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Abstract

By making use of the operator Bc
ν defined by the generalized Bessel functions of the first kind, the au-

thors introduce and investigate several new subclasses of starlike, convex, close-to-convex and quasi-convex
functions. The authors establish inclusion relationships associated with the aforementioned operator. Some
interesting corollaries and consequences of the main inclusion relationships are also considered.
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1 Introduction, Definitions and Preliminaries

Let
U = {z : z ∈ C and |z| < 1}

be the unit disk in the complex z-plane. Also let A be the class of functions f of the form:

f(z) = z +
∞∑

n=1

an+1z
n+1, (1.1)

which are analytic in U and satisfy the following normalization condition:

f(0) = f ′(0)− 1 = 0.

Let S denote the subclass ofA consisting of all functions which are univalent in U. We denote by S∗(α), K(α),
C(β, α) and C∗(β, α) the familiar subclasses of A consisting of functions which are, respectively, starlike of
order α in U, convex of order α in U, close-to-convex of order β and type α in U and quasi-convex of order β

and type α in U. Thus, by definition, we have (for details, see [4, 6, 7, 11])

S∗(α) :=
{

f : f ∈ A and <
(

zf ′(z)
f(z)

)
> α (0 5 α < 1; z ∈ U)

}
,

K(α) :=
{

f : f ∈ A and <
(

1 +
zf ′′(z)
f ′(z)

)
> α (0 5 α < 1; z ∈ U)

}
,
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C(β, α) :=
{

f : f ∈ A, g ∈ S∗(α) and <
(

zf ′(z)
g(z)

)
> β (0 5 α, β < 1; z ∈ U)

}
and

C∗(β, α) :=

{
f : f ∈ A, g ∈ K(α) and <

((
zf ′(z)

)′
g′(z)

)
> β (0 5 α, β < 1; z ∈ U

}
.

It is easily observed from the above definitions that

f(z) ∈ K(α) ⇐⇒ zf ′(z) ∈ S∗(α)

and
f(z) ∈ C∗(β, α) ⇐⇒ zf ′(z) ∈ C(β, α).

For f ∈ A given by (1.1) and g(z) given by g(z) = z+
∑∞

n=1 bn+1z
n+1, the Hadamard product (or convolution)

of f and g is defined by

(f ∗ g)(z) := z +
∞∑

n=1

an+1bn+1z
n+1 =: (g ∗ f)(z) (z ∈ U).

The generalized Bessel function of the first kind of order p is defined as a particular solution of the follow-
ing second-order differential equation (see, for details, [1]):

z2w′′(z) + bzw′(z) + [cz2 − p2 + (1− b)p]w(z) = 0 (b, c, p ∈ C) (1.2)

and has the familiar representation given by

ωp,b,c(z) =
∞∑

n=0

(−c)n

n! · Γ(p + n + b+1
2 )

(
z

2

)2n+p

(z ∈ C). (1.3)

The series in (1.3) permits a unified study of the Bessel, the modified Bessel and the spherical Bessel functions.
The following cases are worthy of note here.

1. Taking b = c = 1 in (1.3), we obtain the familiar Bessel function of the first kind of order p defined by
(see [1, 8, 12])

Jp(z) =
∞∑

n=0

(−1)n

n! · Γ(p + n + 1)

(
z

2

)2n+p

(z ∈ C). (1.4)

2. Putting b = 1 and c = −1 in (1.3), we get the modified Bessel function of the first kind of order p defined
by (see [1, 12])

Ip(z) =
∞∑

n=0

1
n! · Γ(p + n + 1)

(
z

2

)2n+p

(z ∈ C). (1.5)

3. Letting b = 2 and c = 1 in (1.3), we have the spherical Bessel function of the first kind of order p defined
by (see [1])

jp(z) =
√

π

2

∞∑
n=0

(−1)n

n! · Γ(p + n + 3/2)

(
z

2

)2n+p

(z ∈ C). (1.6)

Recently, Deniz et al. [3] considered the function ϕp,b,c(z) defined, in terms of the generalized Bessel func-
tion ωp,b,c(z), by

ϕp,b,c(z) = 2p Γ
(

p +
b + 1

2

)
z1−p/2 ωp,b,c(

√
z)

= z +
∞∑

n=1

(−c)n

4n · (ν)n

zn+1

n!

(
ν = p +

b + 1
2

6∈ Z−0 := {0,−1,−2, · · · }
)

, (1.7)

where (λ)n denotes the Pochhammer symbol (or the shifted factorial) defined by

(λ)0 = 1 and (λ)n = λ(λ + 1)(λ + 2) · · · (λ + n− 1) (n ∈ N := {1, 2, 3, · · · )}.



362 H. M. Srivastava et al. / Inclusion Properties for Certain Subclasses of Analytic Functions...

Subsequently, by using the function ϕp,b,c(z), Deniz [2] introduced the operator Bc
ν as follows:

Bc
νf(z) = ϕp,b,c(z) ∗ f(z) = z +

∞∑
n=1

(−c)nan+1

4n · (ν)n

zn+1

n!
(z ∈ C). (1.8)

It is easy to verify from (1.8) that

z
(
Bc

ν+1f(z)
)′ = νBc

νf(z)− (ν − 1)Bc
ν+1f(z), (1.9)

where
ν = p +

b + 1
2

6∈ Z−0 .

In fact, the operator Bc
ν given by (1.8) provides an elementary transform of the generalized hypergeometric

function, that is, we have
Bc

νf(z) = z 0F1

(
; ν;− c

4
z
)
∗ f(z)

and
ϕν,c

(
− c

4
z
)

= z 0F1( ; ν; z).

In the present article, we investigate various inclusion relationships for each of the following subclasses
of the normalized analytic function class A, which are defined by means of the generalized Bessel function of
the first kind (see also [9] and [10] for inclusion relationships for various other function classes). Indeed, for
c ∈ C, ν ∈ R \ Z−0 and 0 5 α < 1, we write

S∗ν,c(α) := {f : f ∈ A and Bc
νf(z) ∈ S∗(α) (z ∈ U)} ,

Kν,c(α) := {f : f ∈ A and Bc
νf(z) ∈ K(α) (z ∈ U)} ,

Cν,c(β, α) := {f : f ∈ A and Bc
νf(z) ∈ C(β, α) (z ∈ U)}

and

C∗ν,c(β, α) := {f : f ∈ A and Bc
νf(z) ∈ C∗(β, α) (z ∈ U)} .

We also note that

f(z) ∈ Kν,c(α) ⇐⇒ zf ′(z) ∈ S∗ν,c(α) (1.10)

and

f(z) ∈ C∗ν,c(β, α) ⇐⇒ zf ′(z) ∈ Cν,c(β, α). (1.11)

In our investigation of the inclusion relationships involving the function classes S∗ν,c(α), Kν,c(α), Cν,c(β, α)
and C∗ν,c(β, α) given by the above definitions, we shall make use of the following Miller-Mocanu lemma.

Lemma 1.1. (see Miller and Mocanu [5]) Let Θ(u, v) be a complex-valued function, such that

Θ : D → C (D ⊂ C× C),

C being the complex plane. Also let
u = u1 + iu2 and v = v1 + iv2.

Suppose that the function Θ(u, v) satisfies each of the following conditions:

(i) Θ(u, v) is continuous in D;

(ii) (1, 0) ∈ D and <
(
Θ(1, 0)

)
> 0;

(iii) <
(
Θ(iu2, v1)

)
5 0 for all (iu2, v1) ∈ D such that v1 5 − 1

2 (1 + u2
2).
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Let
φ(z) = 1 + p1z + p2z

2 + · · · (1.12)

be analytic (regular) in U such that

φ(z) 6≡ 1 and (φ(z), zφ′(z)) ∈ D (z ∈ U).

If

<
(

Θ
(
φ(z), zφ′(z)

))
> 0 (z ∈ U),

then
<
(
φ(z)

)
> 0 (z ∈ U).

2 Inclusion Relationships

Our first set of inclusion relationships is given by Theorem 2.1 below.

Theorem 2.1. Let f ∈ A, c ∈ C, ν ∈ R \ Z−0 and α + ν > 1 (0 5 α < 1). Then

f ∈ S∗ν,c(α) =⇒ f ∈ S∗ν+1,c(α)

or, equivalently,

S∗ν,c(α) ⊂ S∗ν+1,c(α).

Proof. Let f ∈ S∗ν,c(α) and set
z
(
Bc

ν+1f(z)
)′

Bc
ν+1f(z)

− α = (1− α)φ(z), (2.13)

where φ(z) is given by (1.12). From (1.9) we get

ν
Bc

νf(z)
Bc

ν+1f(z)
=

z
(
Bc

ν+1f(z)
)′

Bc
ν+1f(z)

+ (ν − 1). (2.14)

By combining (2.13) and (2.14), we obtain

Bc
νf(z)

Bc
ν+1f(z)

=
1
ν

[
(1− α)φ(z) + α + ν − 1

]
. (2.15)

Now, by applying the logarithmic differentiation on both sides of (2.15) and multiplying the resulting equation
by z, we have

z
(
Bc

νf(z)
)′

Bc
νf(z)

=
z
(
Bc

ν+1f(z)
)′

Bc
ν+1f(z)

+
(1− α)zφ′(z)

(1− α)φ(z) + α + ν − 1
,

which, in view of (2.13), yields

z
(
Bc

νf(z)
)′

Bc
νf(z)

− α = (1− α)φ(z) +
(1− α)zφ′(z)

(1− α)φ(z) + α + ν − 1
. (2.16)

Upon taking
u = φ(z) = u1 + iu2 and ν = zφ′(z) = v1 + iv2,

if we define the function Θ(u, v) by

Θ(u, v) = (1− α)u +
(1− α)v

(1− α)u + α + ν − 1
,

then we observe that Θ(u, v) is continuous in

D =
(

C
∖{α + ν − 1

α− 1

})
× C
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and (1, 0) ∈ D, with <
(
Θ(1, 0)

)
> 0. Also, for all (iu2, v1) ∈ D such that v1 5 − 1

2 (1 + u2
2), we have

<
(
Θ(iu2, v1)

)
= <

(
(1− α)v1

(1− α)iu2 + α + ν − 1

)
=

(1− α)(α + ν − 1)v1

(α + ν − 1)2 + (1− α)2u2
2

5
−1
2
· (1− α)(α + ν − 1)(1 + u2

2)
(α + ν − 1)2 + (1− α)2u2

2

< 0,

which shows that Θ(u, v) satisfies the hypotheses of the above Miller-Mocanu Lemma. Therefore, we have

<
(
φ(z)

)
> 0 (z ∈ U).

Thus, by making use of (2.13) and (2.16), we find that f ∈ S∗ν+1,c(α). This completes the proof of Theorem
2.1.

Theorem 2.2. Let f ∈ A, c ∈ C, ν ∈ R \ Z−0 and α + ν > 1 (0 5 α < 1). Then

f ∈ Kν,c(α) =⇒ f ∈ Kν+1,c(α)

or, equivalently,

Kν,c(α) ⊂ Kν+1,c(α).

Proof. Applying (1.10) and Theorem 2.1, we observe that

f ∈ Kν,c(α) ⇐⇒ Bc
νf(z) ∈ K(α)

⇐⇒ z (Bc
νf(z))′ ∈ S∗(α)

⇐⇒ Bc
ν (zf ′(z)) ∈ S∗(α)

⇐⇒ zf ′(z) ∈ S∗ν,c(α)

=⇒ zf ′(z) ∈ S∗ν+1,c(α)

⇐⇒ Bc
ν+1 (zf ′(z)) ∈ S∗(α)

⇐⇒ z
(
Bc

ν+1f(z)
)′ ∈ S∗(α)

⇐⇒ Bc
ν+1f(z) ∈ K(α)

⇐⇒ f ∈ Kν+1,c(α),

which evidently proves Theorem 2.2.

Theorem 2.3. Let f ∈ A, c ∈ C, ν ∈ R \ Z−0 and α + ν > 1 (0 5 α < 1). Then

f ∈ Cν,c(β, α) =⇒ f ∈ Cν+1,c(β, α) (0 5 β < 1)

or, equivalently,

Cν,c(β, α) ⊂ Cν+1,c(β, α).

Proof. Let f ∈ Cν,c(β, α). Then, in view of the definition of the class Cν,c(β, α), there exists a function g ∈
S∗ν,c(α) such that

<

(
z
(
Bc

νf(z)
)′

Bc
νg(z)

)
> β, (0 5 β < 1; z ∈ U).

We now let
z
(
Bc

ν+1f(z)
)′

Bc
ν+1g(z)

− β = (1− β)φ(z), (2.17)
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where the function φ(z) is given by (1.12). Now, making use of the identity (1.9), we also have

z
(
Bc

νf(z)
)′

Bc
νg(z)

=
Bc

ν

(
zf ′(z)

)
Bc

νg(z)

=
z

(
Bc

ν+1

(
zf ′(z)

))′
+ (ν − 1)Bc

ν+1

(
zf ′(z)

)
z
(
Bc

ν+1g(z)
)′ + (ν − 1)Bc

ν+1g(z)

=


z

(
Bc

ν+1

(
zf ′(z)

))′
Bc

ν+1g(z)
+ (ν − 1)

Bc
ν+1

(
zf ′(z)

)
Bc

ν+1g(z)

 ·

(
z
(
Bc

ν+1g(z)
)′

Bc
ν+1g(z)

+ ν − 1

)−1

. (2.18)

By Theorem 2.1, we know that
g ∈ S∗ν,c(α) =⇒ g ∈ S∗ν+1,c(α),

so that we can set
z
(
Bc

ν+1g(z)
)′

Bc
ν+1g(z)

= (1− α)q(z) + α, (2.19)

where
<
(
q(z)

)
> 0 (z ∈ U).

Upon substituting from (2.17) and (2.19) into (2.18), we have

z
(
Bc

νf(z)
)′

Bc
νg(z)

=

[
z

(
Bc

ν+1

(
zf ′(z)

))′]
·
[
Bc

ν+1g(z)
]−1 + (ν − 1)[(1− β)φ(z) + β]

(1− α)q(z) + α + ν − 1
. (2.20)

By logarithmically differentiating both sides of (2.17) with respect to z, we have

z

(
Bc

ν+1

(
zf ′(z)

))′
Bc

ν+1g(z)
= (1− β)zφ′(z) + [(1− α)q(z) + α] · [(1− β)φ(z) + β],

which, in conjunction with (2.20), yields

z
(
Bc

νf(z)
)′

Bc
νg(z)

− β = (1− β)φ(z) +
(1− β)zφ′(z)

(1− α)q(z) + α + ν − 1
. (2.21)

The remaining part of our proof of Theorem 2.3 is much akin to that of Theorem 2.1. Therefore, we choose
to omit the analogous details involved.

Theorem 2.4. Let f ∈ A, c ∈ C, ν ∈ R \ Z−0 and α + ν > 1 (0 5 α < 1). Then

f ∈ C∗ν,c(β, α) =⇒ f ∈ C∗ν+1,c(β, α)

or, equivalently,

C∗ν,c(β, α) ⊂ C∗ν+1,c(β, α).

Proof. Applying (1.11) and Theorem 2.3, we observe that

f ∈ C∗ν,c(α) ⇐⇒ Bc
νf(z) ∈ C∗(β, α)

⇐⇒ z (Bc
νf(z))′ ∈ C(β, α)

⇐⇒ Bc
ν (zf ′(z)) ∈ C(β, α)

⇐⇒ zf ′(z) ∈ Cν,c(β, α)

=⇒ zf ′(z) ∈ Cν+1,c(β, α)

⇐⇒ Bc
ν+1 (zf ′(z)) ∈ C(β, α)

⇐⇒ z
(
Bc

ν+1f(z)
)′ ∈ C(β, α)

⇐⇒ Bc
ν+1f(z) ∈ C∗(β, α)

⇐⇒ f ∈ C∗ν+1,c(β, α),

which evidently proves Theorem 2.4.
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3 Remarks and Observations

As already discussed in Section 1, the study of the generalized Bessel function of the first kind permits a uni-
fied study of the Bessel, the modified Bessel and the spherical Bessel functions. By specializing the parameters
in the operator Bc

ν , we obtain the following new operators associated with the Bessel, the modified Bessel and
the spherical Bessel functions (see, for details, [2]):

• Choosing b = c = 1 in (1.8), we obtain the operator Jp : A −→ A associated with the Bessel function,
which is defined by

Jpf(z) = ϕp,1,1(z) ∗ f(z) =
[
2pΓ(p + 1)z1−p/2 Jp(

√
z)
]
∗ f(z)

= z +
∞∑

n=1

(−1)nan+1

4n(p + 1)n

zn+1

n!
. (3.22)

• Taking b = 1 and c = −1 in (1.8), we obtain the operator Ip : A −→ A associated with the modified
Bessel function, which is defined by

Ipf(z) = ϕp,1,−1(z) ∗ f(z) =
[
2pΓ(p + 1)z1−p/2 Ip(

√
z)
]
∗ f(z)

= z +
∞∑

n=1

an+1

4n(p + 1)n

zn+1

n!
. (3.23)

• Letting b = 2 and c = 1 in (1.8), we obtain the operatorQp : A −→ A associated with the spherical Bessel
function, which is defined by

Qpf(z) = ϕp,2,1(z) ∗ f(z) =
[
π−1/22p+1/2Γ

(
p +

3
2

)
z1−p/2 jp(

√
z)
]
∗ f(z)

= z +
∞∑

n=1

(−1)nan+1

4n(p + 3/2)n

zn+1

n!
. (3.24)

Our main results (Theorems 2.1 to 2.4) can thus be applied with a view of deducing the following conse-
quences.

Corollary 3.1. Let f ∈ A, p ∈ R \ Z− and α + p > 0 (0 5 α < 1). Then

f ∈ S∗p+1,1(α) =⇒ f ∈ S∗p+2,1(α)

or, equivalently,

Jpf(z) ∈ S∗(α) =⇒ f(z) ∈ S∗p+n,1(α) (n ∈ N \ {1}).

Corollary 3.2. Let f ∈ A, p ∈ R \ Z− and α + p > 0 (0 5 α < 1). Then

f ∈ Kp+1,1(α) =⇒ f ∈ Kp+2,1(α)

or, equivalently,

Jpf(z) ∈ K(α) =⇒ f(z) ∈ Kp+n,1(α) (n ∈ N \ {1}).

Corollary 3.3. Let f ∈ A, p ∈ R \ Z− and α + p > 0 (0 5 α < 1). Then

f ∈ Cp+1,1(β, α) =⇒ f ∈ Cp+2,1(β, α) (0 5 β < 1)

or, equivalently,

Jpf(z) ∈ C(β, α) =⇒ f(z) ∈ Cp+n,1(β, α) (n ∈ N \ {1}).

Corollary 3.4. Let f ∈ A, p ∈ R \ Z− and α + p > 0 (0 5 α < 1). Then

f ∈ C∗p+1,1(β, α) =⇒ f ∈ C∗p+2,1(β, α) (0 5 β < 1)

or, equivalently,

Jpf(z) ∈ C∗(β, α) =⇒ f(z) ∈ C∗p+n,1(β, α) (n ∈ N \ {1}).

Finally, we remark that similar results can be obtained involving the operators Ip and Qp by specializing
the parameter in Theorems 2.1 to 2.4. Numerous other applications and consequences of our main results
(Theorems 2.1 to 2.4) and their aforementioned consequences (Corollaries 3.1 to 3.4) can indeed be derived
similarly.
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