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Abstract

In this paper, the authors investigate the Hyers - Ulam - Rassias stability and J. M. Rassias mixed type
product- sum of powers of norms stability of a orthogonally generalized quadratic functional equation of the
form

f (nx + y) + f (nx− y) = n[ f (x + y) + f (x− y)] + 2n(n− 1) f (x)− 2(n− 1) f (y),

where f : A → B be a mapping from a orthogonality normed space A into a Banach Space B, ⊥ is
orthogonality in the sense of Ratz with x ⊥ y for all x, y ∈ A.
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1 Introduction

The stability problem of functional equations originated from the following question of Ulam[19]: Under what
condition does there exist an additive mapping near an approximately additive mapping? In 1941, Hyers [8]
gave a partial armative answer to the question of Ulam in the context of Banach spaces. In 1978, Th.M. Rassias
[14] extended the theorem of Hyers by considering the unbounded Cauchy dierence.

The idea of generalized Hyers-Ulam stability is extended to various functional equations like additive
equations, Jensen’s equations, Hosszu’s equations, homogeneous equations, logarithmic equations,
exponential equations, multiplicative equations, trigonometric and gamma functional equations .

It is easy to see that the quadratic function f (x) = kx2 is a solution of each of the following functional
equations

f (x + y) + f (x− y) = 2 f (x) + 2 f (y), (1.1)

f (x + y + z) + f (x) + f (y) + f (z) = f (x + y) + f (y + z) + f (z + x), (1.2)

f (x− y− z) + f (x) + f (y) + f (z) = f (x− y) + f (y + z) + f (z− x), (1.3)

f (x + y + z) + f (x− y + z) + f (x + y− z) + f (x− y− z) = 4 f (x) + 4 f (y) + 4 f (z). (1.4)

So it is natural that each equation is called a quadratic functional equation. In particular, every solution of the
quadratic equation (1.1) is said to be quadratic function. It is well known that a function f between real vector
spaces is quadratic if and only if there exists a unique symmetric biadditive function B such that f (x) = B(x, x)
for all x(see [1, 9]). The bi-additive function B is given by

B(x, y) =
1
4
[ f (x + y)− f (x− y)]. (1.5)
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A Hyers-Ulam-Rassias stability problem for the quadratic functional equation (1.1) was first treated by F. Skof
for functions f : A → B where A is a normed space and B is a Banach space (see [17]). Cholewa [2] noticed
that the theorem of Skof is still true if relevent domain A is replaced by abelian group. Czerwik [3] proved the
Hyers-Ulam-Rassias stability of the equation (1.1).

In 1982-1984, J.M. Rassias [12, 13] proved the following theorem in which he generalized the Hyers stability
result by presenting a weaker condition controlled by a product of different powers of norms.

Theorem 1.1. [12, 13] Let f : E → E′ be a mapping from a normed vector space E into a Banach space E′ subject to
the inequality

‖ f (x + y)− f (x)− f (y)‖ ≤ ε ‖x‖p ‖y‖q

for all x, y ∈ E, where ε and p, q are constants with ε > 0 and r = p + q 6= 1. Then the limit

L(x) = lim
n→∞

f (2nx)
2n

exists for all x ∈ E and L : E→ E′ is the unique additive mapping which satisfies

‖ f (x)− L(x)‖ ≤ ε

2− 2r ‖x‖
r

for all x ∈ E. If, in addition, for every x ∈ E, f (tx) is continuous in real t for each fixed x, then L is linear.

The above-mentioned stability involving a product of different powers of norms is called Ulam-Gavruta-
Rassias stability. Later, J.M.Rassias [15] discused the stability of quadratic functional equation

f (mx + y) + f (mx− y) = 2 f (x + y) + 2 f (x− y) + 2(m2 − 2) f (x)− 2 f (y)

for any arbitrary but fixed real constant m with m 6= 0; m 6= ±1; m 6= ±
√

2 using the mixed powers of norms.
Now we present the results connected with functional equation in orthogonal space. The orthogonal

Cauchy functional equation
f (x + y) = f (x) + f (y), x ⊥ y (1.6)

in which ⊥ is an abstract orthogonally was first investigated by S. Gudder and D. Strawther . R. Ger and J.
Sikorska discussed the orthogonal stability of the equation (1.6) in [7]. The orthogonally quadratic functional
equation (1.1) was first investigated by F. Vajzovic [20] when X is a Hilbert space, Y is the scalar field, f is
continuous and ⊥ means the Hilbert space orthogonality. This result was then generalized by H. Drljevic [4],
M. Fochi [5], M.Moslehian [10, 11] and G. Szabo [18].

Definition 1.1. A vector space X is called an orthogonality vector space if there is a relation x ⊥ y on X such that
(i) totality of ⊥ for zero: x ⊥ 0, 0 ⊥ x for all x ∈ X;
(ii) independence: if x ⊥ y and x, y 6= 0 , then x, y are linearly independent;
(iii) homogeneity: if x ⊥ y, then ax ⊥ by for all a, b ∈ R;
(iv) the Thalesian property: if P is a two-dimensional subspace of X ; then

(a) for every x ∈ P there exists 0 6= y ∈ P such that x ⊥ y ;
(b) there exists vectors x, y 6= 0 such that x ⊥ y and x + y ⊥ x− y.

Any vector space can be made into an orthogonality vector space if we define x ⊥ 0, 0 ⊥ x for all x and for non zero
vector x, y define x ⊥ y iff x, y are linearly independent. The relation⊥ is called symmetric if x ⊥ y implies that y ⊥ x
for all x, y ∈ X.

Definition 1.2. The pair (x,⊥) is called an orthogonality space. It becomes orthogonality normed space when the
orthogonality space is equipped with a norm.

Definition 1.3. Let X be an orthogonality space and Y be a real Banach space. A mapping f : X → Y is called
orthogonally quadratic if it satisfies the so called orthogonally Euler-Lagrange (or Jordan - von Neumann) quadratic
functional equation

f (x + y) + f (x− y) = 2 f (x) + 2 f (y) (1.7)

for all x, y ∈ X with x ⊥ y.
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In this paper, we obtain the general solution of new quadratic functional equation

f (nx + y) + f (nx− y) = n[ f (x + y) + f (x− y)] + 2n(n− 1) f (x)− 2(n− 1) f (y) (1.8)

and study the Hyers - Ulam - Rassias stability and J. M. Rassias mixed type product-sum of powers of norms
stability in the concept of orthogonality.

Definition 1.4. A mapping f : A → B is called orthogonal quadratic if it satisfies the quadratic functional equation
(1.8) for all x, y ∈ A with x ⊥ y where A be an orthogonality space and B be a real Banach space.

Through out this paper, let (A,⊥) denote an orthogonality normed space with norm ‖ · ‖A and (B, ‖ · ‖B)

is a Banach space. We define

D f (x, y) = f (nx + y) + f (nx− y) (1.9)

− n[ f (x + y) + f (x− y)]− 2n(n− 1) f (x) + 2(n− 1) f (y).

for all x, y ∈ A with x ⊥ y .
Now we proceed to find the general solution of the functional equation (1.8).

2 The General Solution of the Functional Equation (1.8)

In this section, we obtain the general solution of the functional equation (1.8). Through out this section, let X
and Y be real vector spaces.

Theorem 2.2. Let X and Y be real vector spaces. A function f : X → Y satisfies the functional equation

f (nx + y) + f (nx− y) = n[ f (x + y) (2.1)

+ f (x− y)] + 2n(n− 1) f (x)− 2(n− 1) f (y)

for all x, y ∈ X if and only if it satisfies the quadratic functional equation

f (x + y) + f (x− y) = 2 f (x) + 2 f (y) (2.2)

for all x, y ∈ X.

Proof. Suppose a function f : X → Y satisfies (2.1). Putting x = y = 0 in (2.1), we get f (0) = 0. Let x = 0 and
y = 0 in (2.1), we obtain f (−y) = f (y) and f (nx) = n2 f (x), respectively. Setting (x, y) = (x, x + y) in (2.1),
we obtain

f ((n + 1)x + y) + f ((n− 1)x− y) = n[ f (2x + y) + f (−y)] + 2 f (nx)− 2n f (x) (2.3)

for all x, y ∈ X. Replacing y by −y in (2.3) and adding the resultant with (2.3), we obtain

f ((n + 1)x + y) + f ((n + 1)x− y) + f ((n− 1)x + y) + f ((n− 1)x− y) (2.4)

= n[ f (2x + y) + f (2x− y)] + 2n[ f (x + y) + f (x− y)] + 2[ f (x + y) + f (x− y)]

+ 2n f (y) + 4 f (nx)− 4n f (x)

for all x, y ∈ X. Setting n = n + 1, n = n− 1 and n = 2 respectively in (2.1), we obtain the following equations

f ((n + 1)x + y) + f ((n + 1)x− y) (2.5)

= (n + 1)[ f (x + y) + f (x− y)] + 2n2 f (x) + 2n f (x)− 2n f (y)

f ((n− 1)x + y) + f ((n− 1)x− y) = (n− 1)[ f (x + y) + f (x− y)] (2.6)

+ 2n2 f (x)− 6n f (x) + 4 f (x)− 2n f (y) + 4 f (y)

f (2x + y) + f (2x− y) = 2[ f (x + y) + f (x− y)] + 4 f (x)− 2 f (y) (2.7)

for all x, y ∈ X. Substitute (2.5), (2.6) and (2.7) in (2.4), we arrive (2.2).
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Conversely, assume f satisfies the functional equation (2.2). Letting (x, y) by (0, 0) in (2.2), we get f (0) = 0.
Putting x = 0 in (2.2), we obtain f (−y) = f (y) for all y ∈ X . Thus f is an even function. Substituting (x, y)
by (x, x) and (x, 2x) in (2.2), we get

f (2x) = 4 f (x), f (3x) = 9 f (x) (2.8)

respectively for all x ∈ X. Setting (x, y) = (nx + y, nx− y) in (2.2), we obtain

f (nx + y) + f (nx− y) = 2n2 f (x) + 2 f (y) (2.9)

for all x, y ∈ X. Multiplying (2.2) by n and subtracting the resultant from (2.9), we arrive (2.1).

3 Hyers - Ulam - Rassias Stability of (1.8)

In this section, we present the Hyers - Ulam - Rassias stability of the functional equation (1.8) involving sum
of powers of norms.

Theorem 3.3. Let µ and s(s < 2) be non-negative real numbers. Let f : A→ B be a mapping fulfilling

‖D f (x, y)‖B ≤ µ
{
‖x‖s

A + ‖y‖s
A
}

(3.1)

for all x, y ∈ A with x ⊥ y. Then there exists a unique orthogonally quadratic mapping Q : A→ B such that

‖ f (y)−Q(y)‖B ≤
µ

2(n2 − ns)
‖x‖s

A (3.2)

for all x ∈ A. The function Q(x) is defined by

Q(y) = lim
k→∞

f (nkx)
(n2)k (3.3)

for all x ∈ A.

Proof. Replacing (x, y) by (0, 0) in (3.1) we get f (0) = 0. Setting (x, y) by (x, 0) in (3.1), we obtain∥∥∥ f (nx)− n2 f (x)
∥∥∥

B
≤ µ

2
(‖x‖s

A) (3.4)

for all x ∈ A. Since x ⊥ 0 , we have ∥∥∥∥ f (nx)
n2 − f (x)

∥∥∥∥
B
≤ µ

2n2 ‖x‖
s
A (3.5)

for all x ∈ A. Now replacing x by nx and dividing by n2 in (3.5) and summing resulting inequality with (3.5),
we arrive ∥∥∥∥ f (n2x)

(n2)2 − f (x)
∥∥∥∥

B
≤ µ

2n2

{
1 +

ns

n2

}
‖x‖s

A (3.6)

for all x ∈ A. In general, using induction on a positive integer n we obtain that∥∥∥∥∥ f (nkx)
(n2)k − f (x)

∥∥∥∥∥
B

≤ µ

2n2

k−1

∑
t=0

ns t

(n2)t ‖x‖
s
A (3.7)

≤ µ

2n2

∞

∑
t=0

ns t

(n2)t ‖x‖
s
A

for all x ∈ A. In order to prove the convergence of the sequence { f (nkx)/(n2)k} replace x by nmx and divide
by (n2)m in (3.7), for any k, m > 0, we obtain∥∥∥∥∥∥

f
(

nknmx
)

(n2)(k+m)
− f (nmx)

(n2)m

∥∥∥∥∥∥
B

=
1

(n2)m

∥∥∥∥∥∥
f
(

nknmx
)

(n2)k − f (nmx)

∥∥∥∥∥∥
B

≤ 1
(n2)m

µ

2n2

k−1

∑
t=0

ns t

(n2)t ‖n
mx‖s

A

≤ µ

2n2

∞

∑
t=0

1
n(2−s)(t+m)

‖x‖s
A . (3.8)
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As s < 2, the right hand side of (3.8) tends to 0 as m → ∞ for all x ∈ A. Thus { f (nkx)/(n2)k} is a Cauchy
sequence. Since B is complete, there exists a mapping Q : A→ B such that

Q(x) = lim
k→∞

f (nkx)
(n2)k ∀x ∈ A.

Letting k → ∞ in (3.7), we arrive the formula (3.2) for all x ∈ A. To prove Q satisfies (1.8), replace (x, y) by
(nkx, nky) in (3.1) and divide by (n2)k then it follows that

1
(n2)k

∥∥ f
(
nk(nx + y)

)
+ f

(
nk(nx− y)

)
− n[ f

(
nk(x + y)

)
− f

(
nk(x− y)

)
]

− 2n(n− 1) f (nkx)− 2(n− 1) f (nky)
∥∥

B ≤
µ

(n2)k

{∥∥∥nkx
∥∥∥s

A
+
∥∥∥nky

∥∥∥s

A

}
.

Taking limit as n→ ∞ in the above inequality, we get∥∥Q(nx + y) + Q(nx− y)− n[Q(x + y)−Q(x− y)]

− 2n(n− 1)Q(x) + 2(n− 1)Q(y)
∥∥

B ≤ 0.

which gives

Q(nx + y) + Q(nx− y) = n[Q(x + y)−Q(x− y)] + 2n(n− 1)Q(x)− 2(n− 1)Q(y)

by taking limit as k→ ∞ in (3.7), we obtain

‖ f (x)−Q(x)‖B ≤
µ

2(n2 − ns)
‖x‖s

A (3.9)

for all x, y ∈ A with x ⊥ y. Therefore Q : A → B is an orthogonally quadratic mapping which satisfies
(1.8). To prove the uniqueness: Let Q′ be another orthogonally quadratic mapping satisfying (1.8) and the
inequality (3.2). Then

∥∥Q (x)−Q′ (x)
∥∥

B =
1

(n2)k

∥∥∥Q
(

nkx
)
−Q′

(
nkx
)∥∥∥

B

≤ 1
(n2)k

(∥∥Q
(
ktx
)
− f

(
ktx
)∥∥

B +
∥∥∥ f
(

nkx
)
−Q′

(
nkx
)∥∥∥

B

)
≤ µ

n2 − ns
1

nk(2−s) ‖x‖
s
A

→ 0 as k→ ∞

for all x ∈ A. Therefore Q is unique. This completes the proof of the theorem.

Theorem 3.4. Let µ and s(s > 2) be nonnegative real numbers. Let f : A → B be a mapping satisfying (3.1) for all
x, y ∈ A with x ⊥ y. Then there exists a unique orthogonally quadratic mapping Q : A→ B such that

‖ f (x)−Q (x)‖B ≤
µ

2(ns − n2)
‖x‖s

A (3.10)

for all x ∈ A. The function Q(x) is defined by

Q(x) = lim
k→∞

(n2)n f
( x

nk

)
(3.11)

for all x ∈ A.

Proof. Replacing x by x
2 in (3.4), the rest of the proof is similer to that of Theorem 3.1.
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4 J.M. Rassias Mixed Type Product - Sum of Powers of Norms Stability
of (1.8)

In this section, we discuss the J.M. Rassias mixed type product - sum of powers of norms stability of the
functional equation (1.8).

Theorem 4.5. Let f : A→ B be a mapping satisfying the inequality

‖D f (x, y)‖B ≤ µ
{
‖x‖2s

A + ‖y‖2s
A + ‖x‖s

A ‖y‖
s
A

}
(4.1)

for all x, y ∈ A where µ and s are constants with, µ, s > 0 and s < 1. Then the limit

Q(x) = lim
k→∞

f
(

nkx
)

(n2)k (4.2)

exists for all x ∈ A and Q : A→ B is the unique quadratic mapping such that

‖ f (x)−Q(x)‖B ≤
µ

2(n2 − n2s)
‖x‖ns

A (4.3)

for all x ∈ A.

Proof. Letting (x, y) by (0, 0) in (4.1), we get f (0) = 0. Again substituting (x, y) by (x, 0) in (4.1), we obtain∥∥∥∥ f (nx)
n2 − f (x)

∥∥∥∥
B
≤ µ

2n2 ‖x‖
ns
A (4.4)

for all x ∈ A. Now replacing x by nx and dividing by n2 in (4.4) and summing resulting inequality with (4.4),
we arrive ∥∥∥∥∥ f

(
n2x
)

(n2)2 − f (x)

∥∥∥∥∥
B

≤ µ

2n2

{
1 +

n2s

n2

}
‖x‖2s

A (4.5)

for all x ∈ A. Using induction on a positive integer k, we obtain that∥∥∥∥∥∥
f
(

nkx
)

(n2)k − f (x)

∥∥∥∥∥∥
B

≤ µ

2n2

k−1

∑
t=0

(
n2s

n2

)t

‖x‖2s
A (4.6)

≤ µ

2n2

∞

∑
t=0

(
n2s

n2

)t

‖x‖2s
A

for all x ∈ A. In order to prove the convergence of the sequence { f (nkx)/4k} replace x by nmx and divide by
(n2)m in (4.6), for any k, m > 0, we obtain∥∥∥∥∥∥

f
(

nknmx
)

(n2)(k+m)
− f (nmx)

(n2)m

∥∥∥∥∥∥
B

=
1

(n2)m

∥∥∥∥∥∥
f
(

nknmx
)

(n2)k − f (nmx)

∥∥∥∥∥∥
B

≤ 1
(n2)m

µ

2n2

k−1

∑
t=0

(
n2s

n2

)t

‖nmx‖2s
A

≤ µ

2n2

∞

∑
t=0

1
n(n−2s)(t+m)

‖x‖2s
A (4.7)

As s < 1, the right hand side of (4.7) tends to 0 as m → ∞ for all x ∈ A. Thus { f (nkx)/(n2)k} is a Cauchy
sequence. Since B is complete, there exists a mapping Q : A→ B such that

Q(x) = lim
k→∞

f (nkx)
(n2)k ∀x ∈ A.

Letting n→ ∞ in (4.6), we arrive the formula (4.2) for all x ∈ A. To show that Q is unique and it satisfies (1.8),
the rest of the proof is similar to that of theorem 3.1
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Theorem 4.6. Let f : A→ B be a mapping satisfying the inequality (4.1) for all x, y ∈ A where µ and s are constants
with, µ, s > 0 and s > 2. Then the limit

Q(x) = lim
k→∞

(n2)k f
( x

nk

)
(4.8)

exists for all x ∈ A and Q : A→ B is the unique quadratic mapping such that

‖ f (x)−Q(x)‖B ≤
µ

2(n2s − n2)
‖x‖2s

A (4.9)

for all x ∈ A.

Proof. Replacing x by x
3 in (4.4), the proof is similar to that of Theorem 4.1.

Now we will provide an example to illustrate that the functional equation (1.8) is not stable for s = 2.

Example 4.1. Let ϕ : X → X be a function defined by

φ(x) =

{
µ ‖x‖2 , ‖x‖ < 1

µ otherwise
(4.10)

where µ > 0 is a constant and we define a function f : X → Y by

f (x) =
∞

∑
m=0

ϕ(nmx)
(n2)m (4.11)

for all x ∈ X. Then f satisfies the functional inequality

‖D ( f (x, y))‖ ≤ 2n2

(n− 1)
µ (‖x‖2 + ‖y‖2) (4.12)

for all x, y ∈ X. Then there exist any quadratic mapping Q : X → Y satisfying

‖ f (x)−Q(x)‖ ≤ η‖x‖2 (4.13)

for x ∈ X.

Proof. From the equation (4.10) and (4.11) , we obtain

f (x) ≤
∞

∑
m=0

φ(nmx)
n2m =

∞

∑
k=0

µ

n2m ≤ µ(
n2

n2 − 1
) (4.14)

for all x ∈ X. Therefore we see that f is bounded. We are going to prove that f satisfies (4.12).
If (‖x‖2 + ‖y‖2) ≥ 1 then the left hand side of (4.12) is less than

2n2

(n− 1)

. Now we suppose that 0 ≤ ‖x‖2 + ‖y‖2 ≤ 1. Then there exist a positive integer k such that

1
n2k−1 ≤ ‖x‖

2 + ‖y‖2 <
1

n2k (4.15)

for all x ∈ X. so that

n2k‖x‖2 < 1, n2k‖y‖2 < 1

and consequently, nk−1‖x‖ < 1, nk−1‖y‖ < 1, nk−1‖x + y‖ < 1, nk−1‖x − y‖ < 1, nk−1‖nx + y‖ < 1,
nk‖nx− y‖ < 1 for all m ∈ 0, 1, 2, ..., k− 1

nk−1 ‖x‖ < 1, nk−1 ‖y‖ < 1, nk−1 (‖x + y‖) < 1,

nk−1 (‖x− y‖) < 1, nk−1 (‖nx + y‖) < 1, nk−1 (‖nx− y‖) < 1.
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for all x ∈ {0, 1, 2, .....k− 1}.

∥∥D( f (x, y))
∥∥ ≤ ∞

∑
m=k

2n(n + 1)
n2m µ

≤ 2n(n + 1)
n2m

(
n2

n2 − 1

)
µ

≤ 2n2

n− 1
µ
(
‖x‖2 + ‖y‖2

)
Thus f satisfies the inequality (4.12) Let us consider the an orthogonally quadratic mapping satisfying

Q : X → Y and a constant η > 0 such that

‖ f (x)−Q(x)‖ ≤ η‖x‖2

for all x ∈ X.Since f is bounded,Q is also bounded on any open interval containing the origin zero. we have

Q(x) = c‖x‖2

for all x ∈ X and C is constant.Thus we obtain∥∥∥ f (x)− c‖x‖2
∥∥∥ ≤ η‖x‖2

‖ f (x)‖ ≤ (‖c‖+ η) ‖x‖2 (4.16)

for all x ∈ X. But we can choose a positive integer

p, pµ > η + |c|

. If x ∈
(

0, 1
np−1

)
, then nmx ∈ (0, 1) for all m = 0, 1, . . . , p − 1. For this x, we get f (x) = ∑∞

m=0
φ(nmx)

n2m ≥

∑∞
m=0

µ(n2m)‖x‖2

n2m = pµ‖x‖2 > (η + |c|) ‖x‖2 which contradicts (4.16). Therefore the functional equation (1.8) is
not stable in sense of Ulam, Hyers and Rassias if s = 2, assumed in the inequality (4.16).
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