, x_2) dx_1 dx_2.
$$

For $j = 2$ *; we have*

$$
\int_{D} l_{2,y}(x)dx = \frac{1}{y_2} \int_{D_2(y)} x_2 dx = \frac{1}{y_2} \int_0^a \int_{\frac{y_2 x_1}{y_1}}^{vx_1} x_2 dx_2 dx_1
$$

$$
= \frac{1}{2y_2} \int_0^a \left[v^2 - \left(\frac{y_2}{y_1} \right)^2 \right] x_1^2 dx_1 = \frac{v^2 y_1^2 - y_2^2}{2 y_2 y_1^2} \frac{a^3}{3}.
$$

Then, for the same region D*, the inequality [\(3.1\)](#page-2-4) is as follows:*

$$
p(y_1, y_2) \le \frac{6y_1^2y_2}{a^3(v^2y_1^2 - y_2^2)} \int_D p(x_1, x_2) dx_1 dx_2.
$$

Let's derive the set $Q(D)$ for the given triangular domain D. Since $A\left(D\right) =\frac{va^{2}}{2}$, $y^{\ast }\in D$ is element of $Q(D)$ if and *only if, for* $j = 1$ *;*

$$
\frac{2}{va^{2}} \frac{y_{2}^{*}}{(y_{1}^{*})^{2}} \frac{a^{3}}{3} = 1 \Leftrightarrow y_{2}^{*} = \frac{3v (y_{1}^{*})^{2}}{2a}
$$

for $j = 2$ *;*

$$
\frac{2}{va^2} \frac{\left(v^2 (y_1^*)^2 - (y_2^*)^2\right) a^3}{6 (y_1^*)^2 y_2^*} = 1 \Leftrightarrow y_1^* = \left(\frac{a (y_2^*)^2}{av^2 - 3y_2^* v}\right)^{\frac{1}{2}}.
$$

Figure 1. In case of $j = 1$, the set $Q(D)$ for triangular domain D

Example 3.2. *Let the triangular region* D *be as follows:*

$$
D = \left\{ (x_1, x_2) \in \mathbb{R}_{++}^2 : \frac{x_1}{a} + \frac{x_2}{b} \le 1 \right\}.
$$

In this region, for $y \in D$ *, the sets* $D_j(y)$ $(j = 1, 2)$ *are as following forms:*

$$
D_1(y) = \left\{ x \in D : 0 < x_2 \le \frac{aby_2}{ay_2 + by_1}, \quad \frac{y_1}{y_2} x_2 \le x_1 \le a - \frac{a}{b} x_2 \right\}
$$
\n
$$
D_2(y) = \left\{ x \in D : 0 < x_1 \le \frac{aby_1}{ay_2 + by_1}, \quad \frac{y_2}{y_1} x_1 \le x_2 \le b - \frac{b}{a} x_1 \right\}.
$$

If $j = 1$ *, then we have*

$$
\int_{D} l_{1,y}(x) dx = \frac{1}{y_1} \int_{D_1(y)} x_1 dx = \frac{1}{y_1} \int_0^{\frac{aby_2}{ay_2 + by_1}} \int_{\frac{y_1 x_2}{y_2}}^{a - \frac{ax_2}{b}} x_1 dx_1 dx_2
$$

$$
= \frac{1}{2y_1} \int_0^{\frac{aby_2}{ay_2 + by_1}} \left[\left(a - \frac{a}{b} \right)^2 - \left(\frac{y_1}{y_2} \right)^2 \right] x_2^2 dx_2 = \frac{a^3by_2 \left[(ab - a)^2 y_2^2 - b^2 y_1^2 \right]}{6y_1 (ay_2 + by_1)^3}.
$$

For $j = 2$ *; we get*

$$
\int_{D} l_{2,y}(x) dx = \frac{1}{y_2} \int_{D_2(y)} x_2 dx = \frac{1}{y_2} \int_0^{\frac{aby_1}{ay_2 + by_1}} \int_{\frac{y_2 x_1}{y_1}}^{b - \frac{bx_1}{a}} x_2 dx_2 dx_1
$$

$$
= \frac{1}{2y_2} \int_0^{\frac{aby_1}{ay_2 + by_1}} \left[\left(b - \frac{b}{a} \right)^2 - \left(\frac{y_2}{y_1} \right)^2 \right] x_1^2 dx_1 = \frac{b^3 ay_1 \left[(ba - b)^2 y_1^2 - a^2 y_2^2 \right]}{6y_2 (ay_2 + by_1)^3}.
$$

Thereby, in D, to $j = 1$ *; the inequality is*

$$
p(y_1, y_2) \le \frac{6y_1 (ay_2 + by_1)^3}{a^3by_2 \left[(ab - a)^2 y_2^2 - b^2 y_1^2 \right]} \int_D p(x_1, x_2) dx_1 dx_2
$$

for $j = 2$ *; the inequality* [\(3.1\)](#page-2-4) *is*

$$
p(y_1, y_2) \le \frac{6y_2 (ay_2 + by_1)^3}{b^3 ay_1 \left[(ba - b)^2 y_1^2 - a^2 y_2^2 \right]} \int_D p(x_1, x_2) dx_1 dx_2.
$$

Let us construct $Q(D)$ for the given region D. Since $A(D) = \frac{ab}{2}$, if we get $j = 1$, then we obtain

$$
y^* \in Q(D) \Leftrightarrow \frac{a^2 y_2^* \left[\left(ab - a \right)^2 \left(y_2^* \right)^2 - b^2 \left(y_1^* \right)^2 \right]}{3 y_1^* \left(ay_2^* + by_1^* \right)^3} = 1
$$

also, if we get $j = 2$ *, then we have*

$$
y^* \in Q(D) \Leftrightarrow \frac{b^2 y_1^* \left[\left(ba - b \right)^2 \left(y_1^* \right)^2 - a^2 \left(y_2^* \right)^2 \right]}{3 y_2^* \left(ay_2^* + by_1^* \right)^3} = 1.
$$

Example 3.3. *Now, let us get a rectangular region* D *which is defined as follows:*

$$
D = \{(x_1, x_2) \in \mathbb{R}_{++}^2 : x_1 \le a, x_2 \le b\}.
$$

In this type region, it can be two cases: For $y \in D$

1) $\frac{y_2}{y_1} \leq \frac{b}{a}$
 2) $\frac{y_2}{y_1} \geq \frac{b}{a}$
 1) Let $\frac{y_2}{y_1} \leq \frac{b}{a}$. Under this condition, the sets $D_j(y)$ will be:

$$
D_1(y) = \left\{ x \in D : 0 < x_1 \le a, \quad 0 < x_2 \le \frac{y_2}{y_1} x_1 \right\}.
$$
\n
$$
D_2(y) = \left\{ x \in D : 0 < x_1 \le a, \quad \frac{y_2}{y_1} x_1 < x_2 \le b \right\}.
$$

Hence, for $j = 1$ *; we have*

$$
\int_{D} l_{1,y}(x) dx = \int_{D_1(y)} l_{1,y}(x) dx = \frac{1}{y_1} \int_{D_1(y)} x_1 dx
$$

$$
= \frac{1}{y_1} \int_0^a \int_0^{\frac{y_2 x_1}{y_1}} x_1 dx_2 dx_1 = \frac{1}{y_1} \int_0^a \left(\frac{y_2}{y_1}\right) x_1^2 dx_1 = \frac{a^3 y_2}{3y_1^2}
$$

for $j = 2$ *; we obtain*

$$
\int_{D} l_{2,y}(x) dx = \frac{1}{y_2} \int_{D_2(y)} x_2 dx = \frac{1}{y_2} \int_0^a \int_{\frac{y_2 x_1}{y_1}}^{b} x_2 dx_2 dx_1
$$

$$
= \frac{1}{2y_2} \int_0^a \left[b^2 - \left(\frac{y_2}{y_1} \right)^2 x_1^2 \right] dx_1 = \frac{3y_1^2 b^2 a - y_2^2 a^3}{6y_1^2 y_2}
$$

.

By taking into account these, [\(3.1\)](#page-2-4) *becomes following inequalities: for* $j = 1$ *;*

$$
p(y_1, y_2) \le \frac{3y_1^2}{a^3y_2} \int_D p(x_1, x_2) dx_1 dx_2
$$

for $j = 2$ *;*

$$
p(y_1, y_2) \le \frac{6y_1^2y_2}{3y_1^2b^2a - y_2^2a^3} \int_D p(x_1, x_2) dx_1 dx_2.
$$

the set $O(D)$. Since $A(D) = ab$, then while $i = 1$.

Let us derive the set $Q(D)$ *. Since* $A(D) = ab$ *, then while* $j = 1$ *;*

$$
y^* \in Q(D) \Leftrightarrow y_2^* = \frac{3b(y_1^*)^2}{a^2}
$$

while $j = 2$ *;*

$$
y^{\ast}\in Q\left(D\right)\Leftrightarrow y_{1}^{\ast}=\left(\frac{\left(y_{2}^{\ast}\right)^{2}a^{4}b}{3b^{3}a^{2}-6y_{2}^{\ast}}\right)^{\frac{1}{2}}.
$$

2) Now, let us consider the second case. Namely, let $\frac{y_2}{y_1} \geq \frac{b}{a}$. Therefore, we have that

$$
D_1(y) = \left\{ x \in D : \frac{y_1}{y_2} x_2 \le x_1 \le a, \quad 0 < x_2 \le b \right\}
$$
\n
$$
D_2(y) = \left\{ x \in D : 0 < x_1 \le \frac{y_1}{y_2} x_2, \quad 0 < x_2 \le b \right\}.
$$

To $j = 1$ *; we have*

$$
\int_{D} l_{1,y}(x) dx = \frac{1}{y_1} \int_{D_1(y)} x_1 dx = \frac{1}{y_1} \int_0^b \int_{\frac{y_1 x_2}{y_2}}^a x_1 dx_1 dx_2
$$

$$
= \frac{1}{2y_1} \int_0^b \left(a^2 - \left(\frac{y_1}{y_2} \right)^2 x_2^2 \right) dx_2 = \frac{3y_2^2 a^2 b - b^3 y_1^2}{6y_1 y_2^2}.
$$

Thereby, in this case, the inequality [\(3.1\)](#page-2-4) is

$$
p(y_1, y_2) \le \frac{6y_1y_2^2}{3y_2^2a^2b - b^3y_1^2} \int_D p(x_1, x_2) dx_1 dx_2.
$$

In case $j = 2$ *, we get*

$$
\int_{D} l_{2,y}(x) dx = \int_{D_2(y)} l_{2,y}(x) dx = \frac{1}{y_2} \int_{D_2(y)} x_2 dx
$$

$$
= \frac{1}{y_2} \int_0^b \int_0^{\frac{y_1 x_2}{y_2}} x_2 dx_1 dx_2 = \frac{1}{y_2} \int_0^b \frac{y_1}{y_2} x_2^2 dx_2 = \frac{b^3 y_1}{3y_2^2}.
$$

Thus, the inequality [\(3.1\)](#page-2-4) will be as follows:

$$
p(y_1, y_2) \le \frac{3y_2^2}{b^3y_1} \int_D p(x_1, x_2) dx_1 dx_2.
$$

By taking into account both cases, $Q(D)$ *becomes as follows: for* $j = 1$ *;*

$$
Q(D) = \left\{ y^* \in D : \frac{y_2^*}{y_1^*} \le \frac{b}{a}, \ y_2^* = \frac{3b(y_1^*)^2}{a^2} \right\} \bigcup
$$

$$
\left\{ y^* \in D : \frac{y_2^*}{y_1^*} \ge \frac{b}{a}, \ y_2^* = \left(\frac{b^2 (y_1^*)^2}{3a^2 - 6y_1^* a} \right)^{\frac{1}{2}} \right\}
$$

for $j = 2$ *;*

$$
Q(D) = \left\{ y^* \in D : \frac{y_2^*}{y_1^*} \le \frac{b}{a}, \ y_1^* = \left(\frac{(y_2^*)^2 a^4 b}{3b^3 a^2 - 6y_2^*} \right)^{\frac{1}{2}} \right\} \bigcup
$$

$$
\left\{ y^* \in D : \frac{y_2^*}{y_1^*} \ge \frac{b}{a}, \ y_1^* = \frac{3a (y_2^*)^2}{b^2} \right\}.
$$

Example 3.4. *We shall now consider the case where the set* D *is part of the disk defined as*

$$
D = \left\{ (x_1, x_2) \in \mathbb{R}_{++}^2 : x_1^2 + x_2^2 \le r^2 \right\}.
$$

For $y \in D$ *, the set* $D_1(y)$ *is combination of*

$$
D_1^*(y) = \left\{ x \in D : 0 < x_1 \le \frac{ry_1}{\sqrt{y_1^2 + y_2^2}}, 0 < x_2 \le \frac{y_2}{y_1} x_1 \right\}
$$

and

$$
D_1^{**}(y) = \left\{ x \in D : \frac{ry_1}{\sqrt{y_1^2 + y_2^2}} \le x_1 \le r, 0 < x_2 \le \sqrt{r^2 - x_1^2} \right\}.
$$

Namely, $D_1(y) = D_1^*(y) \bigcup D_1^{**}(y)$. The set $D_2(y)$ will be as follows:

$$
D_2(y) = \left\{ x \in D : 0 < x_1 \le \frac{ry_1}{\sqrt{y_1^2 + y_2^2}}, \frac{y_2}{y_1} x_1 \le x_2 \le \sqrt{r^2 - x_1^2} \right\}.
$$

To $j = 1$ *; we have*

$$
\int_{D} l_{1,y}(x) dx = \frac{1}{y_1} \int_{D_1(y)} x_1 dx = \frac{1}{y_1} \int_{D_1^*(y)} x_1 dx + \frac{1}{y_1} \int_{D_1^{**}(y)} x_1 dx
$$

\n
$$
= \frac{1}{y_1} \int_0^{\frac{ry_1}{\sqrt{y_1^2 + y_2^2}}} \int_0^{\frac{y_2}{y_1} x_1} x_1 dx_2 dx_1 + \frac{1}{y_1} \int_{\frac{ry_1}{\sqrt{y_1^2 + y_2^2}}}^{r} \int_0^{\sqrt{r^2 - x_1^2}} x_1 dx_2 dx_1
$$

\n
$$
= \frac{1}{y_1} \int_0^{\frac{ry_1}{\sqrt{y_1^2 + y_2^2}}} \left(\frac{y_2}{y_1} x_1^2\right) dx_1 + \frac{1}{y_1} \int_{\frac{ry_1}{\sqrt{y_1^2 + y_2^2}}}^{r} x_1 \sqrt{r^2 - x_1^2} dx_1 = \frac{r^3 y_2}{3y_1 \sqrt{y_1^2 + y_2^2}}.
$$

In this case, for the given region D*, the inequality [\(3.1\)](#page-2-4) will be following form:*

$$
p(y_1, y_2) \le \frac{3y_1\sqrt{y_1^2 + y_2^2}}{r^3y_2} \int_D p(x_1, x_2) dx_1 dx_2.
$$

To $j = 2$ *; we obtain that*

$$
\int_{D} l_{2,y}(x) dx = \frac{1}{y_2} \int_{D_2(y)} x_2 dx = \frac{1}{y_2} \int_0^{\frac{ry_1}{\sqrt{y_1^2 + y_2^2}}} \int_{\frac{y_2}{y_1}x_1}^{\sqrt{r^2 - x_1^2}} x_2 dx_2 dx_1
$$

$$
= \frac{1}{2y_2} \int_0^{\frac{ry_1}{\sqrt{y_1^2 + y_2^2}}} \left(r^2 - \left(1 + \frac{y_2^2}{y_1^2} \right) x_1^2 \right) dx_1 = \frac{r^3 y_1}{3y_2 \sqrt{y_1^2 + y_2^2}}
$$

and by using the equality above, the inequality [\(3.1\)](#page-2-4) will be as follows:

$$
p(y_1, y_2) \le \frac{3y_2\sqrt{y_1^2 + y_2^2}}{r^3y_1} \int_D p(x_1, x_2) dx_1 dx_2.
$$

Since $A(D) = \frac{\pi r^2}{4}$, let us give the conditions for becoming elements of the set $Q(D)$. For $j = 1$; we have

$$
y^* \in Q(D) \Leftrightarrow \frac{4r(y_2^*)^2}{3\pi(y_1^*)^2((y_1^*)^2 + (y_2^*)^2)^{\frac{1}{2}}} = 1.
$$

For $j = 2$ *; we get*

$$
y^* \in Q(D) \Leftrightarrow \frac{4r(y_1^*)^2}{3\pi (y_2^*)^2 ((y_1^*)^2 + (y_2^*)^2)^{\frac{1}{2}}} = 1.
$$

Remark 3.3. *From Theorem [3.5,](#page-2-5) the right hand side of Hermite-Hadamard Inequalities can be also analyzed for concrete domains. But, in this case,* $D \cap intV_j(y) = \emptyset$ *is required because of integrability of the function* $\varphi_{j,y}$ *on* D *.*

Example 3.5. *As in the Example [3.1,](#page-3-0) we discuss the triangle*

$$
D = \{(x_1, x_2) \in \mathbb{R}_{++}^2 : 0 < x_1 \le a, 0 < x_2 \le vx_1\}.
$$

If $j = 1$, then $D \cap int V_1(y) \neq \emptyset$ for $\forall y \in \mathbb{R}^2_{++}$. Thus, from Theorem [3.5,](#page-2-5) the right hand side of Hermite-Hadamard *Inequalities for L(1)-convex functions is not obtained.*

Let $j = 2$ *. It is obvious that* $D \cap intV_2(y) = \emptyset \Leftrightarrow y_2 \geq vy_1$ *. From Theorem [3.5,](#page-2-5) we have*

$$
\int_D p(x_1, x_2) dx_1 dx_2 \le p(y_1, y_2) \int_D \frac{x_2}{y_2} dx_1 dx_2.
$$

Since

$$
\int_{D} \frac{x_2}{y_2} dx_1 dx_2 = \frac{1}{y_2} \int_0^a \int_0^{v x_1} x_2 dx_2 dx_1 = \frac{v^2}{2y_2} \int_0^a x_1^2 dx_1 = \frac{a^3 v^2}{6y_2}
$$

.

for all $y \in D$ *which satisfy the condition* $y_2 \geq vy_1$ *(namely, y on the long side of the triangle) and all* p *that are L(2)-convex, integrable on* D*, the inequality*

$$
\int_{D} p(x_1, x_2) dx_1 dx_2 \le \frac{v^2 a^3}{6 y_2} p(y_1, y_2)
$$

is hold, or since A(D) *is area of triangular domain, we obtain the inequality*

$$
\frac{1}{A(D)} \int_{D} p(x_1, x_2) dx_1 dx_2 \le \frac{va}{3y_2} p(y_1, y_2).
$$

4 S(j)-convex Functions

Firstly, let us recall the definition of \mathbb{B}^{-1} – convex set [\[3\]](#page-13-5):

Definition 4.2. *A subset* M *of* \mathbb{R}_{++}^n *is* \mathbb{B}^{-1} *-convex if for all* $x_1, x_2 \in M$ *and all* $t \in [1, \infty)$ *one has* $tx_1 \wedge x_2 \in M$ *.*

Here, \wedge is the greatest lower bound of x_1, x_2 , that is,

$$
x_1 \wedge x_2 = (\min\{x_{1,1}, x_{2,1}\}, ..., \min\{x_{1,n}, x_{2,n}\})
$$
.

For every $z \in \mathbb{R}_{++}^n$, \mathbb{R}_{++}^n can be written as the combination of $(n + 1)$ -parts which are given with the following forms:

$$
M_0(z) = \{ x \in \mathbb{R}_{++}^n : z_i \le x_i, \quad i = \overline{1,n} \} M_j(z) = \{ x \in \mathbb{R}_{++}^n : x_j \le z_j \text{ and } x_j z_i \le z_j x_i, \forall i = \overline{1,n} \}.
$$

The sets $M_j(z)\,(j=\overline{0,n})$ are closed and convex sets. The following theorem gives construction of the sets $M_j(z)\ (j=\overline{0,n}).$

Theorem 4.6. $M_0(z)$ is co-radiant, \mathbb{B}^{-1} -convex set and $M_j(z)$ $(j = \overline{1,n})$ are radiant, \mathbb{B}^{-1} -convex sets.

Proof. Let us show that $M_0(z)$ is co-radiant, namely $x \in M_0(z)$, $\lambda \ge 1 \Rightarrow \lambda x \in M_0(z)$. Since $x \in M_0(z)$, then $z_i \leq x_i$ $(i = \overline{1,n})$. $\lambda \geq 1$, so $z_i \leq x_i \leq \lambda x_i$ $(i = \overline{1,n})$. Consequently, we have $\lambda x \in M_0(z)$.

Now, let us prove that $M_0(z)$ is \mathbb{B}^{-1} -convex. Let $x, y \in M_0(z)$, $t \in [1,\infty)$. Hence, for $\forall i = \overline{1,n}$, we have $z_i\leq x_i$ and $z_i\leq y_i$. By using these inequalities; since $z_i\leq x_i\leq tx_i$ and $z_i\leq y_i$, we obtain $z_i\leq tx_i\wedge y_i$, $i=\overline{1,n}$. We have shown that $tx \wedge y \in M_0(z)$.

And now, we have to see that $M_j(z)\,(j=\overline{1,n})$ are radiant. Let $x\in M_j\,(z)$ and $0<\lambda\leq 1.$ Since $x\in M_j\,(z)$, we have $x_j\leq z_j$ and $x_jz_i\leq z_jx_i,~i=\overline{1,n}.$ $0<\lambda\leq 1$ so that $\lambda x_j\leq x_j\leq z_j$ then $\lambda x_j\leq z_j.$ Also, $\lambda>0$, hence we can derive $\lambda x_j z_i \leq z_j \lambda x_i$, $i = \overline{1,n}$. By taking into account both cases, $\lambda x \in M_j(z)$.

Finally, let us show that $M_j(z)$ are \mathbb{B}^{-1} -convex. Let $x, y \in M_j(z)$, $t \in [1, \infty)$.

$$
x \in M_j(z) \Leftrightarrow x_j \leq z_j
$$
 and $x_j z_i \leq z_j x_i$, $i = \overline{1, n}$
\n $y \in M_j(z) \Leftrightarrow y_j \leq z_j$ and $y_j z_i \leq z_j y_i$, $i = \overline{1, n}$.

There are two possible cases: for $t \in [1,\infty)$

I) it can be $tx_j \leq z_j$. In this case, from $y_j \leq z_j$, we obtain $tx_j \wedge y_j \leq z_j$.

II) let $tx_i > z_j$. Again, since $y_i \leq z_j$, we have $tx_j \wedge y_j \leq z_j$. Hence, we deduce that $tx_j \wedge y_j \leq z_j$. In second part, for $z \in \mathbb{R}_{++}^n$

$$
(tx_j \wedge y_j) z_i = tx_j z_i \wedge y_j z_i \leq tx_i z_j \wedge y_i z_j = (tx_i \wedge y_i) z_j.
$$

Thus, we have shown that $tx \wedge y \in M_j(z)$.

The $(n + 1)$ -relations according to $M_j(z)$ $(j = \overline{0, n})$ can be given by

$$
x \preccurlyeq_0 y \Leftrightarrow y \in M_0(x)
$$

$$
x \preccurlyeq_j y \Leftrightarrow x \in M_j(y), \qquad j = \overline{1, n}.
$$

Let us see that \preccurlyeq_j , $(j = \overline{0, n})$ are partial order relations.

Theorem 4.7. \preccurlyeq_j , $(j = \overline{0, n})$ are partial order relations.

Proof. Let $j = 0$. \preccurlyeq_0 is coordinate-wise order relation, namely,

$$
x \preccurlyeq_0 y \Leftrightarrow y - x \in \mathbb{R}_{++}^n.
$$

So that \preccurlyeq_0 is a partial order relation.

Let $j = \overline{1, n}$.

Firstly, we show that \preccurlyeq_j $(j = \overline{1, n})$ are reflexivity. For all $x \in \mathbb{R}^n_{++}$ and all $j = \overline{1, n}$, then $x_j \leq x_j$. Also, for all $i = \overline{1, n}$, we have $x_j x_i \leq x_j x_i$. Consequently, $x \preccurlyeq_i x$.

Let us show that $\preccurlyeq_j (j = \overline{1,n})$ are antisymmetric: Let $x, z \in \mathbb{R}^n_{++}$, $x \preccurlyeq_j z$ and $z \preccurlyeq_j x$. We deduce that

 $x \preccurlyeq_j z \Leftrightarrow x_j \leq z_j \text{ and } x_j z_i \leq z_j x_i, \quad i = \overline{1, n}$ $z \preccurlyeq_j x \iff z_j \leq x_j \text{ and } z_j x_i \leq x_j z_i, \quad i = \overline{1, n}.$

From the first part, for $j = \overline{1, n}$, we get $x_j = z_j$. By using this equality and the second part, for all $i = \overline{1, n}$, since

$$
x_j z_i \le z_j x_i \Rightarrow z_i \le x_i
$$

$$
z_j x_i \le x_j z_i \Rightarrow x_i \le z_i
$$

thus, it is $x_i = z_i$.

Accordingly, we obtain $x = z$.

Now, we have to prove that $\preccurlyeq_j (j = \overline{1,n})$ are transitive. Let $x, y, z \in \mathbb{R}^n_{++}$ $x \preccurlyeq_j y$ and $y \preccurlyeq_j z$. Hence, we have that

$$
x \preccurlyeq_j y \Leftrightarrow x_j \leq y_j
$$
 and $x_j y_i \leq y_j x_i$, $i = \overline{1, n}$
\n $y \preccurlyeq_j z \Leftrightarrow y_j \leq z_j$ and $y_j z_i \leq z_j y_i$, $i = \overline{1, n}$.

Since $x_j \le y_j \le z_j$, then we obtain

$$
x_j \le z_j. \tag{4.7}
$$

Taking into account that the above inequalities hold, we have that

$$
x_j y_i \le y_j x_i \Rightarrow x_j y_i (y_j z_i) \le y_j x_i (y_j z_i) \le y_j x_i (z_j y_i)
$$

$$
x_j z_i (y_i y_j) \le x_i z_j (y_j y_i)
$$

$$
x_j z_i \le z_j x_i.
$$
(4.8)

From [\(4.7\)](#page-9-0) and [\(4.8\)](#page-9-1), we have $x \preccurlyeq_j z$. The theorem is proved.

Now, we can write Minkowski functions according to $M_j\left(z\right)\left(z\in \R^n_{++}, j=\overline{0,n}\right)$ sets and \preccurlyeq_j partial order relations. For $z \in \mathbb{R}_{++}^n$, since that $M_0(z)$ is co-radiant;

$$
v_{M_0(z)}(x) := \sup \{ \alpha : x \in \alpha M_0(z) \} = \sup \{ \alpha : \alpha z \preccurlyeq_0 x \}
$$

then, we denote this function with $s_{0,z}$,

$$
s_{0,z}(x) := v_{M_0(z)}(x) , \qquad x \in \mathbb{R}_{++}^n.
$$

 \Box

 \Box

For $z\in \R^n_{++}$ and $j=\overline{1,n}$; by taking into account that M_j (z) are radiant sets; Minkowski gauge of M_j (z) are

$$
\mu_{M_j(z)}(x) := \inf \left\{ \alpha > 0 : x \in \alpha M_j(z) \right\} = \inf \left\{ \alpha > 0 : x \preccurlyeq_j \alpha z \right\}.
$$

Let us denote this function with the following notation

$$
s_{j,z}(x) := \mu_{M_j(z)}(x) , \qquad x \in \mathbb{R}_{++}^n.
$$

The sets $M_j\left(z\right)\left(j=\overline{1,n},z\in \mathbb{R}^n_{++}\right)$ can be written as the intersection of the cone

$$
U_j(z) = \left\{ x \in \mathbb{R}_{++}^n : \frac{x_j}{z_j} \le \frac{x_i}{z_i} \ i = \overline{1,n} \right\}
$$

and the half-space

$$
H_j(z) = \{x \in \mathbb{R}^n : x_j \leq z_j\}.
$$

The functions $s_{j,z}$ can be denoted the following form, if we use the cone $U_j(z)$.

$$
s_{j,z}(x) = \begin{cases} \frac{x_j}{z_j}, & x \in U_j(z) \\ \infty, & x \notin U_j(z). \end{cases}
$$
\n(4.9)

Let us analyze convexity with respect to the family of functions $S(j) = \{s_{j,z} : z \in \mathbb{R}_{++}^n\}, j = \overline{0,n}$.

Definition 4.3. Let $j = \overline{0,n}$. A function $f : \mathbb{R}_{++}^n \to \mathbb{R}_{+\infty}$ is an IPH[j] function if f is positively homogeneous of *degree one and increasing according to order relation* \preccurlyeq_i *.*

Theorem 4.8. $\forall j = \overline{0,n}$ and $\forall z \in \mathbb{R}_{++}^n$, $s_{j,z}$ are IPH[j] functions.

Proof. Let us show that $s_{j,z}$ are positively homogeneous of degree one.

For $i = 0$, we have that

$$
s_{0,z} (\lambda x) = \sup \{ \alpha : \lambda x \in \alpha M_0 (z) \} = \sup \{ \alpha : \alpha z \preccurlyeq_0 \lambda x \}
$$

=
$$
\sup \{ \alpha : \alpha z_i \le \lambda x_i, i = \overline{1, n} \} = \sup \{ \lambda \alpha' : \alpha' z_i \le x_i, i = \overline{1, n} \}
$$

=
$$
\lambda \sup \{ \alpha' : \alpha' z \preccurlyeq_0 x \} = \lambda s_{0,z} (x) .
$$

For $j = \overline{1, n}$, we get

$$
s_{j,z}(\lambda x) = \inf \{ \alpha > 0 : \lambda x \in \alpha M_j(z) \} = \inf \{ \alpha > 0 : \lambda x \preccurlyeq_j \alpha z \}
$$

$$
= \lambda \inf \{ \alpha' > 0 : x \preccurlyeq_j \alpha' z \} = \lambda s_{j,z}(x).
$$

Let us prove that $s_{j,z}$ are increasing according to \preccurlyeq_j $(j = \overline{0,n})$.

Let $j = 0$ and $x_1 \preccurlyeq_0 x_2$. Then, we have $\{\alpha : \alpha z \preccurlyeq_0 x_1\} \subset \{\alpha : \alpha z \preccurlyeq_0 x_2\}$. From properties of supremum, we obtain that $s_{0,z}(x_1) \leq s_{0,z}(x_2)$.

Let $j = \overline{1, n}$ and $x_1 \preccurlyeq_j x_2$. Hence, we have $\{\alpha > 0 : x_2 \preccurlyeq_j \alpha z\} \subset \{\alpha > 0 : x_1 \preccurlyeq_j \alpha z\}$. Consequently, we obtain $s_{j,z}(x_1) \leq s_{j,z}(x_2)$. \Box

Now, let us give the following theorem which can be easily proved via Corollary 2.6 in [\[2\]](#page-13-3).

Theorem 4.9. For $j = \overline{0,n}$, $f : \mathbb{R}^n_{++} \to \mathbb{R}_{+\infty}$ is S(j)-convex function if and only if f is IPH[j] function.

The following theorem implies some properties of IPH[j] functions.

Theorem 4.10. Let $j = \overline{1,n}$ and $f : \mathbb{R}_{++}^n \to \mathbb{R}_{+\infty}$ be an IPH[j] function. Then following statements are hold: *(i)* $f(x) \ge 0$ *for all* $x \in \mathbb{R}_{++}^n$.

(*ii*) If $f(x^*) = +\infty$ where $x^* \in \mathbb{R}_{++}^n$ then $f(x) = +\infty$ on the set

 $\{x \in \mathbb{R}_{++}^n : \exists \lambda > 0 \text{ such that } \lambda x^* \preccurlyeq_j x\}.$

(iii) If $f(x^*) = 0$ where $x^* \in \mathbb{R}_{++}^n$ then for all $x \in \{x \in \mathbb{R}_{++}^n : \exists \lambda > 0, x \preccurlyeq_j \lambda x^* \}$, $f(x) = 0$.

Proof. (i) Let $x \in \mathbb{R}_{++}^n$. Because $\frac{1}{2}x \preccurlyeq_j x$, we have $\frac{1}{2}f(x) = f(\frac{x}{2}) \le f(x)$. Therefore $f(x) \ge 0$.

(ii) Let $x \in \mathbb{R}_{++}^n$ be a point such that there exists $\lambda > 0$ with the property $\lambda x^* \preccurlyeq_j x$. Then $f(x) \ge f(\lambda x^*) =$ $\lambda f(x^*) = +\infty.$

(iii) Let $x \in \mathbb{R}_{++}^n$ and let there be $\lambda > 0$ such that $x \preccurlyeq_j \lambda x^*$. Thus, we have that $0 \le f(x) \le f(\lambda x^*) =$ $\lambda f(x^*) = 0.$ \Box

5 Hermite-Hadamard Type Inequalities for S(j)-convex Functions

Let us prove the following theorem which has an important role in Hermite-Hadamard Type Inequalities for S(j)-convex functions.

Theorem 5.11. For $j = \overline{1,n}$ and $p : \mathbb{R}_{++}^n \to \mathbb{R}_{+\infty}$, the following statements are equivalent:

(i) p *is an IPH[j] function.* (*ii*) For all $x, z \in \mathbb{R}_{++}^n$ and $\lambda > 0$ such that $x \preccurlyeq_j \lambda z$, we have $p(x) \leq \lambda p(z)$.

(iii) For all $x, z \in \mathbb{R}_{++}^n$, we have $p(x) \leq s_{j,z}(x) p(z)$.

Proof. $i \Rightarrow ii$) Since p is an IPH[j] function, for all $\lambda > 0$, we get $x \preccurlyeq_i \lambda z$. Hence $p(x) \le p(\lambda z) = \lambda p(z)$.

 $ii \Rightarrow i$) The monotonicity of p follows from (ii) with $\lambda = 1$. We now show that p is positively homogeneous. Let $x = \lambda z$ with $\lambda > 0$. Then by (ii), we have $p(x) = p(\lambda z) \leq \lambda p(z)$. Because $z = \lambda^{-1}x$, we conclude that $p(z) \leq \lambda^{-1} p(x)$. Thus $p(\lambda z) = \lambda p(z)$.

 $ii \Rightarrow iii)$ If $p(z) = 0$, we have $0 \le p(x) \le s_{j,z}(x)p(z) = 0$ for all x. Let $p(z) > 0$ and $\lambda > 0$ be a number such that $x \preccurlyeq_j \lambda z$. Applying (ii), we conclude that $\frac{p(x)}{p(z)} \leq \lambda$. It follows from the definition of $s_{j,z}$ that $s_{j,z}\left(x\right) = \inf \left\{ \lambda >0 : x \preccurlyeq_j \lambda z \right\}$, therefore $\frac{p(x)}{p(z)} \leq s_{j,z}\left(x\right)$.

 $iii \Rightarrow ii$) follows directly from the definition of $s_{j,z}$.

If we use the above theorem, then we can deduce the Hermite-Hadamard Type Inequalities for S(j)-convex functions.

Corollary 5.2. Let $p: D \to \mathbb{R}_{+\infty}$, $D \subset \mathbb{R}_{++}^n$ be a S(j)-convex function and integrable function on D where $D \subset U_j(z)$. *Then, for all* $z \in D$ *, the following inequality holds:*

$$
\int_{D} p(x) dx \le p(z) \int_{D} s_{j,z}(x) dx.
$$
\n(5.10)

Proof. It is proven from Theorem [5.11](#page-11-0) (iii) and [\(4.9\)](#page-10-0).

Let's analyze the inequality [\(5.10\)](#page-11-1) via sets $Q(D)$.

Let $D \subset \mathbb{R}_{++}^n$ be bounded and satisfy condition cl $(intD) = D$. $Q(D)$ consist of all point $x^* \in D$ such that

$$
\frac{1}{A(D)} \int_{D} s_{j,x^*}(x) \, dx = 1,
$$

here $A(D) = \int_D dx$.

We can give a theorem about the set $Q(D)$ and Hermite-Hadamard Type Inequalities of S(j)-convex functions.

Theorem 5.12. Let p be a S(j)-convex function defined and integrable on D. If $Q(D) \neq \emptyset$, then one has the inequality:

$$
\frac{1}{A(D)} \int_{D} p(x) dx \le \inf_{x^* \in Q(D)} p(x^*)
$$

Proof. If $p(x^*) = 0$, from $p(x) \leq s_{j,x^*}(x) p(x^*)$ we have $p(x) = 0$. Thus, let $p(x^*) > 0$. For all $x \in D$,

 $p(x) \leq s_{j,x^*}(x) p(x^*)$

is hold. Because $x^* \in Q(D)$, we have

$$
p(x^*) = p(x^*) \frac{1}{A(D)} \int_D s_{j,x^*}(x) dx
$$

=
$$
\frac{1}{A(D)} \int_D p(x^*) s_{j,x^*}(x) dx \ge \frac{1}{A(D)} \int_D p(x) dx.
$$

 \Box

$$
\Box
$$

 \Box

For every $x^* \in Q(D)$, the inequality

$$
\frac{1}{A(D)} \int_{D} p(x) dx \le p(x^*)
$$
\n(5.11)

is hold. If we take $p(x) = s_{j,x^*}(x)$, the inequality [\(5.11\)](#page-12-0) will be turn equality.

Let p be a S(j)-convex function defined and integrable on D which is closed, bounded and connected set. For all $x, z \in D$, we have

$$
p(x) \leq s_{j,z}(x) p(z).
$$

Hence, below inequality is obtained:

$$
p(x)\,\psi_{j,x}\left(z\right)\leq p\left(z\right)
$$

where

$$
\psi_{j,x}(z) = \frac{1}{s_{j,z}(x)} = \begin{cases} \frac{z_j}{x_j}, & x \in U_j(z) \\ 0, & x \notin U_j(z) \end{cases} = \begin{cases} \frac{z_j}{x_j}, & z \notin int U_j(x) \\ 0, & z \in int U_j(x) \end{cases}
$$
(5.12)

In this case, we can write second part of the Hermite-Hadamard Type Inequality for S(j)-convex functions.

Theorem 5.13. Let $D \subset \mathbb{R}_{++}^n$, $p: D \to \mathbb{R}_{+\infty}$ be S(j)-convex and integrable on D. Then, for all $z \in D$, we have the *inequality:*

$$
p(z)\int_{D}\psi_{j,z}(x)\,dx \le \int_{D}p(x)\,dx\tag{5.13}
$$

Examples:

On the same domains in previous section, Hermite-Hadamard Inequalities for S(j)-convex functions can be also considered. For example, let us discuss triangular domain in Example [3.1.](#page-3-0)

Example 5.6. *Let*

$$
D = \{(x_1, x_2) \in \mathbb{R}_{++}^2 : 0 < x_1 \le a, \ \ 0 < x_2 \le vx_1\}.
$$

 $D \subset U_j(z)$ *is necessary in order to the inequality [\(5.10\)](#page-11-1) can be written on this region.*

When $j = 1$, for all $z \in \mathbb{R}^2_{++}$ it is $D \not\subset U_1(z)$. Hence, from Corollary [5.2,](#page-11-2) for S(1)-convex functions, the right part *of Hermite-Hadamard Inequalities can not computed on this domain.*

Let $j = 2$ *. This is obvious that* $D \subset U_2(z) \Leftrightarrow z_2 \geq vz_1$ *. From [\(5.10\)](#page-11-1), we obtain*

$$
\int_{D} p(x_1, x_2) dx_1 dx_2 \le p(z_1, z_2) \int_{D} \frac{x_2}{z_2} dx_1 dx_2.
$$

When the right integral is calculated, for all $z \in D$ *satisfying the condition* $z_2 \geq vz_1$ *(thus, z is on the hypotenuse of the triangle) and for all* p *that is S(2)-convex, integrable on* D*, we have*

$$
\frac{1}{A(D)} \int_{D} p(x_1, x_2) dx_1 dx_2 \le \frac{va}{3z_2} p(z_1, z_2)
$$

where A(D) *is area of the triangular domain.*

For the same domain, if we apply the Theorem [5.13,](#page-12-1) then we can estimate the left part of Hermite-Hadamard Inequality.

Let $j = 1$ *. From [\(5.13\)](#page-12-2), we have*

$$
p(z_1, z_2) \int_D \psi_{1,z}(x_1, x_2) dx_1 dx_2 \le \int_D p(x_1, x_2) dx_1 dx_2
$$

and from [\(5.12\)](#page-12-3), we obtain

$$
\int_D \psi_{1,z} (x_1, x_2) \, dx_1 dx_2 = \frac{a^3 z_2}{3 z_1^2}.
$$

Thereby, the inequality is

$$
p(z_1, z_2) \frac{a^3 z_2}{3 z_1^2} \le \int_D p(x_1, x_2) dx_1 dx_2.
$$

Let $j = 2$. The left part of the Hermite-Hadamard Inequality is

$$
p(z_1, z_2) \int_D \psi_{2,z}(x_1, x_2) dx_1 dx_2 \le \int_D p(x_1, x_2) dx_1 dx_2.
$$

Since, with a simple calculation, we obtain

$$
\int_D \psi_{2,z} (x_1, x_2) \, dx_1 dx_2 = \frac{a^3 \left(z_1^2 v^2 - z_2^2 \right)}{6 z_1^2 z_2}
$$

and from above inequality, we have

$$
p(z_1, z_2) \frac{a^3 (z_1^2 v^2 - z_2^2)}{6 z_1^2 z_2} \le \int_D p(x_1, x_2) dx_1 dx_2.
$$

Acknowledgements

The authors wish to thank Akdeniz University, Mersin University and TUBITAK (The Scientific and Technological Research Council of Turkey).

References

- [1] G. Adilov and S. Kemali, Abstract convexity and Hermite-Hadamard Type Inequalities, *Journal of Inequalities and Applications*, doi:10.1155/953534, 2009(2009), Article ID 943534, 13 pages.
- [2] G. Adilov and A. Rubinov, B-convex Sets and Functions, *Numerical Functional Analysis and Optimization*, 27(3-4)(2006), 237-257.
- [3] G. Adilov and I. Yesilce, B⁻¹-convex Sets and B⁻¹-measurable Maps, *Numerical Functional Analysis and Optimization*, 33(2)(2012), 131-141.
- [4] W. Briec, C.D. Horvath and A.M. Rubinov, Separation in B-convexity, *Pacific Journal of Optimization*, 1(1)(2005), 13-30.
- [5] A. Rubinov,*Abstract Convexity and Global Optimization*, Kluwer Academic Publishers, Boston-Dordrecht-London, 2000.
- [6] E.V. Sharikov, Hermite-Hadamard Type Inequalities for Increasing Radiant Functions, *Journal of Inequalities in Pure and Applied Mathematics*, 4(2)(2003), Article 47.

Received: December 03, 2014; *Accepted*: May 10, 2015

UNIVERSITY PRESS

Website: http://www.malayajournal.org/