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Abstract

In this article, Hermite-Hadamard Inequalities for L(j)-convex functions are analyzed. S(j)-convex
functions which is founded upon B~!—convexity concept, are defined and for this functions,
Hermite-Hadamard Inequalities are investigated. On some special domains, concrete form of inequalities are
denoted.
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1 Introduction

Integral inequalities have played an important role in the development of all branches of mathematics.
Also, Hermite-Hadamard inequalities are one of the integral inequalities. Recently, Hermite-Hadamard
inequalities and their applications have attracted considerable interest. Hence the Hermite-Hadamard
inequalities have been studied for varied families of functions which are obtained by many authors. (e.g. [1],
[5], [6], etc.)

In this paper, we examine Hermite-Hadamard Type Inequalities for L(j)-convex functions. L(j)-convex
functions are founded upon the B-convexity concept in R’} [2] (Section 3). In section 4, S(j)-convex functions
which is related to B! —convexity concept are defined. After, for this family of functions, Hermite-Hadamard
Type Inequalities are analyzed (Section 5). Additionally, different examples about both cases are discussed and
studied.

2 L(j)-convex Functions

The sets which are given the following forms, are discussed to define the L(j)-convex functions [2]. For all
z€eRY, o
No(z)={z€R} :0<z; <z, i=1n}
N;(z) = {:17 eRY, 1 2z; <x; and z;25 < 2wy, Vi :1,7} ,j=1,n.

No (2) is closed, convex and radiant set, N; (z) (j = I,n) are closed, convex and co-radiant sets [4].
Using these sets, (n + 1) relations are defined as follows ([2]): for z,y € R"}

=0y & x € Ny (y)
=z yeyeN;(z), J
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=;,J = 0,n are partial order relation on R , (see [4]).
We can write Minkowski functions according to N; (y) (y eERY,, j= 0,7) sets and < j order relations.
Fory € R, Ny (y) is radiant set and <, is coordinate-wise order relation hence Minkowski gauge is

KNy (y) (x) == inf{a > 0:2 € aNy(y)} =inf{a > 0: 2= 0y} .
Let us show this function with [, ,,, namely
loy () == Ny (y) (2) rzeRY,.
For j =1,nand y € R}, the sets N; (y) are co-radiant, thus Minkowski co-gauges are defined by
UN,(y) (7) == sup{a:z € aN; (y)} = sup {a : ayjjx}
we denote these functions with /; ,,, namely
ljy (7) = vn,(y) (2) , reRY,.

Remark 2.1. Let y € R"  and j = 1,n. Then the sets N; (y) coincides with the intersection of the cone

Vj(y):{meRi:xi<xj (izl,n)}
Yi Y5

and the half-space
H;(y) ={z eR":z; >y;}.
Using the cone V; (y), l;,, can be shown another form. If x € V; (y), then

by () = SuP{a : O‘yiﬂ"} =sup{a:ay; <a;} = ngJ

J

If z ¢ V; (y), then for all @ > 0 the inequality ay<;x does not hold therefore [; , () = 0. Consequently,
i Vs
(@)= 0 CETW)
0, x¢Vi(y)
For j = 0, n, let us analyze the convexity with respect to the family of functions L(j) = {l;, : y € R7, }.

Definition 2.1. Let j = 0,n. A function f : R, — Ry = RU {+oo} is an IPH(j) function if f is positively
homogeneous of degree one and increasing according to order relation < ;.

Theorem 2.1. Forall j =0,nand y € R}, ; ,, functions are IPH(j) functions.
Proof. For j =0
lo,y(Ax) =inf{a>0: Az € aNy (y)} =inf {a > 0: Az=<, 0y}

= inf {a >0: xjo%y} = Ainf{a’ > 0:2=,0'y} = Moy (@) .

Forj=1,n

ljy (Ax) =sup{a: Az € aN; (y)} =sup {a : ayjj)\a:}

= sup {a : %yjjx} = \sup {o/ : o/yjja:} =Ny ().
Namely, /; , (j = 0,n) are positively homogeneous of degree one.
Now, let us prove that the functions I, (j =0,n) are increasing. Let j = 0. If z1<,z, then
{a>0:z=<y0y} C {a>0:21=,0y} and hence Iy, (z1) < loy (z2). For j = 1,n, if T1=,72, then
{a >0: ayjjxl} C {a >0: Otyjng} and thus I , (z1) < 1, (22). O

Following theorem can be proved using Corollary 2.6 in [2].
Theorem 2.2. The function f : R} | — R is L(j)-convex function (j = 0,n) if and only if f is IPH(j) function.

Moreover, some important properties of IPH(j) functions are given, in [2].
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3 Hermite-Hadamard Type Inequalities for L(j)-convex Functions

We begin with the following theorem which has an important role in Hermite-Hadamard Type Inequalities
for L(j)-convex functions [2].

Theorem 3.3. For j = 1,nand p: R} — R, the following statements are equivalent:
(i) p is an IPH(j) function.
(i) p(z) = Ap (y) for all Vz,y € RY | and X > 0 such that \y=<;z.
(iii) p () > ljy () p (y) forallVa,y € R .

We can obtain Hermite-Hadamard Type Inequalities for L(j)-convex functions as a corollary of the above
theorem.

Corollary 3.1. Let D C R}, p : D — R be a L(j)-convex function and integrable function on D. Then, for all
y € D, we have

p(v) /D Ly () di < /D p(z) d. (3.1)

Let us investigate Hermite-Hadamard Type Inequalities via Q(D) sets given in [6].
Let D C R"}, be bounded and hold condition of ¢/ (intD) = D. We denote by Q(D) the sets of all z* € D

such that )

) /D ljoe (z)dz =1 (3.2)
where A (D) = [, dx

Theorem 3.4. Let p be L(j)-convex function defined on D and integrable on D. If Q(D) is nonempty, then one has the
inequality:

e L ) dae
m*ztggmp(z ) < A(D)/Dp( )d (3.3)

Proof. If p (z*) = 400, then by using p(x) > [, (z) p(y), it can be shown that p cannot be integrable. It

conflicts integrable of p. So p (z*) < +oc0. From Theorem B.3|(iii), for all z € D
p(z) > 1z (2)p ("),

Since z* € Q (D), by

Remark 3.2. As it is clear that, for each x* € Q (D), inequality

. 1
pe") < 55 [ p@da 64

is hold. If we get p () = 1 4+ (), is an equality.
Let p be a L(j)-convex function defined on D C R’} , and be integrable on D. For all z,y € D, the inequality
p(x) = iy (2)p (y)

is hold. Hence,
p(y) < vz (y)p(2) 3.5)

where

=L 2 oweVily _ ) E y¢intVi(a)
W @ T s, wgVily) | o, yeintV(x)

The following theorem can be proved, using the inequality (3.5).
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Theorem 3.5. Let D C R% , p: D — Ry be an integrable, L(j)-convex function and D N intV; (y) = 0. Then, the
following inequality holds:

/D p(x)dz < p(y) /D o5 (@) d (3.6)
forally € D.

Examples:

On some special domains of R? |, Hermite-Hadamard Type Inequalities for L(j)-convex functions have
been implied with concrete form.

Firstly, for D C R%, and every y € D, let us derive computation formula of the integral [}, ; ,, (z) da.

Let D C R | and y = (y1,y2) € D. Then,onR2 |

x x x x
Vl(y){$€R3_+:2<l}’ VQ(y){xeRi+5l<2}

Y2 Y1 Y1 Yo
and
?717 HASS V ﬂ, xTr € V
hy(@)={ » W, @y =] w 2(v)
0, r ¢ Vi(y) 0, v ¢ Va(y)

Let V¥ (y) (j = 1,2) be the complement of V; (y) (j = 1,2). Therefore, with the above assumptions, we can
separate the region D into two regions: D; (y) = DV (y) and D \ D; (y) = DV} (y). Thus, we have

/ Ly (x)de = / Ly (z)dx + / Ly (z)dz
D Dj(y) D\D;(y)

; 1
:/ x—]dJH—/ Odx = —/ xjdz.
Dj(y) Yi D\Dj;(y) Y5 JD;(y)

Example 3.1. Consider the triangle D defined as
D:{(ml,xg) ER3+:O<331 <a,0< 29 §U$1}~

Fory € D, D; (y) would be as follows:

Dl(y)Z{xED:O<x1 <a, O<x2§y2x1}
Y1

Dg(y):{a:ED:0<x1§a, y—2x1 <x2§vx1}.
Y1

For j = 1; we deduce that:

Yo

1 1 [* [V
/ ll,y(x)da::—/ xldmz—/ /
D Y1 JD,(y) Y1 Jo Jo

Hence, for the given region D, the inequality will be as follows:

1
3
1 y2 a
J)ldl‘gdl‘l = .
yi 3

3y3
p(Y1,92) < — /p(x1>$2)d$1d$2~
a y2 Jp

For j = 2; we have

Y1

1 a 2.2 .2 3
_ 1 v2_<yz> Py = LU
2y2 Jo Y1 2y2y7 3

Then, for the same region D, the inequality is as follows:

1 1 a VI
/lz,y (z)dr = — Izdwzf/ / Tadradry
D Y2 JDs(y) Y2 Jo Ju2zi
2

( )< 6y 12 / ( ) dyd
PWi1,Y2) S w75 5 o7 pP(x1,T2)axr10T2.
a3 (v?y? —v3) Jp
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Let’s derive the set Q(D) for the given triangular domain D. Since A (D) = %, y* € D is element of Q(D) if and
only if, for j = 1;

forj =2

Figure 1. In case of j = 1, the set Q(D) for triangular domain D
Example 3.2. Let the triangular region D be as follows:
D ={(z1,22) €Y, : 2L+ 2 <1}

In this region, for y € D, the sets D; (y) (j = 1,2) are as following forms:

abys Y1 a

D =zeD:0<p < ——— Z“a<z1<a— -z
1) { P ay by oy o b 2}

b b
Dg(y):{xeD:O<x1ay1, y29€1<$2<b—m1}~

ays +by1 w1 a

If j = 1, then we have

axg

abyo
1 1 [amttn [0
/ll,y (z)dx = — xlda::—/ ” yl/ z1dridTo
D Y1 JD,(y) Y1 Jo vz

Y2

1 [eatEn an 2 v\’ . a®bys [(ab —a)®y2 — b%y?
R (a — —) — [ = r5dre = 3 .
2y1 Jo 6y1 (ay2 + by1)

T‘
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For j = 2; we get

bml

1 au2+bI/1 T Ta
/ loy (x)dx = —/ Todx = / / rodxodry
Y2 D2( ) Y2 9211

Lo [0\ (\?] ., e [(ba—b)7yt a3
[P ()l
2y2 Jo a 9 6y2 (ay2 + by1)

Thereby, in D, to j = 1; the inequality is

6y1 (ays + by1)®
adbys [(ab - a)2 Y3 — be%]

P (y1,y2) < / p(x1,22) dr1dee
D

for j = 2; the inequality is

6y2 (ay2 + byl)3
b3ay, [(ba — b2yl - a2y§]

P (y1,y2) < / p(z1,x2) dzrdxs.
D

Let us construct Q(D) for the given region D. Since A (D) = %, if we get j = 1, then we obtain

a?y; [(ab—a)* (43)° = 0° ()’

y €Q(D) 1
3yi (a3 + byp)’
also, if we get j = 2, then we have
byi |(ba—b)° (47)° — a2 (43)°]
y eQD) = =1.

3y5 (ays + by)”
Example 3.3. Now, let us get a rectangular region D which is defined as follows:
D = {(z1,22) €ERY, :z1<a, zo <b}.

In this type region, it can be two cases: For y € D
1) 2 < b
y
2) y%
1) Let &

‘v: vV |
SRS

g g Under this condition, the sets D; (y) will be:

Di(y)=92z€D:0<x; <a, 0<x2§%$1

Dy(y)=32€D:0<x; <a, %x1<x2§b .

Hence, for j = 1; we have

1
/zl,y@)dz,/ e
D Dl(y) hn

3
Y2 2 a~y2
a:da?dx /( )xdx:
/l27y — .Z‘Qd.l?_ / / $2d1‘2d$1
yg D2( ) y2 yzwl
a

1 b2 22,3
=50 b — (y2> m% dry = 3yiba = yoa” a2 %29
y2 Jo Y1 6y1y2

for j = 2; we obtain
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By taking into account these, becomes following inequalities: for j = 1;

3y}
a3y2

P (y1,y2) < / p (21, 22) dzdas
D

forj =2
Py y)<76y%y2 /p(x r2) dr1idz
1,92) > 1,42 1 2.
3y2b2a — y3a® Jp

Let us derive the set Q(D). Since A (D) = ab, then while j = 1;

. . 3b(yp)’
Yy EQ(‘D)@Z/2: 5121)
while j = 2;
1
. ) (y3)° '\’
D =20

2) Now, let us consider the second case. Namely, let % > 3 Therefore, we have that
D (y) = xeD:Z—;xQSmlga, 0<za<b
Dg(y): ’IEDSO<ZL’1§%IQ, 0< a9 <by.

To j = 1; we have
1 1 b a
liy(x)de=— ride = — z1dzidTs
D Y1 JD,(y) Y1 Jo ST

1t ? 3y3a®b — by}
= — a* — (Zh) z2 | doy = Pt i 5 i,
2y1 Jo Yo 6y1Y5

Thereby, in this case, the inequality is

p( y)<6yly§/p(w o) dryde
Y1, Y2 = 32a2b — b3y? /) 1,722 147T2.

In case j = 2, we get

1
/ la,y (z)dx = / loy (x)dx = 7/ Todx
D Da(y) Y2 JDy(y)

yiz

I ) I b3
= —/ / e Todridry = — &xgd:cg = —y;
y2 Jo Jo y2 Jo Y2 3y3

Thus, the inequality will be as follows:

3 2
p(y1,y2) < 7b3y2 p (x1, 22) dridas.
Y1 Jp

By taking into account both cases, Q(D) becomes as follows: for j = 1;

b 3b (y¥)*
Q(D)Z{y*GDiyi o= Sél)}U

1
L U
a’ 72 3a? — 6yia

IN

y*eD:

S|
\Y

forj=2;

QD)={y eD:?

<
% N %

1
b Wt \?

<2 — (2 27

=N <3b3a2 — 6y3 U

2
) v b . 3a(y3)
{y eD: ﬁ P Y = b22 .

Y
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Example 3.4. We shall now consider the case where the set D is part of the disk defined as
D = {(z1,22) € RZ | 2} +23 <r?}.

Fory € D, the set Dy (y) is combination of

VY2 + s Y

DT(y){zGD:O<x1§ T 0<1:2<yx1}

and

D;‘*(y):{xEDzryl<$1<r70<x2< 7"2—30%}.

VY + Y3

Namely, D1 (y) = D5 (y) U Di* (y). The set Dy (y) will be as follows:

Ds (y) = $€DIO<I1SLy2$1<l‘2< r2—a? 5.
y1+yz Y1

To j = 1; we have

1 1
/ll,y / r1dx = —/ xldm—i——/ r1dx
Dl(y) Y1 Jpi(y) Y1 J Dy (y)

rzfml
\/le/ $1d$2d$1+*/ / r1dzadry
yl Y1
y1+y2
1 Yy r 3
- wﬁﬂ%CQQ)d1+ mv@;:%qugglﬁiga
I 2 2
y1 Jo (1 o 3y1V/v3 + 3
y1+y3

In this case, for the given region D, the inequality will be following form:

14 / +
p(y1,92) < 31 v / (w1, 2) dridxs.
Y2
To j = 2; we obtain that
1 Tz_rl
/ loy (x)de = — Todr = — [V yl“’? / Todxodxy
D Y2 JDy(y) Y2 82,

2 3
y1+y2 < (1 y2> 2> _ L1
A% + 5 |z | dry = —————
2y2 yi) ! 3y2v/y3 + Y3

and by using the equality above, the inequality will be as follows:

L=V Il g2 vi 3 / (21, 29) dz1das.

)y Y2
p(y1,92) < Tgyl

Since A(D) = ’TTTZ, let us give the conditions for becoming elements of the set Q(D). For j = 1; we have

2
37 (1) (W) + (5)°)
For j = 2; we get
12

37 (y3)” (1) + (13)°)”
Remark 3.3. From Theorem[3.5} the right hand side of Hermite-Hadamard Inequalities can be also analyzed for concrete
domains. But, in this case, D N intV; (y) = 0 is required because of integrability of the function ¢, ,, on D.
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Example 3.5. As in the Example[3.1} we discuss the triangle
D= {(xhxz) 6Ri+:0<m1 <a,0< x9 SWC1}~

If j = 1, then D NintVy (y) # 0 for Vy € R3 . Thus, from Theorem |3.5| the right hand side of Hermite-Hadamard
Inequalities for L(1)-convex functions is not obtained.
Let j = 2. It is obvious that D NintVs (y) = 0 < yo > vyy. From Theorem 3.5} we have

X
/p($17x2)d1'1d$2 Sp(yhyz)/ 2 dzydas.
D D Y2

2
/Edl‘ldl‘g / / l‘gdl‘gdl‘l 7/ dxl
D Y2 6y2

for all y € D which satisfy the condition y2 > vy (namely, y on the long side of the triangle) and all p that are
L(2)-convex, integrable on D, the inequality

Since

2 3
/ p (21, ) daydas < ——p (y1,72)
D 6y2

is hold, or since A(D) is area of triangular domain, we obtain the inequality

1

va
B <= .
A(D) /Dp(ﬂf?uxz)dxldﬂh < 3y2p(y1,y2)

4 S(j)-convex Functions

Firstly, let us recall the definition of B~!—convex set [3]:
Definition 4.2. A subset M of R”;  is B~ —convex if for all x1,29 € M and all t € [1,00) one has txq Az € M.
Here, A is the greatest lower bound of x4, z9, that is,
x1 Axg = (min{zy 1,221}, ....min{x1 »,2n}) -

For every z € R’} ,, R’} | can be written as the combination of (n + 1)-parts which are given with the
following forms:

My (2 {x€R++ zi<wmziy, 1=1 n}
Mj {JJGR’L+.$JSZJ and mjzlgzjmi,W:Ln}.

The sets M; (z) (j = 0,n) are closed and convex sets. The following theorem gives construction of the sets
M; (z) (j =0,n).

Theorem 4.6. My (z) is co-radiant, B~ —convex set and M; (z) (j = 1, n) are radiant, B~'—convex sets.

Proof. Let us show that M (z) is co-radiant, namely x € My (z), A > 1 = Az € My (z). Since z € M (2),
then z; <w; (i =1,n). A > 1,502 <z; < Az; (i = 1,n). Consequently, we have Az € M (2).

Now, let us prove that My (z) is B~!—convex. Let z,y € M, (z), t € [1,). Hence, for Vi = 1,n, we have
z; < x; and z; < y;. By using these inequalities; since z; < x; < tz; and z; < y;, we obtain z; < tx;Ay;, i = 1,n.
We have shown that tz Ay € My (2).

And now, we have to see that M; (z) (j = I,n) areradiant. Let z € M; (z) and 0 < X < 1. Since z € M; (=),
wehave z; < z; and x;2; < zj2;, i = 1,n. 0 < XA < 1sothat A\z; < z; < z; then Az; < z;. Also, A > 0, hence
we can derive Az, z; < zjA\z;, i = 1, n. By taking into account both cases, Az € M (z).

Finally, let us show that M; (z) are B~'—convex. Let z,y € M; (z),t € [1,00).

x € M; (2) & z; <zj and % < zjxg, i=1,n
yeM;(z) ey <z and y;z < zjy;, i =1,n.

There are two possible cases: for ¢ € [1,00)
I) itcanbe tz; < z;. In this case, from y; < z;, we obtain tx; Ay; < z;.
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II) let tz; > z;. Again, since y; < z;, we have tx; A y; < z;. Hence, we deduce that tx; A y; < z;.
In second part, for z € R"} ,

(tl’j A yj) Z; = t(lszl' A Yjizi S t:cizj A Yizg = (tSCZ A yi) Zj.
Thus, we have shown that tz Ay € M; (2). O
The (n + 1)-relations according to M, (z) (j = 0,n) can be given by

T <0y Sy E M(v)
r=;ye e M;(y), ji=1n.

Let us see that <;, (j = 0,n) are partial order relations.
Theorem 4.7. <, (j = 0,n) are partial order relations.

Proof. Let j = 0. < is coordinate-wise order relation, namely,
r<soyey—ccRY .

So that < is a partial order relation.

Letj =1,n.

Firstly, we show that < (j = 1,n) are reflexivity. For all z € R | and all j = 1,n, then z; < x;. Also, for
alli =1,n, we have z;z; < z;z;. Consequently, z <; .

Let us show that <; (j = 1,n) are antisymmetric: Let z, 2 € R},  <; z and 2 <; . We deduce that

—_

r<;2 & x; <z and zj2; < 7Ty, i=
z<;2 & 2z <z; and zjm; <752, i =

,n

—_

;M.

From the first part, for j = 1,n, we get z; = z;.
By using this equality and the second part, for all i = 1, n, since

Tz < ZjTi = 24 <z
2% < Tjz; = T < 2z

thus, itis z; = z;.

Accordingly, we obtain z = z.

Now, we have to prove that <; (j = 171) are transitive. Let z,y,2 € R’ | = <; y and y <; 2. Hence, we
have that

r<;y & x; <y; and z;u; < T, i=1,n
Y2 & y; <z and y;z; < 2y, i=1,n.

Since z; < y; < z;, then we obtain
Zj S Zj- (47)

Taking into account that the above inequalities hold, we have that

2y <yizs = 2y (Yi2) < yixs (y2:) < iz (259:)
x;2; (i) < x:25 (Y;9:)
Tjzg < 254 (48)

From @) and , we have z % z. The theorem is proved. O

Now, we can write Minkowski functions according to M; (z) (z € R, j = 0,n) sets and <, partial order
relations. For z € R |, since that M (z) is co-radiant;

Uio(z) () :=sup{a: x € aMy (2)} = sup {a: az <o v}
then, we denote this function with s .,

80,2 (%) = Vnge(2) (2) rzeRY,.
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For z € R" | and j = 1, n; by taking into account that M; (z) are radiant sets; Minkowski gauge of M; (z) are
Ptz (2) i=inf{a > 0: 2 € aM; (2)} =inf{a>0: 2 <; az}.
Let us denote this function with the following notation

Sje (@) = pag () (7)), weRY,.

The sets M; (z) (j = 1,n,z € R, ) can be written as the intersection of the cone
Uj(z)—{xGRﬁ_F:xjgwii—l,n}
Zj Zi

and the half-space
H;j(z) ={x e R" : z; < z;}.

The functions s; . can be denoted the following form, if we use the cone U; (z).

B j—; , xzeU;(z)
552 () = { - v g Uj— ). (4.9)

Let us analyze convexity with respect to the family of functions S(j) = {s;.: 2 € R} },j = 0,n.

Definition 4.3. Let j = 0,n. A function f : R’ | — Ry is an IPH[j] function if f is positively homogeneous of
degree one and increasing according to order relation <.

Theorem 4.8. Vj = 0,nand Vz € R" |, s; . are IPH[j] functions.

Proof. Let us show that s; . are positively homogeneous of degree one.
For j = 0, we have that

50,z (Az) =sup{a: Az € aMy (2)} =sup{a: az <o Az}
= sup {a cozp < Axy, i = 1,7} = sup {)\a' oz < a0 = 1,7}

=Asup{a’: &'z <0 2} = Asp. ().
For j = 1,n, we get

- () = inf (> 0: Az € alf; (4]} = inf {a > 0 Ar <; a2}
=Ainf{a' > 0:2 x5 'z} = Xsji. (2).

Let us prove that s; . are increasing according to <; (j = 0,n).

Let j = 0 and 1 <o 2. Then, we have {a: az <o 1} C {a: az <o z2}. From properties of supremum,
we obtain that s¢ , (x1) < sg,. (z2).

Letj = 1,n and 21 <; 2. Hence, we have {a > 0: 22 5j az} C {a > 0: 21 <; az}. Consequently, we
obtain Sj.z (1‘1) S Sj.z (1‘2) O

Now, let us give the following theorem which can be easily proved via Corollary 2.6 in [2].
Theorem 4.9. For j =0,n, f : R — Ry is S(j)-convex function if and only if f is IPH[j] function.
The following theorem implies some properties of IPH[j] functions.

Theorem 4.10. Let j = 1,nand f : R" | — Ry bean IPH[j] function. Then following statements are hold:
(i) f (x) > 0 forall z € R .
(i) If f (x*) = 400 where x* € R | then f (x) = 400 on the set

{x € R, : 3IXA >0 such that Az* < x}
(iii) I f (2*) = O where z* € R} then forallz € {x € R} : IXN >0, = <; A\z*}, f (z) =0.

Proof. (i) Letz € R% . Because 1z <; z, we have 3 f (z) = f (%) < f (z). Therefore f (z) > 0.

(i) Let z € R"} | be a point such that there exists A > 0 with the property Az* <; x. Then f (z) > f (Az*) =
Af (2*) = +o0.

(iii) Let 2 € R% | and let there be A > 0 such that  <; Az*. Thus, we have that 0 < f(z) < f(\z*) =
Af (z*) =0. O
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5 Hermite-Hadamard Type Inequalities for S(j)-convex Functions

Let us prove the following theorem which has an important role in Hermite-Hadamard Type Inequalities for
5(j)-convex functions.

Theorem 5.11. For j = 1,nand p : R" | — Ry, the following statements are equivalent:
(i) p is an IPH[j] function.
(it) Forall v, z € R% | and X\ > 0 such that x <; Az, we have p (x) < Ap (2).
(iti) For all x,z € R}, , we have p (x) < s; . (x) p(2).

Proof. i = ii) Since p is an IPH[j] function, for all A > 0, we get z <; Az. Hence p (z) < p (Az) = Ap(2).

it = 1) The monotonicity of p follows from (ii) with A = 1. We now show that p is positively homogeneous.
Let z = Az with A > 0. Then by (ii), we have p (z) = p(A\z) < Ap(z). Because = = A\~'z, we conclude that
p(2) < A~1p (x). Thus p(A2) = Ap (2).

it = 4it) If p(2) = 0, wehave 0 < p(z) < s;.(x)p(z2) = 0forall z. Letp(z) > 0Oand A > Obea
number such that z <; Az. Applying (ii), we conclude that % < A It follows from the definition of s; . that
sj.» () =inf {\ > 0 : x %, Az}, therefore % < s (z).

i1 = i) follows directly from the definition of s; .. O

If we use the above theorem, then we can deduce the Hermite-Hadamard Type Inequalities for S(j)-convex
functions.

Corollary 5.2. Letp: D — R, D C R} | bea S(j)-convex function and integrable function on D where D C U;(z).
Then, for all z € D, the following inequality holds:

/Dp(w) de <p (z)/ s (x) de. (5.10)

D

Proof. It is proven from Theorem (iii) and (&.9). O

Let’s analyze the inequality (5.10) via sets Q(D).
Let D C R}, be bounded and satisfy condition ¢l (intD) = D. Q(D) consist of all point 2* € D such that

1
D) /D Sz (x)de =1,

here A (D) = [, dz.
We can give a theorem about the set (D) and Hermite-Hadamard Type Inequalities of S(j)-convex
functions.

Theorem 5.12. Let p be a S(j)-convex function defined and integrable on D. If Q(D) # 0, then one has the inequality:

1
_ z)dr < inf z*
A(D)/me < inf pla)

Proof. If p(2*) =0, from p (x) < s+ () p (¢*) we have p (z) = 0. Thus, let p (z*) > 0. Forallz € D,
p(2) < sja- () p (")

is hold. Because z* € @ (D), we have
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For every z* € Q (D), the inequality

115 pe) e <pe) (511)

A(D)
is hold. If we take p (x) = s, ,+ (x), the inequality (5.11) will be turn equality.
Let p be a S(j)-convex function defined and integrable on D which is closed, bounded and connected set.
Forall x, z € D, we have
p(x) < 85z (2)p(2).
Hence, below inequality is obtained:
P () ¥ja (2) <p(2)

where

Vja (2) =

| :{ 3710 ={ s 2 Eintl; (@) (5.12)

8% (T) 0, x¢U(z) 0, zeimntl(x)
In this case, we can write second part of the Hermite-Hadamard Type Inequality for S(j)-convex functions.

Theorem 5.13. Let D C R}, p : D — R, be S(j)-convex and integrable on D. Then, for all = € D, we have the
inequality:

p(Z)‘/D’L/)j’Z (x)dacg/Dp(x) dx (5.13)

Examples:
On the same domains in previous section, Hermite-Hadamard Inequalities for S(j)-convex functions can
be also considered. For example, let us discuss triangular domain in Example[3.1}

Example 5.6. Let
D:{(ml,x2)6R1+:0<x1§a, O<x2§vx1}.

D C Uj(z) is necessary in order to the inequality can be written on this region.

When j =1, forall z € R%_itis D ¢ Uy(z). Hence, from Corollaryfor S(1)-convex functions, the right part
of Hermite-Hadamard Inequalities can not computed on this domain.

Let j = 2. This is obvious that D C Us(z) < 29 > vzy. From (5.10), we obtain

€T
/ p (21, 22) drrdee < p (21, 22) / 2 day d,.
D D ?2
When the right integral is calculated, for all z € D satisfying the condition zo > vz, (thus, z is on the hypotenuse of the
triangle) and for all p that is S(2)-convex, integrable on D, we have

1

A(D) /Dp(zl,xg) dridre < ;}—Zp (21, 29)

where A(D) is area of the triangular domain.

For the same domain, if we apply the Theorem then we can estimate the left part of Hermite-Hadamard
Inequality.

Let j = 1. From (5.13), we have

p(Zl,Zz)/ Y1,z (I17I2)dw1dl’2§/p(zl,xz)dfvldﬂﬂz
D D

and from (5.12), we obtain

3
/ U1, (21, 22) derdae = Q.
b 327

Thereby, the inequality is

3
L?S/p(l'l,l'g)dl'ldl'g.
321 D

Let j = 2. The left part of the Hermite-Hadamard Inequality is

p(21,22)

p(zlaz2)/ Vo, ($17$2)d$1d$2S/p(ﬂﬁl,@)dwld%z
D D
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Since, with a simple calculation, we obtain

a® (z%vQ — z%)

62720

/ Va5 (21, x2) driday =
D

and from above inequality, we have

a® (zfv2 - z%)

p (21, 22) 672 < /Dp(xl,xg)dxldxg.
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