Malaya
Journal of
MatematikMJM
an international journal of mathematical sciences with
computer applications...

Spectrum of fuzzy prime filters of a 0 - distributive lattice

Y. S. Pawar* and S. S. Khopade^{*a*}

^aDepartment of Mathematics, Karmaveer Hire Arts, Science, Commerce & Education College, Gargoti-416209, India.

Abstract

www.malayajournal.org

Stone's topology on the set of fuzzy prime filters of a bounded 0 - distributive lattice is introduced and many properties of this space of fuzzy prime filters are furnished.

Keywords: fuzzy sublattice, fuzzy filter, fuzzy prime filter, 0-distributive lattice.

2010 MSC: 06D72.

©2012 MJM. All rights reserved.

1 Introduction

For topological concepts which have now become commonplace the reader is referred to [5] and for lattice theoretic concepts the reader is referred to [4]. Venkatanarasimhan [15] has studied the Stone's space of prime filters for a pseudocomplemented lattice. The concept of a 0-distributive lattice introduced by Varlet [13] is a generalization of a distributive lattice and a pseudo-complemented lattice. A 0-distributive lattice is a lattice *L* with 0 in which for all *a*, *b*, *c* \in *L*, *a* \wedge *b* = 0 = *a* \wedge *c* implies *a* \wedge (*b* \vee *c*) = 0. In [9], [2] authors have studied Stone's topology on set of prime filters of a 0 - distributive lattice. Such a study of prime spectrum plays an important role in the field of lattice theory.

Fuzzy set theory introduced by Zadeh [16] is generalization of classical set theory. After the inception of the notion fuzzy sets, Rosenfield started the pioneering work in the domain of fuzzification of algebraic objects viz fuzzy groups [11]. Many researchers have applied this concept to mathematical branches such as semi-group, ring, semi-ring, field, near ring, lattice etc. In particular while fuzzifying the notions in lattice theory, Bo et al [3] and Swami et al [12] have laid down the foundation for fuzzy ideals, fuzzy filters of a lattice. In [10], we have introduced and studied spectrum of L - fuzzy prime ideals of a bounded distributive lattice. In this paper our aim is to introduce Stone's topology τ on the set of fuzzy prime filters Σ of a bounded 0 - distributive lattice *L* and study many properties of the space *Fspec* (*L*) = (Σ , τ). Mainly we prove *Fspec* (*L*) is compact and it contains a subspace homeomorphic with the spectrum of *L* which is dense in it. If *L* and *L'* are isomorphic bounded 0 - distributive lattices, *Fspec* (*L*) and *Fspec* (*L'*) are homeomorphic.

2 Preliminaries

In this article we collect basic definitions and results which are used in subsequent sections.

Let $L = \langle L, \wedge, \vee \rangle$ be a bounded lattice.

Definition 2.1. A fuzzy subset of *L* is a map of *L* into $\langle [0,1], \wedge, \vee \rangle$, where $\alpha \wedge \beta = \min(\alpha, \beta)$ and $\alpha \vee \beta = \max(\alpha, \beta)$ for all $\alpha, \beta \in [0,1]$. Let μ be a fuzzy subset of *L*. For $\alpha \in [0,1]$, the set $\mu_{\alpha} = \{x \in L : \mu(x) \ge \alpha\}$ is called α - cut (or α - level set) of μ .

Definition 2.2. A fuzzy subset μ of L is said to be a fuzzy sublattice of L if for all $x, y \in L$, $\mu(x \land y) \land \mu(x \lor y) \ge \mu(x) \land \mu(y)$.

*Corresponding author.

E-mail address: yspawar1950@gmail.com (Y. S. Pawar), ssk27_01@rediffmail.com(S. S. Khopade).

Definition 2.3. A monotonic fuzzy sublattice is a fuzzy filter of *L*. Here μ is monotonic means $\mu(x) \le \mu(y)$ whenever $x \le y$ in *L*.

Definition 2.4. The smallest fuzzy filter containing fuzzy subset μ of L is called fuzzy filter generated by μ and is denoted by $\langle \mu \rangle$. Here by a fuzzy subset σ contains a fuzzy subset μ we mean $\mu(a) \leq \sigma(a)$, $\forall a \in L$ and will be denoted by $\mu \subseteq \sigma$.

Definition 2.5. *A proper fuzzy filter of L is a non-constant fuzzy filter of L.*

Definition 2.6. A proper fuzzy filter of *L* is said to be a fuzzy prime filter of *L* if for any $x, y \in L$, $\mu(x \lor y) \le \mu(x) \lor \mu(y)$

Result 2.1. A fuzzy subset μ of L is a fuzzy filter of L if and only if $\mu(x \land y) = \mu(x) \land \mu(y)$.

Result 2.2. A fuzzy subset μ of L is a fuzzy prime filter of L if and only if μ is a homomorphism from (L, \wedge, \vee) into $([0,1], \wedge, \vee)$.

Result 2.3. A fuzzy subset μ of L is a fuzzy filter of L if and only if each level set μ_{α} is a filter of L, $\forall \alpha \in [0, 1]$ such that $\mu_{\alpha} \neq \emptyset$.

Result 2.4. If μ is a fuzzy subset of L, then

$$\langle \mu \rangle = \bigcap \{ \sigma \mid \sigma \text{ is a fuzzy filter of } L, \ \mu \subseteq \sigma \}.$$

Also $\chi_{[S]} = \langle \chi_S \rangle$, where $S \subseteq L$.

Result 2.5. A non-constant fuzzy filter μ of *L* is a fuzzy prime filter of *L* if and only if each level set μ_{α} is a prime filter of *L*; $\forall \alpha \in [0, 1]$ such that μ_{α} is a proper filter of *L*.

Result 2.6. A non-empty subset P of L is a prime filter of L if and only if χ_P is a fuzzy prime filter of L.

Result 2.7. ([3]) Let L and L' be two lattices and $f : L \to L'$ an onto homomorphism. Then (i) If μ is a fuzzy sublattice (ideal, filter) of L then $f(\mu)$ is a fuzzy sublattice (ideal, filter) of L' where $f(\mu)$ is defined as

$$f(\mu)(y) = \sup\{\mu(x) : f(x) = y, x \in L\}$$
 for all $y \in L'$;

(ii) If v is a fuzzy sublattice (ideal, prime ideal, filter, prime filter) of L' then $f^{-1}(v)$ is a fuzzy sublattice (ideal, prime ideal, filter, prime filter) of L where $f^{-1}(v)$ is defined as

 $f^{-1}(\nu)(x) = \nu(f(x))$ for all $x \in L$.

Result 2.8. Let L, L' be two bounded lattices. Let $f : L \to L'$ be a lattice isomorphism. If μ is a fuzzy prime filter of L, then $f(\mu)$ is a fuzzy prime filter of L' and $f^{-1}(f(\mu)) = \mu$.

3 Spectrum of fuzzy prime filters

Now onwards *L* will denote a bounded 0 - distributive lattice. Let Σ denote the set of fuzzy prime filters of *L*. For each $\mu \in \Sigma$, we assume that $\mu(1) = 1$. For a fuzzy subset θ of *L* define $V(\theta) = \{\mu \in \Sigma \mid \theta \subseteq \mu\}$. If $\theta = \chi_{\{a\}}$ then we denote $V(\theta)$ by V(a).

At the outset we prove some properties of V (.).

Theorem 3.1. Let θ and σ be fuzzy subsets of L.

- 1. If $\theta \subseteq \sigma$, then $V(\sigma) \subseteq V(\theta)$.
- 2. $V(\sigma) \cup V(\theta) \subseteq V(\sigma \cap \theta)$.
- 3. $V(\theta) = V(\langle \theta \rangle)$
- 4. $V(0) = \emptyset$ and $V(1) = \Sigma$.

Proof. Proof of (1) follows by definition of V(.).

(2) We have $\sigma \cap \theta \subseteq \sigma$ and $\sigma \cap \theta \subseteq \theta$. By using (1) we get $V(\sigma) \subseteq V(\sigma \cap \theta)$ and $V(\theta) \subseteq V(\sigma \cap \theta)$. Hence $V(\sigma) \cup V(\theta) \subseteq V(\sigma \cap \theta)$.

(3) As $\theta \subseteq \langle \theta \rangle$, again by (1) we get $V(\langle \theta \rangle) \subseteq V(\theta)$. Let $\mu \in V(\theta)$ then $\theta \subseteq \mu$. Therefore $\cap \{\sigma \in \Sigma : \theta \subseteq \sigma\} \subseteq \mu$ that is $\langle \theta \rangle \subseteq \mu$. Thus $\mu \in V(\langle \theta \rangle)$ proving that $V(\theta) \subseteq V(\langle \theta \rangle)$. Combining both inclusions we get $V(\theta) = V(\langle \theta \rangle)$.

(4) $V(0) = \{\mu \in \Sigma : \chi_{\{0\}} \subseteq \mu\} = \{\mu \in \Sigma : \mu(0) = 1\}$. As $\mu \in \Sigma$ and our assumption that $\mu(1) = 1$ it follows $V(0) = \emptyset$. Again by assumption that $\mu(1) = 1 \forall \mu \in \Sigma$ we get $V(1) = \{\mu \in \Sigma : \chi_{\{1\}} \subseteq \mu\} = \{\mu \in \Sigma : \mu(1) = 1\} = \Sigma$.

Remark 3.1. Let F(L) be the set of all fuzzy subsets of L and $\wp(\Sigma)$ be the power set of Σ . Then V(.) defines a function $V : F(L) \longrightarrow \wp(\Sigma)$ such that $V(\theta) = \{\mu \in \Sigma \mid \theta \subseteq \mu\}$. Clearly it is not an injective map as $V(\theta) = V(\langle \theta \rangle)$.

Theorem 3.2. Let *I* and *J* be filters of *L*. Then $V(\chi_I) \cup V(\chi_I) = V(\chi_{I \cap I})$.

Proof. By Theorem 3.1 (2) we have $V(\chi_I) \cup V(\chi_J) \subseteq V(\chi_I \cap \chi_J) = V(\chi_{I\cap J})$. Let $\mu \in V(\chi_{I\cap J})$. Then $\chi_{I\cap J} \subseteq \mu$ implies $\mu(x) = 1$ for all $x \in I \cap J$. If $\chi_I \not\subseteq \mu$ and $\chi_J \not\subseteq \mu$, then there exist $x \in I$ and $y \in J$ such that $\mu(x) \neq 1$ and $\mu(y) \neq 1$. But *I* and *J* being filters we have $x \lor y \in I \cap J$ so that $\mu(x \lor y) = 1$. As μ is a fuzzy prime filter of *L*, by Result 2.2, $\mu(x \lor y) = \mu(x) \lor \mu(y) = 1$ that is $\mu(x) = 1$ or $\mu(y) = 1$; which contradicts to the choice of *x* and *y*. Hence either $\chi_I \subseteq \mu$ or $\chi_J \subseteq \mu$. Therefore $\mu \in V(\chi_I)$ or $\mu \in V(\chi_J)$ and consequently $\mu \in V(\chi_I) \cup V(\chi_J)$. Thus $V(\chi_I \cap \chi_J) \subseteq V(\chi_I) \cup V(\chi_J)$ and the result follows. \Box

Theorem 3.3. If $\{\theta_i \mid i \in \Lambda\}$ (Λ is any indexing set) is a family of fuzzy subsets of L, then $V (\bigcup \{\theta_i \mid i \in \Lambda\}) = \bigcap \{V(\theta_i) \mid i \in \Lambda\}$.

Proof. We have

$$\mu \in V\left(\bigcup \left\{\theta_i \mid i \in \Lambda\right\}\right) \iff \bigcup \left\{\theta_i \mid i \in \Lambda\right\} \subseteq \mu$$
$$\iff \theta_i \subseteq \mu \quad \forall i \in \Lambda$$
$$\iff \mu \in V\left(\theta_i\right) \quad \forall i \in \Lambda$$
$$\iff \mu \in \bigcap \left\{V\left(\theta_i\right) \mid i \in \Lambda\right\}.$$

This sows that $V (\bigcup \{\theta_i \mid i \in \Lambda\}) = \bigcap \{V(\theta_i) \mid i \in \Lambda\}.$

Remark 3.2. Unlike in a crisp case $\{V(\theta) \mid \theta \text{ is a fuzzy subset of } L\}$ does not offer a system of closed sets for a topology on the set Σ though $V(\bigcup \{\theta_i \mid i \in \Lambda\}) = \bigcap \{V(\theta_i) \mid i \in \Lambda\}$ (where Λ is any indexing set) holds. This happens as $V(\sigma) \cup V(\theta) \neq V(\sigma \cap \theta)$ for some fuzzy subsets θ and σ of L.

Theorem 3.4. 1. $V(a) \cup V(b) = V(a \lor b); \forall a, b \in L$

2. $V(\chi_E) = \bigcap \{V(a) \mid a \in E\}$; $\forall E \subseteq L$.

Proof. (1) Let $\mu \in V(a) \cup V(b)$. Then $\mu \in V(a)$ or $\mu \in V(b)$. If $\mu \in V(a)$, then $\mu(a) = 1$. As μ is a fuzzy filter, $\mu(a \lor b) \ge \mu(a) = 1$ that is $\mu(a \lor b) = 1$. But then $\mu \in V(a \lor b)$ so that $V(a) \subseteq V(a \lor b)$. Similarly if $\mu \in V(b)$, then $\mu \in V(a \lor b)$. Therefore $V(b) \subseteq V(a \lor b)$. Hence $V(a) \cup V(b) \subseteq V(a \lor b)$. Let $\mu \in V(a \lor b)$ then $\mu(a \lor b) = 1$. μ being a fuzzy prime filter, by Result 2.2, $\mu(a \lor b) = \mu(a) \lor \mu(b)$. Thus either $\mu(a) = 1$ or $\mu(b) = 1$ that is $\mu \in V(a)$ or $\mu \in V(b)$ so that $\mu \in V(a) \cup V(b)$. Thus $V(a \lor b) \subseteq V(a) \cup V(b)$. Combining both the inclusions, (1) follows

(2) As $E = \bigcup \{a \mid a \in E\}$, we have $\chi_E = \bigcup \{\chi_{\{a\}} \mid a \in E\}$. Therefore $V(\chi_E) = V(\bigcup \{\chi_{\{a\}} \mid a \in E\}) = \bigcap \{V(a) \mid a \in E\}$ (By Theorem 3.3).

Theorem 3.5. Let $\mathfrak{B} = \{X(a) \mid a \in L\}$ where $X(a) = X(\chi_{\{a\}}) = \Sigma \setminus V(a)$. Then \mathfrak{B} constitutes a base for the open sets of some topology on Σ .

Proof. By Theorem 3.1, (4), we have $X(0) = \Sigma \setminus V(0) = \Sigma \setminus \emptyset = \Sigma$. Therefore

$$\Sigma = \bigcup \left\{ X\left(a\right) \mid a \in L \right\}$$
(1)

Let $a, b \in L$. Then

$$\mu \in X (a) \cap X (b) \iff \mu \in (\Sigma \setminus V (a)) \cap (\Sigma \setminus (V(b)))$$
$$\iff \mu \in \Sigma \setminus (V (a) \cup V (b))$$
$$\iff \mu \in \Sigma \setminus V (a \lor b) \text{ (by Theorem3.4 (1))}$$
$$\iff \mu \in X (a \lor b)$$

Thus

$$X(a) \cap X(b) = X(a \lor b)$$
⁽²⁾

From (1) and (2) it follows that \mathfrak{B} forms a base for a topology on Σ .

Let τ denote the topology with base \mathfrak{B} on Σ . The topological space $\langle \Sigma, \tau \rangle$ is called fuzzy prime spectrum of *L* and is denoted by *Fspec*(*L*).

Theorem 3.6. If *L* is a chain or a finite lattice, then $\mathfrak{B} = \tau$.

Proof. Any open set *O* in *Fspec*(*L*) is expressed as $O = \bigcup \{X(a) \mid a \in A \subseteq L\}$. By assumption, [A] = [t) for some $t \in A$. Hence

$$O = \bigcup \{ X(a) \mid a \in A \subseteq L \} = \Sigma \setminus \bigcap \{ V(a) \mid a \in A \}$$

= $\Sigma \setminus V(\chi_A)$ (by Theorem 3.4 (2))
= $\Sigma \setminus V(\chi_{[A]})$ (by Theorem 3.1 (3))
= $\Sigma \setminus V(\chi_{[t]})$
= $\Sigma \setminus V(t)$
= $X(t)$

Thus any open set O = X(t) for some $t \in L$ imply $\tau \subseteq \mathfrak{B}$. But always we have $\mathfrak{B} \subseteq \tau$. Hence $\mathfrak{B} = \tau$. \Box **Theorem 3.7.** *The space Fspec* (*L*) *is a compact space.*

Proof. Consider an open cover $\{X(a) \mid a \in A \subseteq L\}$ of Σ consisting of basic open sets. Therefore

$$\Sigma = \bigcup \{X(a) \mid a \in A\}$$

=
$$\bigcup \{\Sigma \setminus V(a) \mid a \in A\}$$

=
$$\Sigma \setminus \bigcap \{V(a) \mid a \in A\}$$

=
$$\Sigma \setminus V(\chi_A) \quad \text{(by Theorem 3.4, (2))}$$

=
$$\Sigma \setminus V(\chi_{[A]}) \text{(by Theorem 3.1, (3))}$$

Therefore $V(\chi_{[A]}) = \emptyset$

If $[A) \subset L$, then as every proper filter of a 0 - distributive lattice is contained in a prime filter (see [14]) there exists a prime filter P of L containing [A). Hence $\chi_{[A]} \subseteq \chi_P$ and χ_P is a fuzzy prime filter of L (by Result 2.6). Thus $\chi_P \in V(\chi_{[A]}) = \emptyset$ (by (1)); a contradiction. This proves that [A) = L. This results into $0 \in [A)$ and consequently $0 = a_1 \land a_2 \land \ldots \land a_n$; n is finite, $a_i \in A \quad \forall i = 1, 2, \ldots, n$. Let $S = \{a_1, a_2, \ldots, a_n\} \subseteq A$. Then by using (1) and the fact that [A) = L = [S) we have $V(\chi_S) = V(\chi_{[S]}) = V(\chi_L) = V(\chi_{[A]}) = \emptyset$.

$$\bigcup \{X(a_i) \mid i = 1, 2, \dots, n \text{ and } a_i \in S\} = \bigcup \{\Sigma \setminus V(a_i) \mid i = 1, 2, \dots, n \text{ and } a_i \in S\}$$
$$= \Sigma \setminus \bigcap \{V(a_i) \mid i = 1, 2, \dots, n \text{ and } a_i \in S\}$$
$$= \Sigma \setminus V(\chi_S)$$
$$= \Sigma \setminus \emptyset = \Sigma$$

(1)

This shows that $\{X(a_i) \mid a_i \in S, i = 1, 2, ..., n\}$ is a finite subcover of the basic open cover $\{X(a) \mid a \in A\}$ of Σ . Hence *Fspec* (*L*) is compact.

Theorem 3.8. A subset \mathcal{F} of Σ is closed in Fspec (L) if and only if there exists $F \subseteq L$ such that $\mathcal{F} = V(\chi_F)$

Proof. Let $\mathcal{F} = V(\chi_F)$ for some subset F of L. Then $\mathcal{F} = V(\chi_F) = \bigcap \{V(a) \mid a \in F\}$ (by Theorem 3.4, (2)). As V(a) is a closed set in *Fspec* (*L*), we get \mathcal{F} is closed in *Fspec* (*L*).

Conversely suppose \mathcal{F} is a closed set in *Fspec* (*L*). Then $\Sigma \setminus \mathcal{F}$ is open in *Fspec* (*L*) and therefore we have

$$\Sigma \setminus \mathcal{F} = \bigcup \{X(a) \mid a \in F\} \text{ for some } F \subseteq L$$
$$= \bigcup \{\Sigma \setminus V(a) \mid a \in F\}$$
$$= \Sigma \setminus \bigcap \{V(a) \mid a \in F\}$$
$$= \Sigma \setminus V(\chi_F) \quad \text{(by Theorem 3.4, (2))}$$

Thus $\mathcal{F} = V(\chi_F)$ for some $F \subseteq L$. This completes the proof.

Theorem 3.9. Let \wp denote the set of all prime filters of *L*. Then the set $\mathcal{H} = \{\chi_P \mid P \in \wp\}$ is dense in Fspec (*L*).

Proof. By Result 2.6, $\mathcal{H} \subseteq \Sigma$. Let $\mu \in \Sigma \setminus \mathcal{H}$. Let X(a) be a basic open subset of Fspec(L) containing μ . Then the 1 - level subset $\mu_1 = \{x \in L \mid \mu(x) = 1\}$ is proper and hence a prime filter of L (By Result 2.5). $\mu \in X(a) = \Sigma \setminus V(a)$ imply $\mu(a) \neq 1$ so that $a \notin \mu_1$ that is $\chi_{\mu_1}(a) = 0 \neq 1$. This gives $\chi_{\mu_1} \in X(a)$. As μ_1 is a prime filter of L, $\chi_{\mu_1} \in \mathcal{H}$. Thus any X(a) containing μ contains a point of \mathcal{H} . Thus every member of $\Sigma \setminus \mathcal{H}$ is a limit point of \mathcal{H} . Hence $\overline{\mathcal{H}} = \Sigma$ which proves the result.

Remark 3.3. The subspace \mathcal{H} of Fspec (L) is homeomorphic with the prime spectrum \wp (the set equipped with Zariski topology) under the homeomorphism $f : \wp \to \mathcal{H}$ defined by $f(P) = \chi_P$; $\forall P \in \wp$.

Theorem 3.10. For any subset \mathcal{U} of Σ , the closure of \mathcal{U} i.e. $\overline{\mathcal{U}} = V(\chi_F)$, where $F = \bigcap \{\mu_1 \mid \mu \in \mathcal{U}\}$.

Proof. Let $\sigma \in U$. Also if $\chi_F(x) = 1$ then $x \in F$ and by definition of F we have $x \in \sigma_1$ (since $\sigma \in U$). But then $\sigma(x) = 1$ which gives $\chi_F \subseteq \sigma$. Thus $\sigma \in V(\chi_F)$. This proves that $U \subseteq V(\chi_F)$. As $V(\chi_F)$ is a closed set we get $\overline{U} \subseteq V(\chi_F)$

Now let $\mu \in V(\chi_F)$. If $\mu \in \mathcal{U}$, then $\mu \in \overline{\mathcal{U}}$ and we get $V(\chi_F) \subseteq \overline{\mathcal{U}}$. Otherwise suppose X(a) be a basic open set containing μ . Then $\mu \notin V(a)$ so that $\mu(a) \neq 1$. As $\mu \in V(\chi_F)$ we get $\chi_F(a) \neq 1$. Thus $a \notin F = \bigcap \{\sigma_1 \mid \sigma \in \mathcal{U}\}$ imply $\sigma(a) \neq 1$ for some $\sigma \in \mathcal{U}$. Therefore $\chi_{\{a\}} \not\subseteq \sigma$ and consequently $\sigma \notin V(\chi_{\{a\}}) = V(a)$ that is $\sigma \in X(a)$. Thus any basic open set X(a) containing μ contains a point σ of \mathcal{U} . Therefore μ is a limit point of \mathcal{U} . Thus $\mu \in \overline{\mathcal{U}}$. Hence $V(\chi_F) \subseteq \overline{\mathcal{U}}$. Combining both the inclusions the result follows.

Corollary 3.1. For any $\mu \in \Sigma$, $\overline{\{\mu\}} = V(\chi_{\mu_1})$ and for $\mu, \theta \in \Sigma$, $\overline{\{\mu\}} = \overline{\{\theta\}}$ if and only if $\mu_1 = \theta_1$.

Proof. $\overline{\{\mu\}} = V(\chi_{\mu_1})$ follows by Theorem 3.10. Suppose $\overline{\{\mu\}} = \overline{\{\theta\}}$. Then $V(\chi_{\mu_1}) = V(\chi_{\theta_1})$ (by Theorem 3.10). Now

$$a \in \mu_{1} \implies \chi_{\mu_{1}}(a) = 1$$

$$\Rightarrow \sigma(a) = 1; \forall \sigma \in V(\chi_{\mu_{1}})$$

$$\Rightarrow \sigma(a) = 1 \forall \sigma \in V(\chi_{\theta_{1}}) \dots \text{ (since } V(\chi_{\mu_{1}}) = V(\chi_{\theta_{1}}))$$

$$\Rightarrow \chi_{\theta_{1}}(a) = 1 \dots \text{ (as } \chi_{\theta_{1}} \in V(\chi_{\theta_{1}}))$$

$$\Rightarrow a \in \theta_{1}$$

This shows that $\mu_1 \subseteq \theta_1$. Similarly we can prove $\theta_1 \subseteq \mu_1$. Therefore $\mu_1 = \theta_1$. Conversely suppose $\mu_1 = \theta_1$. Then $\chi_{\mu_1} = \chi_{\theta_1} \Longrightarrow V(\chi_{\mu_1}) = V(\chi_{\theta_1}) \Longrightarrow \overline{\{\mu\}} = \overline{\{\theta\}}$ (by Theorem 3.10). \Box

Figure 1:

This result suggests that for a 0 - distributive lattice *L* the space Fspec(L) need not be T₀ - space. To verify this consider the 0 - distributive lattice *L* as depicted by the Hasse diagram in Figure 1.

Define $\mu = \{(0, 0.2), (a, 0.4), (b, 0.8), (c, 1), (1, 1)\}$ and $\theta = \{(0, 0.3), (a, 0.5), (b, 0.7), (c, 1), (1, 1)\}$. Then μ and θ are fuzzy prime filters of *L* i.e. $\mu, \theta \in Fspec(L)$. Clearly, $\mu \neq \theta$. But $\mu_1 = \theta_1 = \{c, 1\}$. Hence by Corollary 3.1 we have $\overline{\{\mu\}} = \overline{\{\theta\}}$. This shows that Fspec(L) is not a T₀ - space.

Theorem 3.11. Let L and L' be bounded 0 - distributive lattices and let $f : L \to L'$ be a lattice homomorphism. For each $\mu' \in Fspec(L')$ define $f^* : Fspec(L') \to Fspec(L)$ by $f^*(\mu') = f^{-1}(\mu')$. Then (i) f^* is a continuous mapping. (ii) If f is surjective, then f^* is injective.

Proof. By Result 2.7 , f^* is well defined map. (i) For any basic closed set V(a) in *Fspec* (*L*) where $a \in L$ we have

$$f^{*-1}(V(a)) = \{\mu' \in Fspec(L') \mid f^{*}(\mu') \in V(a)\} \\ = \{\mu' \in Fspec(L') \mid [f^{*}(\mu')](a) = 1\} \\ = \{\mu' \in Fspec(L') \mid [f^{-1}(\mu')](a) = 1\} \\ = \{\mu' \in Fspec(L') \mid \mu'(f(a)) = 1\} \\ = \{\mu' \in Fspec(L') \mid \chi_{\{f(a)\}} \subseteq \mu'\} \\ = V(\chi_{\{f(a)\}}) = V(f(a))$$

which is a closed set in Fspec(L'). Thus inverse image under f^* of a basic closed set in Fspec(L) is a closed set in Fspec(L'). Hence f^* is continuous.

(ii) Let *f* be surjective and μ' , $\theta' \in Fspec(L')$ such that $f^*(\mu') = f^*(\theta')$. Then

$$(f^*(\mu'))(x) = (f^*(\theta'))(x) ; \forall x \in L \implies (f^{-1}(\mu'))(x) = (f^{-1}(\theta'))(x) ; \forall x \in L \Rightarrow \mu'(f(x)) = \theta'(f(x)) \forall x \in L \Rightarrow \mu' = \theta'$$

This proves f^* is an injective map.

Theorem 3.12. If $f : L \to L'$ is an isomorphism, then Fspec(L) is homeomorphic to Fspec(L').

Proof. By hypothesis, the functions f^* : *Fspec* $(L') \longrightarrow$ *Fspec* (L) defined by $f^*(\mu') = f^{-1}(\mu')$ and g^* : *Fspec* $(L) \longrightarrow$ *Fspec* (L') defined by $g^*(\mu) = f(\mu)$, are well defined and inverses of each other (see Result 2.7 and Result 2.8). Further, analogous to the proof in theorem 3.17, it can be proved that they are continuous. \Box

References

- [1] P. Balasubramani and P. V. Venkatnarsimhan, Characterizations of 0-distributive Lattices, *Indian J. pure appl. Math.*, 32(3) (2001), 315-324.
- [2] P. Balasubramani, Stone topology of the set of prime filters of a 0-distributive lattice, *Indian J. Pure and Appl. Math.*, 35(2) (2004), 149-158.
- [3] Bo Yuan and Wangming Wu, Fuzzy ideals on a distributive lattice, *Fuzzy sets and systems*, 35 (1990), 231 -240.
- [4] G. Grätzer, Lattice Theory First concepts and Distributive Lattices, *Freeman and Company, San Francisco*, (1971).
- [5] Kelly J.L., General Topology, New York, Van Nostrand, 1969.
- [6] Klir George J. and Bo Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, *Prentice Hall of India Pvt. Ltd.,New Delhi,110001,* (1997).
- [7] Koguep B.B.N., Nkuimi C., Lele C., On Fuzzy prime ideals of lattice, SJPAM,, 3 (2008), 1-11.
- [8] Y. S. Pawar, 0-1 distributive lattices, Indian J. Pure and Appl. Math., 24 (1993), 173-179.
- [9] Y. S. Pawar and N. I. Dhanshetti, Stone's Topology for 0 distributive lattices, *Journal of Indian Math. Soc.*, 59 (1993), 79-86.
- [10] Pawar Y. S. and Khopade S. S., Spectrum of L fuzzy prime ideals of a distributive lattice, *Fuzzy Systems* and Mathematics, 27(1) (2013), 12-19.
- [11] Rosenfeld A., Fuzzy Groups, Journal Mathematical Analysis and Applications, 35 (1971), 512-517.
- [12] Swamy U. M. and Raju D. Viswanadha, Fuzzy ideals and congruence of lattices, *Fuzzy Sets and Systems*, 95 (1998), 249-253.
- [13] Varlet J., A generalization of the notion of pseudo-complementedness, Bull. soc. Liege., 37(1968), 149-158.
- [14] P. V. Venkatanarasimhan, Pseudo-Complements in Posets, Proc. Amer. Math. Soc., 28(1) (1971), 9 17.
- [15] P. V. Venkatanarasimhan, Stone's Topology for Pseudocomplemented and Bicomplemented Lattices, *Trans. Amer. Math. Soc.*, 170 (1972), 57-70.
- [16] L. A. Zadeh, Fuzzy sets, Inform. and Control,, 8 (1965), 338-353.

Received: July 01, 2015; Accepted: September 02, 2015

UNIVERSITY PRESS

Website: http://www.malayajournal.org/