Malaya
Journal of
MatematikMJM
an international journal of mathematical sciences with
computer applications...

Hermite-Hadamard Inequalities for L(j)-convex Functions and S(j)-convex Functions

Ilknur Yesilce^{*a*,*} and Gabil Adilov^{*b*}

^a Department of Mathematics, Faculty of Science and Letters, Mersin University, Ciftlikkoy Campus, 33343, Mersin, Turkey. ^bDepartment of Mathematics, Faculty of Education, Akdeniz University, Dumlupinar Boulevard 07058, Campus, Antalya, Turkey.

Abstract

In this article, Hermite-Hadamard Inequalities for L(j)-convex functions are analyzed. S(j)-convex functions which is founded upon \mathbb{B}^{-1} -convexity concept, are defined and for this functions, Hermite-Hadamard Inequalities are investigated. On some special domains, concrete form of inequalities are denoted.

Keywords: Hermite-Hadamard inequalities, L(j)-convex functions, S(j)-convex functions, abstract convexity.

2010 MSC: 26B25, 26D15, 26D07, 52A40, 52A20.

©2012 MJM. All rights reserved.

1 Introduction

Integral inequalities have played an important role in the development of all branches of mathematics. Also, Hermite-Hadamard inequalities are one of the integral inequalities. Recently, Hermite-Hadamard inequalities and their applications have attracted considerable interest. Hence the Hermite-Hadamard inequalities have been studied for varied families of functions which are obtained by many authors. (e.g. [1], [5], [6], etc.)

In this paper, we examine Hermite-Hadamard Type Inequalities for L(j)-convex functions. L(j)-convex functions are founded upon the \mathbb{B} -convexity concept in \mathbb{R}^n_+ [2] (Section 3). In section 4, S(j)-convex functions which is related to \mathbb{B}^{-1} -convexity concept are defined. After, for this family of functions, Hermite-Hadamard Type Inequalities are analyzed (Section 5). Additionally, different examples about both cases are discussed and studied.

2 L(j)-convex Functions

The sets which are given the following forms, are discussed to define the L(j)-convex functions [2]. For all $z \in \mathbb{R}^{n}_{++}$

$$N_0(z) = \left\{ x \in \mathbb{R}^n_{++} : 0 < x_i \le z_i, \quad i = \overline{1, n} \right\}$$

$$N_j(z) = \left\{ x \in \mathbb{R}^n_{++} : z_j \le x_j \text{ and } x_i z_j \le z_i x_j, \forall i = \overline{1, n} \right\}, j = \overline{1, n}$$

 $N_0(z)$ is closed, convex and radiant set, $N_j(z)$ $(j = \overline{1, n})$ are closed, convex and co-radiant sets [4]. Using these sets, (n + 1) relations are defined as follows ([2]): for $x, y \in \mathbb{R}^n_{++}$

$$\begin{array}{ll} x \underline{\prec}_{0} y \Leftrightarrow x \in N_{0}\left(y\right) \\ x \underline{\prec}_{i} y \Leftrightarrow y \in N_{j}\left(x\right), \qquad j = \overline{1, n}. \end{array}$$

*Corresponding author.

E-mail address: ilknuryesilce@gmail.com (Ilknur Yesilce), gabiladilov@gmail.com(Gabil Adilov).

 $\underline{\prec}_i, j = \overline{0, n}$ are partial order relation on \mathbb{R}^n_{++} (see [4]).

We can write Minkowski functions according to $N_j(y)$ $(y \in \mathbb{R}^n_{++}, j = \overline{0, n})$ sets and $\underline{\prec}_j$ order relations. For $y \in \mathbb{R}^n_{++}$, $N_0(y)$ is radiant set and $\underline{\prec}_0$ is coordinate-wise order relation hence Minkowski gauge is

$$\mu_{N_{0}(y)}(x) := \inf \{ \alpha > 0 : x \in \alpha N_{0}(y) \} = \inf \{ \alpha > 0 : x \leq \alpha y \}$$

Let us show this function with $l_{0,y}$, namely

$$l_{0,y}(x) := \mu_{N_0(y)}(x) , \qquad x \in \mathbb{R}^n_{++}.$$

For $j = \overline{1, n}$ and $y \in \mathbb{R}^n_{++}$, the sets $N_j(y)$ are co-radiant, thus Minkowski co-gauges are defined by

$$v_{N_{j}(y)}(x) := \sup \left\{ \alpha : x \in \alpha N_{j}(y) \right\} = \sup \left\{ \alpha : \alpha y \preceq_{j} x \right\}$$

we denote these functions with $l_{j,y}$, namely

$$l_{j,y}(x) := v_{N_j(y)}(x) , \qquad x \in \mathbb{R}^n_{++}$$

Remark 2.1. Let $y \in \mathbb{R}^n_{++}$ and $j = \overline{1, n}$. Then the sets $N_j(y)$ coincides with the intersection of the cone

$$V_{j}(y) = \left\{ x \in \mathbb{R}^{n}_{+} : \frac{x_{i}}{y_{i}} \le \frac{x_{j}}{y_{j}} \quad \left(i = \overline{1, n}\right) \right\}$$

and the half-space

$$H_j(y) = \{x \in \mathbb{R}^n : x_j \ge y_j\}.$$

Using the cone $V_j(y)$, $l_{j,y}$ can be shown another form. If $x \in V_j(y)$, then

$$l_{j,y}(x) = \sup\left\{\alpha : \alpha y \preceq_{j} x\right\} = \sup\left\{\alpha : \alpha y_{j} \leq x_{j}\right\} = \frac{x_{j}}{y_{j}}.$$

If $x \notin V_j(y)$, then for all $\alpha > 0$ the inequality $\alpha y \preceq_j x$ does not hold therefore $l_{j,y}(x) = 0$. Consequently,

$$I_{j,y}(x) = \begin{cases} \frac{x_j}{y_j}, & x \in V_j(y) \\ 0, & x \notin V_j(y) \end{cases}$$

For $j = \overline{0, n}$, let us analyze the convexity with respect to the family of functions $L(j) = \{l_{j,y} : y \in \mathbb{R}^n_{++}\}$.

Definition 2.1. Let $j = \overline{0, n}$. A function $f : \mathbb{R}^{n}_{++} \to \mathbb{R}_{+\infty} = \mathbb{R} \cup \{+\infty\}$ is an IPH(j) function if f is positively homogeneous of degree one and increasing according to order relation \leq_{j} .

Theorem 2.1. For all $j = \overline{0, n}$ and $y \in \mathbb{R}^n_{++}$, $l_{j,y}$ functions are IPH(j) functions.

Proof. For j = 0

$$l_{0,y}(\lambda x) = \inf \left\{ \alpha > 0 : \lambda x \in \alpha N_0(y) \right\} = \inf \left\{ \alpha > 0 : \lambda x \underline{\prec}_0 \alpha y \right\}$$
$$= \inf \left\{ \alpha > 0 : x \underline{\prec}_0 \frac{\alpha}{\lambda} y \right\} = \lambda \inf \left\{ \alpha' > 0 : x \underline{\prec}_0 \alpha' y \right\} = \lambda l_{0,y}(x).$$

For $j = \overline{1, n}$

$$l_{j,y}(\lambda x) = \sup \left\{ \alpha : \lambda x \in \alpha N_j(y) \right\} = \sup \left\{ \alpha : \alpha y \underline{\prec}_j \lambda x \right\}$$
$$= \sup \left\{ \alpha : \frac{\alpha}{\lambda} y \underline{\prec}_j x \right\} = \lambda \sup \left\{ \alpha' : \alpha' y \underline{\prec}_j x \right\} = \lambda l_{j,y}(x).$$

Namely, $l_{j,y}$ ($j = \overline{0, n}$) are positively homogeneous of degree one.

Now, let us prove that the functions $l_{j,y} (j = \overline{0,n})$ are increasing. Let j = 0. If $x_1 \leq 0 x_2$, then $\{\alpha > 0 : x_2 \leq \alpha y\} \subset \{\alpha > 0 : x_1 \leq \alpha y\}$ and hence $l_{0,y}(x_1) \leq l_{0,y}(x_2)$. For $j = \overline{1,n}$, if $x_1 \leq x_2$, then $\{\alpha > 0 : \alpha y \leq yx_1\} \subset \{\alpha > 0 : \alpha y \leq yx_2\}$ and thus $l_{j,y}(x_1) \leq l_{j,y}(x_2)$.

Following theorem can be proved using Corollary 2.6 in [2].

Theorem 2.2. The function $f : \mathbb{R}_{++}^n \to \mathbb{R}_{+\infty}$ is L(j)-convex function $(j = \overline{0, n})$ if and only if f is IPH(j) function.

Moreover, some important properties of IPH(j) functions are given, in [2].

3 Hermite-Hadamard Type Inequalities for L(j)-convex Functions

We begin with the following theorem which has an important role in Hermite-Hadamard Type Inequalities for L(j)-convex functions [2].

Theorem 3.3. For $j = \overline{1, n}$ and $p : \mathbb{R}^n_{++} \to \mathbb{R}_{+\infty}$, the following statements are equivalent:

(i) p is an IPH(j) function. (ii) $p(x) \ge \lambda p(y)$ for all $\forall x, y \in \mathbb{R}^{n}_{++}$ and $\lambda > 0$ such that $\lambda y \preceq_{j} x$. (iii) $p(x) \ge l_{j,y}(x) p(y)$ for all $\forall x, y \in \mathbb{R}^{n}_{++}$.

We can obtain Hermite-Hadamard Type Inequalities for L(j)-convex functions as a corollary of the above theorem.

Corollary 3.1. Let $D \subset \mathbb{R}^n_{++}$, $p : D \to \mathbb{R}_{+\infty}$ be a L(j)-convex function and integrable function on D. Then, for all $y \in D$, we have

$$p(y) \int_{D} l_{j,y}(x) \, dx \le \int_{D} p(x) \, dx. \tag{3.1}$$

Let us investigate Hermite-Hadamard Type Inequalities via Q(D) sets given in [6].

Let $D \subset \mathbb{R}^n_{++}$ be bounded and hold condition of cl(intD) = D. We denote by Q(D) the sets of all $x^* \in D$ such that

$$\frac{1}{A(D)} \int_{D} l_{j,x^*}(x) \, dx = 1 \tag{3.2}$$

where $A(D) = \int_D dx$

Theorem 3.4. Let p be L(j)-convex function defined on D and integrable on D. If Q(D) is nonempty, then one has the inequality:

$$\sup_{x^* \in Q(D)} p(x^*) \le \frac{1}{A(D)} \int_D p(x) \, dx \tag{3.3}$$

Proof. If $p(x^*) = +\infty$, then by using $p(x) \ge l_{j,y}(x) p(y)$, it can be shown that p cannot be integrable. It conflicts integrable of p. So $p(x^*) < +\infty$. From Theorem 3.3 (iii), for all $x \in D$

$$p(x) \ge l_{j,x^*}(x) p(x^*).$$

Since $x^* \in Q(D)$, by (3.2)

$$p(x^*) = p(x^*) \frac{1}{A(D)} \int_D l_{j,x^*}(x) dx$$

= $\frac{1}{A(D)} \int_D p(x^*) l_{j,x^*}(x) dx \le \frac{1}{A(D)} \int_D p(x) dx.$

Remark 3.2. As it is clear that, for each $x^* \in Q(D)$, inequality

$$p(x^*) \le \frac{1}{A(D)} \int_D p(x) \, dx \tag{3.4}$$

is hold. If we get $p(x) = l_{j,x^*}(x)$ *, (3.4) is an equality.*

Let *p* be a L(j)-convex function defined on $D \subset \mathbb{R}^n_{++}$ and be integrable on *D*. For all $x, y \in D$, the inequality

 $p(x) \ge l_{j,y}(x) p(y)$

is hold. Hence,

$$p(y) \le \varphi_{j,x}(y) p(x) \tag{3.5}$$

where

$$\varphi_{j,x}\left(y\right) = \frac{1}{l_{j,y}\left(x\right)} = \begin{cases} \frac{y_j}{x_j}, & x \in V_j\left(y\right)\\ \infty, & x \notin V_j\left(y\right) \end{cases} = \begin{cases} \frac{y_j}{x_j}, & y \notin intV_j\left(x\right)\\ \infty, & y \in intV_j\left(x\right) \end{cases}.$$

The following theorem can be proved, using the inequality (3.5).

Theorem 3.5. Let $D \subset \mathbb{R}^n_{++}$, $p : D \to \mathbb{R}_{+\infty}$ be an integrable, L(j)-convex function and $D \cap intV_j(y) = \emptyset$. Then, the following inequality holds:

$$\int_{D} p(x) dx \le p(y) \int_{D} \varphi_{j,y}(x) dx$$
(3.6)

for all $y \in D$.

Examples:

On some special domains of \mathbb{R}^2_{++} , Hermite-Hadamard Type Inequalities for L(j)-convex functions have been implied with concrete form.

Firstly, for $D \subset \mathbb{R}^2_{++}$ and every $y \in D$, let us derive computation formula of the integral $\int_D l_{j,y}(x) dx$. Let $D \subset \mathbb{R}^2_{++}$ and $y = (y_1, y_2) \in D$. Then, on \mathbb{R}^2_{++}

$$V_{1}(y) = \left\{ x \in \mathbb{R}^{2}_{++} : \frac{x_{2}}{y_{2}} \le \frac{x_{1}}{y_{1}} \right\}, \quad V_{2}(y) = \left\{ x \in \mathbb{R}^{2}_{++} : \frac{x_{1}}{y_{1}} \le \frac{x_{2}}{y_{2}} \right\}$$

and

$$l_{1,y}(x) = \begin{cases} \frac{x_1}{y_1}, & x \in V_1(y) \\ 0, & x \notin V_1(y) \end{cases}, \quad l_{2,y}(x) = \begin{cases} \frac{x_2}{y_2}, & x \in V_2(y) \\ 0, & x \notin V_2(y) \end{cases}$$

Let $V_j^c(y)$ (j = 1, 2) be the complement of $V_j(y)$ (j = 1, 2). Therefore, with the above assumptions, we can separate the region D into two regions: $D_j(y) = D \cap V_j(y)$ and $D \setminus D_j(y) = D \cap V_j^c(y)$. Thus, we have

$$\int_{D} l_{j,y}(x) dx = \int_{D_{j}(y)} l_{j,y}(x) dx + \int_{D \setminus D_{j}(y)} l_{j,y}(x) dx$$
$$= \int_{D_{j}(y)} \frac{x_{j}}{y_{j}} dx + \int_{D \setminus D_{j}(y)} 0 dx = \frac{1}{y_{j}} \int_{D_{j}(y)} x_{j} dx.$$

Example 3.1. Consider the triangle D defined as

$$D = \left\{ (x_1, x_2) \in \mathbb{R}^2_{++} : 0 < x_1 \le a, 0 < x_2 \le v x_1 \right\}.$$

For $y \in D$ *,* $D_j(y)$ *would be as follows:*

$$D_1(y) = \left\{ x \in D : 0 < x_1 \le a, \ 0 < x_2 \le \frac{y_2}{y_1} x_1 \right\}$$
$$D_2(y) = \left\{ x \in D : 0 < x_1 \le a, \ \frac{y_2}{y_1} x_1 < x_2 \le v x_1 \right\}.$$

For j = 1; we deduce that:

$$\int_{D} l_{1,y}(x) \, dx = \frac{1}{y_1} \int_{D_1(y)} x_1 dx = \frac{1}{y_1} \int_0^a \int_0^{\frac{y_2 x_1}{y_1}} x_1 dx_2 dx_1 = \frac{y_2}{y_1^2} \frac{a^3}{3}.$$

Hence, for the given region D, the inequality (3.1) *will be as follows:*

$$p(y_1, y_2) \le \frac{3y_1^2}{a^3y_2} \int_D p(x_1, x_2) \, dx_1 dx_2.$$

For j = 2; we have

$$\int_{D} l_{2,y}(x)dx = \frac{1}{y_2} \int_{D_2(y)} x_2 dx = \frac{1}{y_2} \int_0^a \int_{\frac{y_2 x_1}{y_1}}^{y_2 x_1} x_2 dx_2 dx_1$$
$$= \frac{1}{2y_2} \int_0^a \left[v^2 - \left(\frac{y_2}{y_1}\right)^2 \right] x_1^2 dx_1 = \frac{v^2 y_1^2 - y_2^2}{2y_2 y_1^2} \frac{a^3}{3}$$

Then, for the same region D, the inequality (3.1) is as follows:

$$p(y_1, y_2) \le \frac{6y_1^2 y_2}{a^3 (v^2 y_1^2 - y_2^2)} \int_D p(x_1, x_2) \, dx_1 dx_2.$$

Let's derive the set Q(D) for the given triangular domain D. Since $A(D) = \frac{va^2}{2}$, $y^* \in D$ is element of Q(D) if and only if, for j = 1;

$$\frac{2}{va^{2}}\frac{y_{2}^{*}}{\left(y_{1}^{*}\right)^{2}}\frac{a^{3}}{3} = 1 \Leftrightarrow y_{2}^{*} = \frac{3v\left(y_{1}^{*}\right)^{2}}{2a}$$

for j = 2;

$$\frac{2}{va^2} \frac{\left(v^2 \left(y_1^*\right)^2 - \left(y_2^*\right)^2\right) a^3}{6 \left(y_1^*\right)^2 y_2^*} = 1 \Leftrightarrow y_1^* = \left(\frac{a \left(y_2^*\right)^2}{av^2 - 3y_2^* v}\right)^{\frac{1}{2}}$$

Figure 1. In case of j = 1, the set Q(D) for triangular domain D

Example 3.2. *Let the triangular region D be as follows:*

$$D = \left\{ (x_1, x_2) \in \mathbb{R}^2_{++} : \frac{x_1}{a} + \frac{x_2}{b} \le 1 \right\}.$$

In this region, for $y \in D$, the sets $D_{j}(y)$ (j = 1, 2) are as following forms:

$$D_1(y) = \left\{ x \in D : 0 < x_2 \le \frac{aby_2}{ay_2 + by_1}, \quad \frac{y_1}{y_2} x_2 \le x_1 \le a - \frac{a}{b} x_2 \right\}$$
$$D_2(y) = \left\{ x \in D : 0 < x_1 \le \frac{aby_1}{ay_2 + by_1}, \quad \frac{y_2}{y_1} x_1 \le x_2 \le b - \frac{b}{a} x_1 \right\}.$$

If j = 1, then we have

$$\int_{D} l_{1,y}(x) dx = \frac{1}{y_1} \int_{D_1(y)} x_1 dx = \frac{1}{y_1} \int_{0}^{\frac{aby_2}{ay_2 + by_1}} \int_{\frac{y_1 x_2}{y_2}}^{a - \frac{ax_2}{ay_2 + by_1}} x_1 dx_1 dx_2$$
$$= \frac{1}{2y_1} \int_{0}^{\frac{aby_2}{ay_2 + by_1}} \left[\left(a - \frac{a}{b}\right)^2 - \left(\frac{y_1}{y_2}\right)^2 \right] x_2^2 dx_2 = \frac{a^3 by_2 \left[(ab - a)^2 y_2^2 - b^2 y_1^2 \right]}{6y_1 (ay_2 + by_1)^3}.$$

For j = 2; we get

$$\int_{D} l_{2,y}(x) dx = \frac{1}{y_2} \int_{D_2(y)} x_2 dx = \frac{1}{y_2} \int_0^{\frac{aby_1}{ay_2 + by_1}} \int_{\frac{y_2 x_1}{y_1}}^{b - \frac{bx_1}{a}} x_2 dx_2 dx_1$$
$$= \frac{1}{2y_2} \int_0^{\frac{aby_1}{ay_2 + by_1}} \left[\left(b - \frac{b}{a} \right)^2 - \left(\frac{y_2}{y_1} \right)^2 \right] x_1^2 dx_1 = \frac{b^3 ay_1 \left[(ba - b)^2 y_1^2 - a^2 y_2^2 \right]}{6y_2 \left(ay_2 + by_1 \right)^3}.$$

Thereby, in D*, to* j = 1*; the inequality is*

$$p(y_1, y_2) \le \frac{6y_1 (ay_2 + by_1)^3}{a^3 by_2 \left[(ab - a)^2 y_2^2 - b^2 y_1^2 \right]} \int_D p(x_1, x_2) \, dx_1 dx_2$$

for j = 2; the inequality (3.1) is

$$p(y_1, y_2) \le \frac{6y_2 (ay_2 + by_1)^3}{b^3 a y_1 \left[(ba - b)^2 y_1^2 - a^2 y_2^2 \right]} \int_D p(x_1, x_2) \, dx_1 dx_2$$

Let us construct Q(D) for the given region D. Since $A(D) = \frac{ab}{2}$, if we get j = 1, then we obtain

$$y^{*} \in Q\left(D\right) \Leftrightarrow \frac{a^{2}y_{2}^{*}\left[\left(ab-a\right)^{2}\left(y_{2}^{*}\right)^{2}-b^{2}\left(y_{1}^{*}\right)^{2}\right]}{3y_{1}^{*}\left(ay_{2}^{*}+by_{1}^{*}\right)^{3}}=1$$

also, if we get j = 2, then we have

$$y^{*} \in Q\left(D\right) \Leftrightarrow \frac{b^{2}y_{1}^{*}\left[\left(ba-b\right)^{2}\left(y_{1}^{*}\right)^{2}-a^{2}\left(y_{2}^{*}\right)^{2}\right]}{3y_{2}^{*}\left(ay_{2}^{*}+by_{1}^{*}\right)^{3}}=1$$

Example 3.3. Now, let us get a rectangular region D which is defined as follows:

$$D = \{ (x_1, x_2) \in \mathbb{R}^2_{++} : x_1 \le a, \ x_2 \le b \}$$

In this type region, it can be two cases: For $y \in D$ 1) $\frac{y_2}{y_1} \leq \frac{b}{a}$ 2) $\frac{y_2}{y_1} \geq \frac{b}{a}$ 1) Let $\frac{y_2}{y_1} \leq \frac{b}{a}$. Under this condition, the sets $D_j(y)$ will be:

$$D_1(y) = \begin{cases} x \in D : 0 < x_1 \le a, & 0 < x_2 \le \frac{y_2}{y_1} x_1 \\ D_2(y) = \begin{cases} x \in D : 0 < x_1 \le a, & \frac{y_2}{y_1} x_1 < x_2 \le b \end{cases}.$$

Hence, for j = 1*; we have*

$$\int_{D} l_{1,y}(x) dx = \int_{D_1(y)} l_{1,y}(x) dx = \frac{1}{y_1} \int_{D_1(y)} x_1 dx$$
$$= \frac{1}{y_1} \int_0^a \int_0^{\frac{y_2 x_1}{y_1}} x_1 dx_2 dx_1 = \frac{1}{y_1} \int_0^a \left(\frac{y_2}{y_1}\right) x_1^2 dx_1 = \frac{a^3 y_2}{3y_1^2}$$

for j = 2; we obtain

$$\int_{D} l_{2,y}(x) dx = \frac{1}{y_2} \int_{D_2(y)} x_2 dx = \frac{1}{y_2} \int_0^a \int_{\frac{y_2 x_1}{y_1}}^b x_2 dx_2 dx_1$$
$$= \frac{1}{2y_2} \int_0^a \left[b^2 - \left(\frac{y_2}{y_1}\right)^2 x_1^2 \right] dx_1 = \frac{3y_1^2 b^2 a - y_2^2 a^3}{6y_1^2 y_2}.$$

By taking into account these, (3.1) becomes following inequalities: for j = 1;

$$p(y_1, y_2) \le \frac{3y_1^2}{a^3y_2} \int_D p(x_1, x_2) \, dx_1 dx_2$$

for j = 2;

$$p(y_1, y_2) \leq \frac{6y_1^2y_2}{3y_1^2b^2a - y_2^2a^3} \int_D p(x_1, x_2) dx_1 dx_2.$$

Let us derive the set $Q(D)$. Since $A(D) = ab$, then while $j = 1$;

$$y^{*} \in Q\left(D\right) \Leftrightarrow y_{2}^{*} = \frac{3b\left(y_{1}^{*}\right)^{2}}{a^{2}}$$

while j = 2;

$$y^* \in Q\left(D\right) \Leftrightarrow y_1^* = \left(\frac{\left(y_2^*\right)^2 a^4 b}{3b^3 a^2 - 6y_2^*}\right)^{\frac{1}{2}}.$$

2) Now, let us consider the second case. Namely, let $\frac{y_2}{y_1} \ge \frac{b}{a}$. Therefore, we have that

$$D_1(y) = \left\{ x \in D : \frac{y_1}{y_2} x_2 \le x_1 \le a, \quad 0 < x_2 \le b \right\}$$
$$D_2(y) = \left\{ x \in D : 0 < x_1 \le \frac{y_1}{y_2} x_2, \quad 0 < x_2 \le b \right\}.$$

To j = 1; we have

$$\int_{D} l_{1,y}(x) dx = \frac{1}{y_1} \int_{D_1(y)} x_1 dx = \frac{1}{y_1} \int_0^b \int_{\frac{y_1 x_2}{y_2}}^a x_1 dx_1 dx_2$$
$$= \frac{1}{2y_1} \int_0^b \left(a^2 - \left(\frac{y_1}{y_2}\right)^2 x_2^2 \right) dx_2 = \frac{3y_2^2 a^2 b - b^3 y_1^2}{6y_1 y_2^2}$$

Thereby, in this case, the inequality (3.1) is

$$p(y_1, y_2) \le \frac{6y_1 y_2^2}{3y_2^2 a^2 b - b^3 y_1^2} \int_D p(x_1, x_2) \, dx_1 dx_2.$$

In case j = 2, we get

$$\int_{D} l_{2,y}(x) dx = \int_{D_2(y)} l_{2,y}(x) dx = \frac{1}{y_2} \int_{D_2(y)} x_2 dx$$
$$= \frac{1}{y_2} \int_0^b \int_0^{\frac{y_1 x_2}{y_2}} x_2 dx_1 dx_2 = \frac{1}{y_2} \int_0^b \frac{y_1}{y_2} x_2^2 dx_2 = \frac{b^3 y_1}{3y_2^2}.$$

Thus, the inequality (3.1) will be as follows:

$$p(y_1, y_2) \le \frac{3y_2^2}{b^3y_1} \int_D p(x_1, x_2) \, dx_1 dx_2.$$

By taking into account both cases, Q(D) becomes as follows: for j = 1;

$$Q(D) = \left\{ y^* \in D : \frac{y_2^*}{y_1^*} \le \frac{b}{a}, \ y_2^* = \frac{3b(y_1^*)^2}{a^2} \right\} \bigcup \\ \left\{ y^* \in D : \frac{y_2^*}{y_1^*} \ge \frac{b}{a}, \ y_2^* = \left(\frac{b^2(y_1^*)^2}{3a^2 - 6y_1^*a}\right)^{\frac{1}{2}} \right\}$$

for j = 2;

$$\begin{split} Q\left(D\right) = \left\{ y^{*} \in D: \frac{y_{2}^{*}}{y_{1}^{*}} \leq \frac{b}{a} \,, \ y_{1}^{*} = \left(\frac{\left(y_{2}^{*}\right)^{2} a^{4} b}{3 b^{3} a^{2} - 6 y_{2}^{*}}\right)^{\frac{1}{2}} \right\} \bigcup \\ \left\{ y^{*} \in D: \frac{y_{2}^{*}}{y_{1}^{*}} \geq \frac{b}{a} \,, \ y_{1}^{*} = \frac{3 a \left(y_{2}^{*}\right)^{2}}{b^{2}} \right\}. \end{split}$$

Example 3.4. We shall now consider the case where the set D is part of the disk defined as

$$D = \left\{ (x_1, x_2) \in \mathbb{R}^2_{++} : x_1^2 + x_2^2 \le r^2 \right\}.$$

For $y \in D$, the set $D_1(y)$ is combination of

$$D_1^*(y) = \left\{ x \in D : 0 < x_1 \le \frac{ry_1}{\sqrt{y_1^2 + y_2^2}}, 0 < x_2 \le \frac{y_2}{y_1} x_1 \right\}$$

and

$$D_1^{**}(y) = \left\{ x \in D : \frac{ry_1}{\sqrt{y_1^2 + y_2^2}} \le x_1 \le r, 0 < x_2 \le \sqrt{r^2 - x_1^2} \right\}.$$

Namely, $D_1(y) = D_1^*(y) \bigcup D_1^{**}(y)$. The set $D_2(y)$ will be as follows:

$$D_2(y) = \left\{ x \in D : 0 < x_1 \le \frac{ry_1}{\sqrt{y_1^2 + y_2^2}}, \frac{y_2}{y_1} x_1 \le x_2 \le \sqrt{r^2 - x_1^2} \right\}.$$

To j = 1; we have

$$\begin{split} \int_{D} l_{1,y}(x) \, dx &= \frac{1}{y_1} \int_{D_1(y)} x_1 dx = \frac{1}{y_1} \int_{D_1^*(y)} x_1 dx + \frac{1}{y_1} \int_{D_1^{**}(y)} x_1 dx \\ &= \frac{1}{y_1} \int_0^{\frac{ry_1}{\sqrt{y_1^2 + y_2^2}}} \int_0^{\frac{y_2}{y_1} x_1} x_1 dx_2 dx_1 + \frac{1}{y_1} \int_{\frac{ry_1}{\sqrt{y_1^2 + y_2^2}}}^r \int_0^{\sqrt{r^2 - x_1^2}} x_1 dx_2 dx_1 \\ &= \frac{1}{y_1} \int_0^{\frac{ry_1}{\sqrt{y_1^2 + y_2^2}}} \left(\frac{y_2}{y_1} x_1^2\right) dx_1 + \frac{1}{y_1} \int_{\frac{ry_1}{\sqrt{y_1^2 + y_2^2}}}^r x_1 \sqrt{r^2 - x_1^2} dx_1 = \frac{r^3 y_2}{3y_1 \sqrt{y_1^2 + y_2^2}} \end{split}$$

In this case, for the given region *D*, the inequality (3.1) will be following form:

$$p(y_1, y_2) \le \frac{3y_1\sqrt{y_1^2 + y_2^2}}{r^3y_2} \int_D p(x_1, x_2) \, dx_1 dx_2.$$

To j = 2; we obtain that

$$\int_{D} l_{2,y}(x) dx = \frac{1}{y_2} \int_{D_2(y)} x_2 dx = \frac{1}{y_2} \int_{0}^{\frac{ry_1}{\sqrt{y_1^2 + y_2^2}}} \int_{\frac{y_2}{y_1} x_1}^{\sqrt{r^2 - x_1^2}} x_2 dx_2 dx_1$$
$$= \frac{1}{2y_2} \int_{0}^{\frac{ry_1}{\sqrt{y_1^2 + y_2^2}}} \left(r^2 - \left(1 + \frac{y_2^2}{y_1^2}\right) x_1^2 \right) dx_1 = \frac{r^3 y_1}{3y_2 \sqrt{y_1^2 + y_2^2}}$$

and by using the equality above, the inequality (3.1) will be as follows:

$$p(y_1, y_2) \le \frac{3y_2\sqrt{y_1^2 + y_2^2}}{r^3y_1} \int_D p(x_1, x_2) \, dx_1 dx_2.$$

Since $A(D) = \frac{\pi r^2}{4}$, let us give the conditions for becoming elements of the set Q(D). For j = 1; we have

$$y^* \in Q(D) \Leftrightarrow \frac{4r(y_2^*)^2}{3\pi (y_1^*)^2 ((y_1^*)^2 + (y_2^*)^2)^{\frac{1}{2}}} = 1.$$

For j = 2; we get

$$y^* \in Q(D) \Leftrightarrow \frac{4r(y_1^*)^2}{3\pi(y_2^*)^2 \left((y_1^*)^2 + (y_2^*)^2\right)^{\frac{1}{2}}} = 1.$$

Remark 3.3. From Theorem 3.5, the right hand side of Hermite-Hadamard Inequalities can be also analyzed for concrete domains. But, in this case, $D \cap intV_j(y) = \emptyset$ is required because of integrability of the function $\varphi_{j,y}$ on D.

Example 3.5. As in the Example 3.1, we discuss the triangle

$$D = \left\{ (x_1, x_2) \in \mathbb{R}^2_{++} : 0 < x_1 \le a, 0 < x_2 \le v x_1 \right\}.$$

If j = 1, then $D \cap intV_1(y) \neq \emptyset$ for $\forall y \in \mathbb{R}^2_{++}$. Thus, from Theorem 3.5, the right hand side of Hermite-Hadamard Inequalities for L(1)-convex functions is not obtained.

Let j = 2. It is obvious that $D \cap intV_2(y) = \emptyset \Leftrightarrow y_2 \ge vy_1$. From Theorem 3.5, we have

$$\int_{D} p(x_1, x_2) \, dx_1 dx_2 \le p(y_1, y_2) \int_{D} \frac{x_2}{y_2} dx_1 dx_2.$$

Since

$$\int_{D} \frac{x_2}{y_2} dx_1 dx_2 = \frac{1}{y_2} \int_0^a \int_0^{vx_1} x_2 dx_2 dx_1 = \frac{v^2}{2y_2} \int_0^a x_1^2 dx_1 = \frac{a^3 v^2}{6y_2}$$

for all $y \in D$ which satisfy the condition $y_2 \ge vy_1$ (namely, y on the long side of the triangle) and all p that are L(2)-convex, integrable on D, the inequality

$$\int_{D} p(x_1, x_2) \, dx_1 dx_2 \le \frac{v^2 a^3}{6y_2} p(y_1, y_2)$$

is hold, or since A(D) is area of triangular domain, we obtain the inequality

$$\frac{1}{A(D)} \int_D p(x_1, x_2) \, dx_1 dx_2 \le \frac{va}{3y_2} p(y_1, y_2) \, .$$

4 S(j)-convex Functions

Firstly, let us recall the definition of \mathbb{B}^{-1} -convex set [3]:

Definition 4.2. A subset M of \mathbb{R}^n_{++} is \mathbb{B}^{-1} -convex if for all $x_1, x_2 \in M$ and all $t \in [1, \infty)$ one has $tx_1 \wedge x_2 \in M$.

Here, \wedge is the greatest lower bound of x_1, x_2 , that is,

$$x_1 \wedge x_2 = (\min\{x_{1,1}, x_{2,1}\}, ..., \min\{x_{1,n}, x_{2,n}\})$$

For every $z \in \mathbb{R}^{n}_{++}$, \mathbb{R}^{n}_{++} can be written as the combination of (n + 1)-parts which are given with the following forms:

$$M_0(z) = \left\{ x \in \mathbb{R}^n_{++} : z_i \le x_i, \quad i = \overline{1, n} \right\}$$

$$M_j(z) = \left\{ x \in \mathbb{R}^n_{++} : x_j \le z_j \quad \text{and} \quad x_j z_i \le z_j x_i, \forall i = \overline{1, n} \right\}.$$

The sets $M_j(z)(j = \overline{0,n})$ are closed and convex sets. The following theorem gives construction of the sets $M_j(z)(j = \overline{0,n})$.

Theorem 4.6. $M_0(z)$ is co-radiant, \mathbb{B}^{-1} -convex set and $M_j(z)$ $(j = \overline{1, n})$ are radiant, \mathbb{B}^{-1} -convex sets.

Proof. Let us show that $M_0(z)$ is co-radiant, namely $x \in M_0(z)$, $\lambda \ge 1 \Rightarrow \lambda x \in M_0(z)$. Since $x \in M_0(z)$, then $z_i \le x_i$ $(i = \overline{1, n})$. $\lambda \ge 1$, so $z_i \le x_i \le \lambda x_i$ $(i = \overline{1, n})$. Consequently, we have $\lambda x \in M_0(z)$.

Now, let us prove that $M_0(z)$ is \mathbb{B}^{-1} -convex. Let $x, y \in M_0(z)$, $t \in [1, \infty)$. Hence, for $\forall i = \overline{1, n}$, we have $z_i \leq x_i$ and $z_i \leq y_i$. By using these inequalities; since $z_i \leq x_i \leq tx_i$ and $z_i \leq y_i$, we obtain $z_i \leq tx_i \wedge y_i$, $i = \overline{1, n}$. We have shown that $tx \wedge y \in M_0(z)$.

And now, we have to see that $M_j(z)$ $(j = \overline{1, n})$ are radiant. Let $x \in M_j(z)$ and $0 < \lambda \le 1$. Since $x \in M_j(z)$, we have $x_j \le z_j$ and $x_j z_i \le z_j x_i$, $i = \overline{1, n}$. $0 < \lambda \le 1$ so that $\lambda x_j \le x_j \le z_j$ then $\lambda x_j \le z_j$. Also, $\lambda > 0$, hence we can derive $\lambda x_j z_i \le z_j \lambda x_i$, $i = \overline{1, n}$. By taking into account both cases, $\lambda x \in M_j(z)$.

Finally, let us show that $M_j(z)$ are \mathbb{B}^{-1} -convex. Let $x, y \in M_j(z)$, $t \in [1, \infty)$.

$$\begin{aligned} x \in M_j(z) \Leftrightarrow x_j \leq z_j \quad \text{and} \quad x_j z_i \leq z_j x_i, \ i = 1, n \\ y \in M_j(z) \Leftrightarrow y_j \leq z_j \quad \text{and} \quad y_j z_i \leq z_j y_i, \ i = \overline{1, n}. \end{aligned}$$

There are two possible cases: for $t \in [1, \infty)$

I) it can be $tx_j \leq z_j$. In this case, from $y_j \leq z_j$, we obtain $tx_j \wedge y_j \leq z_j$.

II) let $tx_j > z_j$. Again, since $y_j \le z_j$, we have $tx_j \land y_j \le z_j$. Hence, we deduce that $tx_j \land y_j \le z_j$. In second part, for $z \in \mathbb{R}^n_{++}$

$$(tx_j \wedge y_j) z_i = tx_j z_i \wedge y_j z_i \le tx_i z_j \wedge y_i z_j = (tx_i \wedge y_i) z_j.$$

Thus, we have shown that $tx \wedge y \in M_j(z)$.

The (n + 1)-relations according to $M_j(z)$ $(j = \overline{0, n})$ can be given by

$$\begin{array}{l} x \preccurlyeq_{0} y \Leftrightarrow y \in M_{0}\left(x\right) \\ x \preccurlyeq_{j} y \Leftrightarrow x \in M_{j}\left(y\right), \qquad j = \overline{1, n} \end{array}$$

Let us see that \preccurlyeq_j , $(j = \overline{0, n})$ are partial order relations.

Theorem 4.7. \preccurlyeq_j , $(j = \overline{0, n})$ are partial order relations.

Proof. Let j = 0. \preccurlyeq_0 is coordinate-wise order relation, namely,

$$x \preccurlyeq_0 y \Leftrightarrow y - x \in \mathbb{R}^n_{++}.$$

So that \preccurlyeq_0 is a partial order relation.

Let $j = \overline{1, n}$.

Firstly, we show that $\preccurlyeq_j (j = \overline{1, n})$ are reflexivity. For all $x \in \mathbb{R}^n_{++}$ and all $j = \overline{1, n}$, then $x_j \leq x_j$. Also, for all $i = \overline{1, n}$, we have $x_j x_i \leq x_j x_i$. Consequently, $x \preccurlyeq_j x$.

Let us show that $\preccurlyeq_j (j = \overline{1, n})$ are antisymmetric: Let $x, z \in \mathbb{R}^n_{++}$, $x \preccurlyeq_j z$ and $z \preccurlyeq_j x$. We deduce that

 $\begin{array}{ll} x \preccurlyeq_j z \ \Leftrightarrow \ x_j \leq z_j \ \text{and} \ x_j z_i \leq z_j x_i \ , & i = \overline{1, n} \\ z \preccurlyeq_j x \ \Leftrightarrow \ z_j \leq x_j \ \text{and} \ z_j x_i \leq x_j z_i \ , & i = \overline{1, n}. \end{array}$

From the first part, for $j = \overline{1, n}$, we get $x_j = z_j$. By using this equality and the second part, for all $i = \overline{1, n}$, since

$$x_j z_i \le z_j x_i \Rightarrow z_i \le x_i$$
$$z_j x_i \le x_j z_i \Rightarrow x_i \le z_i$$

thus, it is $x_i = z_i$.

Accordingly, we obtain x = z.

Now, we have to prove that $\preccurlyeq_j (j = \overline{1, n})$ are transitive. Let $x, y, z \in \mathbb{R}^n_{++} x \preccurlyeq_j y$ and $y \preccurlyeq_j z$. Hence, we have that

$$\begin{array}{ll} x \preccurlyeq_j y \ \Leftrightarrow \ x_j \leq y_j \ \text{and} \ x_j y_i \leq y_j x_i \ , \qquad i = 1, r \\ y \preccurlyeq_j z \ \Leftrightarrow \ y_j \leq z_j \ \text{and} \ y_j z_i \leq z_j y_i \ , \qquad i = \overline{1, n}. \end{array}$$

Since $x_j \leq y_j \leq z_j$, then we obtain

$$x_j \le z_j. \tag{4.7}$$

Taking into account that the above inequalities hold, we have that

$$\begin{aligned} x_j y_i &\leq y_j x_i \; \Rightarrow \; x_j y_i \left(y_j z_i \right) \leq y_j x_i \left(y_j z_i \right) \leq y_j x_i \left(z_j y_i \right) \\ & \quad x_j z_i \left(y_i y_j \right) \leq x_i z_j \left(y_j y_i \right) \\ & \quad x_i z_i \leq z_i x_i. \end{aligned}$$

$$(4.8)$$

From (4.7) and (4.8), we have $x \preccurlyeq_j z$. The theorem is proved.

Now, we can write Minkowski functions according to $M_j(z)$ $(z \in \mathbb{R}^n_{++}, j = \overline{0, n})$ sets and \preccurlyeq_j partial order relations. For $z \in \mathbb{R}^n_{++}$, since that $M_0(z)$ is co-radiant;

$$v_{M_0(z)}(x) := \sup \left\{ \alpha : x \in \alpha M_0(z) \right\} = \sup \left\{ \alpha : \alpha z \preccurlyeq_0 x \right\}$$

then, we denote this function with $s_{0,z}$,

$$s_{0,z}(x) := v_{M_0(z)}(x) , \qquad x \in \mathbb{R}^n_{++}$$

For $z \in \mathbb{R}_{++}^n$ and $j = \overline{1, n}$; by taking into account that $M_j(z)$ are radiant sets; Minkowski gauge of $M_j(z)$ are

$$\mu_{M_j(z)}\left(x\right) := \inf\left\{\alpha > 0 : x \in \alpha M_j\left(z\right)\right\} = \inf\left\{\alpha > 0 : x \preccurlyeq_j \alpha z\right\}$$

Let us denote this function with the following notation

$$s_{j,z}(x) := \mu_{M_j(z)}(x) , \qquad x \in \mathbb{R}^n_{++}$$

The sets $M_j(z)$ $(j = \overline{1, n}, z \in \mathbb{R}^n_{++})$ can be written as the intersection of the cone

$$U_j(z) = \left\{ x \in \mathbb{R}^n_{++} : \frac{x_j}{z_j} \le \frac{x_i}{z_i} \ i = \overline{1, n} \right\}$$

and the half-space

$$H_j(z) = \{x \in \mathbb{R}^n : x_j \le z_j\}.$$

The functions $s_{j,z}$ can be denoted the following form, if we use the cone $U_j(z)$.

$$s_{j,z}(x) = \begin{cases} \frac{x_j}{z_j}, & x \in U_j(z) \\ \infty, & x \notin U_j(z). \end{cases}$$

$$(4.9)$$

Let us analyze convexity with respect to the family of functions $S(j) = \{s_{j,z} : z \in \mathbb{R}^n_{++}\}, j = \overline{0, n}$.

Definition 4.3. Let $j = \overline{0, n}$. A function $f : \mathbb{R}^n_{++} \to \mathbb{R}_{+\infty}$ is an IPH[j] function if f is positively homogeneous of degree one and increasing according to order relation \preccurlyeq_j .

Theorem 4.8. $\forall j = \overline{0, n} \text{ and } \forall z \in \mathbb{R}^n_{++}, s_{j,z} \text{ are IPH}[j] \text{ functions.}$

Proof. Let us show that $s_{j,z}$ are positively homogeneous of degree one.

For j = 0, we have that

$$s_{0,z} (\lambda x) = \sup \{ \alpha : \lambda x \in \alpha M_0 (z) \} = \sup \{ \alpha : \alpha z \preccurlyeq_0 \lambda x \}$$

=
$$\sup \{ \alpha : \alpha z_i \le \lambda x_i, i = \overline{1, n} \} = \sup \{ \lambda \alpha' : \alpha' z_i \le x_i, i = \overline{1, n} \}$$

=
$$\lambda \sup \{ \alpha' : \alpha' z \preccurlyeq_0 x \} = \lambda s_{0,z} (x) .$$

For $j = \overline{1, n}$, we get

$$s_{j,z}(\lambda x) = \inf \{ \alpha > 0 : \lambda x \in \alpha M_j(z) \} = \inf \{ \alpha > 0 : \lambda x \preccurlyeq_j \alpha z \}$$
$$= \lambda \inf \{ \alpha' > 0 : x \preccurlyeq_j \alpha' z \} = \lambda s_{j,z}(x).$$

Let us prove that $s_{j,z}$ are increasing according to $\preccurlyeq_j (j = \overline{0,n})$.

Let j = 0 and $x_1 \preccurlyeq_0 x_2$. Then, we have $\{\alpha : \alpha z \preccurlyeq_0 x_1\} \subset \{\alpha : \alpha z \preccurlyeq_0 x_2\}$. From properties of supremum, we obtain that $s_{0,z}(x_1) \leq s_{0,z}(x_2)$.

Let $j = \overline{1, n}$ and $x_1 \preccurlyeq_j x_2$. Hence, we have $\{\alpha > 0 : x_2 \preccurlyeq_j \alpha z\} \subset \{\alpha > 0 : x_1 \preccurlyeq_j \alpha z\}$. Consequently, we obtain $s_{j,z}(x_1) \leq s_{j,z}(x_2)$.

Now, let us give the following theorem which can be easily proved via Corollary 2.6 in [2].

Theorem 4.9. For $j = \overline{0, n}$, $f : \mathbb{R}_{++}^n \to \mathbb{R}_{+\infty}$ is S(j)-convex function if and only if f is IPH[j] function.

The following theorem implies some properties of IPH[j] functions.

Theorem 4.10. Let $j = \overline{1, n}$ and $f : \mathbb{R}_{++}^n \to \mathbb{R}_{+\infty}$ be an IPH[j] function. Then following statements are hold: (i) $f(x) \ge 0$ for all $x \in \mathbb{R}_{++}^n$.

(ii) If $f(x^*) = +\infty$ where $x^* \in \mathbb{R}^n_{++}$ then $f(x) = +\infty$ on the set

 $\{x \in \mathbb{R}^n_{++} : \exists \lambda > 0 \text{ such that } \lambda x^* \preccurlyeq_j x \}.$

(iii) If $f(x^*) = 0$ where $x^* \in \mathbb{R}^n_{++}$ then for all $x \in \{x \in \mathbb{R}^n_{++} : \exists \lambda > 0, x \preccurlyeq_j \lambda x^*\}$, f(x) = 0.

Proof. (i) Let $x \in \mathbb{R}^n_{++}$. Because $\frac{1}{2}x \preccurlyeq_j x$, we have $\frac{1}{2}f(x) = f\left(\frac{x}{2}\right) \leq f(x)$. Therefore $f(x) \geq 0$.

(ii) Let $x \in \mathbb{R}^{n}_{++}$ be a point such that there exists $\lambda > 0$ with the property $\lambda x^* \preccurlyeq_j x$. Then $f(x) \ge f(\lambda x^*) = \lambda f(x^*) = +\infty$.

(iii) Let $x \in \mathbb{R}^n_{++}$ and let there be $\lambda > 0$ such that $x \preccurlyeq_j \lambda x^*$. Thus, we have that $0 \le f(x) \le f(\lambda x^*) = \lambda f(x^*) = 0$.

5 Hermite-Hadamard Type Inequalities for S(j)-convex Functions

Let us prove the following theorem which has an important role in Hermite-Hadamard Type Inequalities for S(j)-convex functions.

Theorem 5.11. For $j = \overline{1, n}$ and $p : \mathbb{R}^n_{++} \to \mathbb{R}_{+\infty}$, the following statements are equivalent:

(*i*) *p* is an IPH[*j*] function. (ii) For all $x, z \in \mathbb{R}^{n}_{++}$ and $\lambda > 0$ such that $x \preccurlyeq_{j} \lambda z$, we have $p(x) \leq \lambda p(z)$. (iii) For all $x, z \in \mathbb{R}^{n}_{++}$, we have $p(x) \leq s_{j,z}(x) p(z)$.

Proof. $i \Rightarrow ii$) Since p is an IPH[j] function, for all $\lambda > 0$, we get $x \preccurlyeq_j \lambda z$. Hence $p(x) \le p(\lambda z) = \lambda p(z)$.

 $ii \Rightarrow i$) The monotonicity of p follows from (ii) with $\lambda = 1$. We now show that p is positively homogeneous. Let $x = \lambda z$ with $\lambda > 0$. Then by (ii), we have $p(x) = p(\lambda z) \le \lambda p(z)$. Because $z = \lambda^{-1} x$, we conclude that $p(z) \leq \lambda^{-1} p(x)$. Thus $p(\lambda z) = \lambda p(z)$.

 $ii \Rightarrow iii$) If p(z) = 0, we have $0 \le p(x) \le s_{j,z}(x) p(z) = 0$ for all x. Let p(z) > 0 and $\lambda > 0$ be a number such that $x \preccurlyeq_j \lambda z$. Applying (ii), we conclude that $\frac{p(x)}{p(z)} \leq \lambda$. It follows from the definition of $s_{j,z}$ that $s_{j,z}(x) = \inf \{\lambda > 0 : x \preccurlyeq_j \lambda z\}$, therefore $\frac{p(x)}{p(z)} \leq s_{j,z}(x)$.

 $iii \Rightarrow ii$) follows directly from the definition of $s_{j,z}$.

If we use the above theorem, then we can deduce the Hermite-Hadamard Type Inequalities for S(j)-convex functions.

Corollary 5.2. Let $p: D \to \mathbb{R}_{+\infty}$, $D \subset \mathbb{R}_{++}^n$ be a S(j)-convex function and integrable function on D where $D \subset U_j(z)$. *Then, for all* $z \in D$ *, the following inequality holds:*

$$\int_{D} p(x) dx \le p(z) \int_{D} s_{j,z}(x) dx.$$
(5.10)

Proof. It is proven from Theorem 5.11 (iii) and (4.9).

Let's analyze the inequality (5.10) via sets Q(D).

Let $D \subset \mathbb{R}^n_{++}$ be bounded and satisfy condition cl(intD) = D. Q(D) consist of all point $x^* \in D$ such that

$$\frac{1}{A\left(D\right)}\int_{D}s_{j,x^{*}}\left(x\right)dx=1,$$

here $A(D) = \int_D dx$.

We can give a theorem about the set Q(D) and Hermite-Hadamard Type Inequalities of S(j)-convex functions.

Theorem 5.12. Let p be a S(j)-convex function defined and integrable on D. If $Q(D) \neq \emptyset$, then one has the inequality:

$$\frac{1}{A(D)} \int_{D} p(x) dx \le \inf_{x^* \in Q(D)} p(x^*)$$

Proof. If $p(x^*) = 0$, from $p(x) \le s_{j,x^*}(x) p(x^*)$ we have p(x) = 0. Thus, let $p(x^*) > 0$. For all $x \in D$,

 $p(x) \le s_{j,x^*}(x) p(x^*)$

is hold. Because $x^* \in Q(D)$, we have

$$p(x^*) = p(x^*) \frac{1}{A(D)} \int_D s_{j,x^*}(x) dx$$

= $\frac{1}{A(D)} \int_D p(x^*) s_{j,x^*}(x) dx \ge \frac{1}{A(D)} \int_D p(x) dx$

For every $x^* \in Q(D)$, the inequality

$$\frac{1}{A(D)} \int_{D} p(x) \, dx \le p(x^*) \tag{5.11}$$

is hold. If we take $p(x) = s_{j,x^*}(x)$, the inequality (5.11) will be turn equality.

Let *p* be a S(j)-convex function defined and integrable on *D* which is closed, bounded and connected set. For all $x, z \in D$, we have

$$p(x) \le s_{j,z}(x) p(z)$$

Hence, below inequality is obtained:

$$p(x)\psi_{j,x}(z) \le p(z)$$

where

$$\psi_{j,x}\left(z\right) = \frac{1}{s_{j,z}\left(x\right)} = \begin{cases} \frac{z_j}{x_j}, & x \in U_j\left(z\right)\\ 0, & x \notin U_j\left(z\right) \end{cases} = \begin{cases} \frac{z_j}{x_j}, & z \notin intU_j\left(x\right)\\ 0, & z \in intU_j\left(x\right) \end{cases}$$
(5.12)

In this case, we can write second part of the Hermite-Hadamard Type Inequality for S(j)-convex functions.

Theorem 5.13. Let $D \subset \mathbb{R}^n_{++}$, $p : D \to \mathbb{R}_{+\infty}$ be S(j)-convex and integrable on D. Then, for all $z \in D$, we have the inequality:

$$p(z) \int_{D} \psi_{j,z}(x) \, dx \le \int_{D} p(x) \, dx \tag{5.13}$$

Examples:

On the same domains in previous section, Hermite-Hadamard Inequalities for S(j)-convex functions can be also considered. For example, let us discuss triangular domain in Example 3.1.

Example 5.6. Let

$$D = \left\{ (x_1, x_2) \in \mathbb{R}^2_{++} : 0 < x_1 \le a, \ 0 < x_2 \le v x_1 \right\}.$$

 $D \subset U_i(z)$ is necessary in order to the inequality (5.10) can be written on this region.

When j = 1, for all $z \in \mathbb{R}^2_{++}$ it is $D \not\subset U_1(z)$. Hence, from Corollary 5.2, for S(1)-convex functions, the right part of Hermite-Hadamard Inequalities can not computed on this domain.

Let j = 2. This is obvious that $D \subset U_2(z) \Leftrightarrow z_2 \ge vz_1$. From (5.10), we obtain

$$\int_{D} p(x_1, x_2) \, dx_1 dx_2 \le p(z_1, z_2) \int_{D} \frac{x_2}{z_2} dx_1 dx_2$$

When the right integral is calculated, for all $z \in D$ satisfying the condition $z_2 \ge vz_1$ (thus, z is on the hypotenuse of the triangle) and for all p that is S(2)-convex, integrable on D, we have

$$\frac{1}{A(D)} \int_{D} p(x_1, x_2) \, dx_1 dx_2 \le \frac{va}{3z_2} p(z_1, z_2)$$

where A(D) is area of the triangular domain.

For the same domain, if we apply the Theorem 5.13, then we can estimate the left part of Hermite-Hadamard Inequality.

Let j = 1*. From* (5.13)*, we have*

$$p(z_1, z_2) \int_D \psi_{1,z}(x_1, x_2) \, dx_1 dx_2 \le \int_D p(x_1, x_2) \, dx_1 dx_2$$

and from (5.12), we obtain

$$\int_{D} \psi_{1,z} \left(x_1, x_2 \right) dx_1 dx_2 = \frac{a^3 z_2}{3 z_1^2}.$$

Thereby, the inequality is

$$p(z_1, z_2) \frac{a^3 z_2}{3z_1^2} \le \int_D p(x_1, x_2) dx_1 dx_2.$$

Let j = 2. The left part of the Hermite-Hadamard Inequality is

$$p(z_1, z_2) \int_D \psi_{2,z}(x_1, x_2) \, dx_1 dx_2 \le \int_D p(x_1, x_2) \, dx_1 dx_2.$$

Since, with a simple calculation, we obtain

$$\int_{D} \psi_{2,z} \left(x_1, x_2 \right) dx_1 dx_2 = \frac{a^3 \left(z_1^2 v^2 - z_2^2 \right)}{6 z_1^2 z_2}$$

and from above inequality, we have

$$p(z_1, z_2) \frac{a^3 \left(z_1^2 v^2 - z_2^2\right)}{6z_1^2 z_2} \le \int_D p(x_1, x_2) \, dx_1 dx_2.$$

Acknowledgements

The authors wish to thank Akdeniz University, Mersin University and TUBITAK (The Scientific and Technological Research Council of Turkey).

References

- [1] G. Adilov and S. Kemali, Abstract convexity and Hermite-Hadamard Type Inequalities, *Journal of Inequalities and Applications*, doi:10.1155/953534, 2009(2009), Article ID 943534, 13 pages.
- [2] G. Adilov and A. Rubinov, B-convex Sets and Functions, Numerical Functional Analysis and Optimization, 27(3-4)(2006), 237-257.
- [3] G. Adilov and I. Yesilce, B⁻¹−convex Sets and B⁻¹−measurable Maps, *Numerical Functional Analysis and Optimization*, 33(2)(2012), 131-141.
- [4] W. Briec, C.D. Horvath and A.M. Rubinov, Separation in B-convexity, Pacific Journal of Optimization, 1(1)(2005), 13-30.
- [5] A. Rubinov, *Abstract Convexity and Global Optimization*, Kluwer Academic Publishers, Boston-Dordrecht-London, 2000.
- [6] E.V. Sharikov, Hermite-Hadamard Type Inequalities for Increasing Radiant Functions, *Journal of Inequalities in Pure and Applied Mathematics*, 4(2)(2003), Article 47.

Received: December 03, 2014; Accepted: May 10, 2015

UNIVERSITY PRESS

Website: http://www.malayajournal.org/