Malaya MIM **Journal** of an international journal of mathematical sciences with Matematik computer applications...

www.malayajournal.org

Spectrum of fuzzy prime filters of a 0 - distributive lattice

Y. S. Pawar[∗] and S. S. Khopade*^a*

^aDepartment of Mathematics, Karmaveer Hire Arts, Science, Commerce & Education College, Gargoti-416209, India.

Abstract

Stone's topology on the set of fuzzy prime filters of a bounded 0 - distributive lattice is introduced and many properties of this space of fuzzy prime filters are furnished.

Keywords: fuzzy sublattice, fuzzy filter, fuzzy prime filter, 0-distributive lattice.

2010 MSC: 06D72. **COLLECT 2010 MSC: 06D72**.

1 Introduction

For topological concepts which have now become commonplace the reader is referred to [\[5\]](#page-6-0) and for lattice theoretic concepts the reader is referred to [\[4\]](#page-6-1). Venkatanarasimhan [\[15\]](#page-6-2) has studied the Stone's space of prime filters for a pseudocomplemented lattice. The concept of a 0-distributive lattice introduced by Varlet [\[13\]](#page-6-3) is a generalization of a distributive lattice and a pseudo-complemented lattice. A 0-distributive lattice is a lattice *L* with 0 in which for all $a, b, c \in L$, $a \wedge b = 0 = a \wedge c$ implies $a \wedge (b \vee c) = 0$. In [\[9\]](#page-6-4), [\[2\]](#page-6-5) authors have studied Stone's topology on set of prime filters of a 0 - distributive lattice. Such a study of prime spectrum plays an important role in the field of lattice theory.

Fuzzy set theory introduced by Zadeh [\[16\]](#page-6-6) is generalization of classical set theory. After the inception of the notion fuzzy sets, Rosenfield started the pioneering work in the domain of fuzzification of algebraic objects viz fuzzy groups [\[11\]](#page-6-7). Many researchers have applied this concept to mathematical branches such as semi-group, ring, semi-ring, field, near ring, lattice etc. In particular while fuzzifying the notions in lattice theory, Bo et al [\[3\]](#page-6-8) and Swami et al [\[12\]](#page-6-9) have laid down the foundation for fuzzy ideals, fuzzy filters of a lattice. In [\[10\]](#page-6-10), we have introduced and studied spectrum of L - fuzzy prime ideals of a bounded distributive lattice. In this paper our aim is to introduce Stone's topology *τ* on the set of fuzzy prime filters Σ of a bounded 0 - distributive lattice *L* and study many properties of the space *Fspec* (*L*) = (Σ, *τ*). Mainly we prove *Fspec* (*L*) is compact and it contains a subspace homeomorphic with the spectrum of *L* which is dense in it. If *L* and *L* 0 are isomorphic bounded 0 - distributive lattices, *Fspec* (*L*) and *Fspec* (*L* 0) are homeomorphic.

2 Preliminaries

In this article we collect basic definitions and results which are used in subsequent sections.

Let $L = \langle L, \wedge, \vee \rangle$ be a bounded lattice.

Definition 2.1. A fuzzy subset of L is a map of L into $\langle [0,1], \wedge, \vee \rangle$, where $\alpha \wedge \beta = min(\alpha, \beta)$ and $\alpha \vee \beta = max(\alpha, \beta)$ for all $\alpha, \beta \in [0,1]$. Let μ be a fuzzy subset of L. For $\alpha \in [0,1]$, the set $\mu_{\alpha} = \{x \in L : \mu(x) \ge \alpha\}$ is called α - cut (or α *- level set) of µ.*

Definition 2.2. *A fuzzy subset* μ *of L is said to be a fuzzy sublattice of L if for all* $x, y \in L$ *,* μ $(x \wedge y) \wedge \mu$ $(x \vee y) \ge$ $\mu(x) \wedge \mu(y)$.

[∗]Corresponding author.

E-mail address: yspawar1950@gmail.com (Y. S. Pawar), ssk27 01@rediffmail.com(S. S. Khopade).

Definition 2.3. A monotonic fuzzy sublattice is a fuzzy filter of L. Here μ is monotonic means $\mu(x) \leq \mu(y)$ whenever $x \leq y$ *in L.*

Definition 2.4. *The smallest fuzzy filter containing fuzzy subset µ of L is called fuzzy filter generated by µ and is denoted by* $\langle \mu \rangle$ *. Here by a fuzzy subset σ contains a fuzzy subset* μ *we mean* $\mu(a) \leq \sigma(a)$ *,* $\forall a \in L$ *and will be denoted by* $\mu \subset \sigma$ *.*

Definition 2.5. *A proper fuzzy filter of L is a non-constant fuzzy filter of L.*

Definition 2.6. *A proper fuzzy filter of L is said to be a fuzzy prime filter of L if for any* $x, y \in L$ *,* $u(x \vee y)$ *< µ* (*x*) ∨ *µ* (*y*)

Result 2.1. *A fuzzy subset* μ *of* L *is a fuzzy filter of* L *if and only if* $\mu(x \wedge y) = \mu(x) \wedge \mu(y)$ *.*

Result 2.2. *A fuzzy subset* μ *of* L *is a fuzzy prime filter of* L *if and only if* μ *is a homomorphism from* $\langle L, \wedge, \vee \rangle$ *into* $\langle [0, 1], \wedge, \vee \rangle$.

Result 2.3. *A fuzzy subset* μ *of* L *is a fuzzy filter of* L *if and only if each level set* μ_α *is a filter of* L , \forall $\alpha \in [0,1]$ *such that* $\mu_{\alpha} \neq \emptyset$ *.*

Result 2.4. *If µ is a fuzzy subset of L, then*

$$
\langle \mu \rangle = \bigcap \{ \sigma \mid \sigma \text{ is a fuzzy filter of } L, \mu \subseteq \sigma \}.
$$

Also χ _{[*S*}] = $\langle \chi$ *S* \rangle *, where S* \subseteq *L*.

Result 2.5. *A non-constant fuzzy filter* μ *of L is a fuzzy prime filter of L if and only if each level set* μ_α *is a prime filter of L;* $\forall \alpha \in [0,1]$ *such that* μ_{α} *is a proper filter of L.*

Result 2.6. *A non-empty subset P of L is a prime filter of L if and only if* χ_P *is a fuzzy prime filter of L.*

Result 2.7. ([\[3\]](#page-6-8)) Let L and L' be two lattices and $f : L \to L'$ an onto homomorphism. Then *(i)* If μ *is a fuzzy sublattice (ideal, filter) of L then* $f(\mu)$ *<i>is a fuzzy sublattice (ideal, filter) of L'* where $f(\mu)$ *is defined as*

$$
f(\mu)(y) = \sup \{ \mu(x) : f(x) = y, x \in L \}
$$
 for all $y \in L'$;

(*ii) If* v *is a fuzzy sublattice (ideal, prime ideal, filter, prime filter) of L' then* $f^{-1}(v)$ *is a fuzzy sublattice (ideal, prime ideal, filter, prime filter) of L where f* [−]¹ (*ν*) *is defined as*

 $f^{-1}(v)(x) = v(f(x))$ *for all* $x \in L$.

Result 2.8. Let L, L' be two bounded lattices. Let $f: L \to L'$ be a lattice isomorphism. If μ is a fuzzy prime filter of L, *then* $f(\mu)$ *is a fuzzy prime filter of L' and* $f^{-1}(f(\mu)) = \mu$ *.*

3 Spectrum of fuzzy prime filters

Now onwards *L* will denote a bounded 0 - distributive lattice. Let Σ denote the set of fuzzy prime filters of *L*. For each $\mu \in \Sigma$, we assume that $\mu(1) = 1$. For a fuzzy subset θ of *L* define $V(\theta) = {\mu \in \Sigma | \theta \subseteq \mu}$. If $\theta = \chi_{\{a\}}$ then we denote $V(\theta)$ by $V(a)$.

At the outset we prove some properties of *V* (.).

Theorem 3.1. *Let* θ *and* σ *be fuzzy subsets of L.*

- *1. If* $\theta \subseteq \sigma$ *, then* $V(\sigma) \subseteq V(\theta)$ *.*
- 2. $V(\sigma) \cup V(\theta) \subseteq V(\sigma \cap \theta)$.
- *3.* $V(\theta) = V(\langle \theta \rangle)$
- *4.* $V(0) = \emptyset$ and $V(1) = \Sigma$.

Proof. Proof of (1) follows by definition of *V* (.).

(2) We have $\sigma \cap \theta \subseteq \sigma$ and $\sigma \cap \theta \subseteq \theta$. By using (1) we get $V(\sigma) \subseteq V(\sigma \cap \theta)$ and $V(\theta) \subseteq V(\sigma \cap \theta)$. Hence $V(\sigma) \cup V(\theta) \subseteq V(\sigma \cap \theta).$

(3) As $\theta \subseteq \langle \theta \rangle$, again by (1) we get $V(\langle \theta \rangle) \subseteq V(\theta)$. Let $\mu \in V(\theta)$ then $\theta \subseteq \mu$. Therefore \cap $\{\sigma \in \Sigma : \theta \subseteq \sigma\} \subseteq \mu$ that is $\langle \theta \rangle \subseteq \mu$. Thus $\mu \in V(\langle \theta \rangle)$ proving that $V(\theta) \subseteq V(\langle \theta \rangle)$. Combining both inclusions we get $V(\theta) = V(\langle \theta \rangle)$.

(4) $V(0) = {\mu \in \Sigma : \chi_{0}} \subseteq \mu$ = { $\mu \in \Sigma : \mu(0) = 1$ }. As $\mu \in \Sigma$ and our assumption that $\mu(1) = 1$ it follows *V* (0) = \emptyset . Again by assumption that $\mu(1) = 1 \,\forall \mu \in \Sigma$ we get $V(1) = {\mu \in \Sigma : \chi_{\{1\}}} \subseteq \mu$ = ${\mu \in \Sigma : \mu(1) = 1}$ $=\Sigma$. \Box

Remark 3.1. *Let F*(*L*) *be the set of all fuzzy subsets of L and* ℘*(*Σ*) be the power set of* Σ*. Then V* (.) *defines a function V* : $F(L) \longrightarrow \wp(\Sigma)$ *such that* $V(\theta) = \{\mu \in \Sigma \mid \theta \subseteq \mu\}$ *. Clearly it is not an injective map as* $V(\theta) = V(\theta)$ *).*

Theorem 3.2. Let I and J be filters of L. Then $V(\chi_I) \cup V(\chi_J) = V(\chi_{I \cap J})$.

Proof. By Theorem [3.1](#page-1-0) (2) we have $V(\chi_I) \cup V(\chi_J) \subseteq V(\chi_I \cap \chi_J) = V(\chi_{I \cap J})$. Let $\mu \in V(\chi_{I \cap J})$. Then $\chi_{I \cap J} \subseteq \mu$ implies $\mu(x) = 1$ for all $x \in I \cap J$. If $\chi_I \nsubseteq \mu$ and $\chi_I \nsubseteq \mu$, then there exist $x \in I$ and $y \in J$ such that $\mu(x) \neq 1$ and $\mu(y) \neq 1$. But *I* and *J* being filters we have $x \vee y \in I \cap J$ so that $\mu(x \vee y) = 1$. As μ is a fuzzy prime filter of *L*, by Result [2.2,](#page-1-1) $\mu(x \lor y) = \mu(x) \lor \mu(y) = 1$ that is $\mu(x) = 1$ or $\mu(y) = 1$; which contradicts to the choice of *x* and *y*. Hence either $\chi_I \subseteq \mu$ or $\chi_J \subseteq \mu$. Therefore $\mu \in V(\chi_I)$ or $\mu \in V(\chi_J)$ and consequently $\mu \in V(\chi_I) \cup V(\chi_J)$. Thus $V(\chi_I \cap \chi_J) \subseteq V(\chi_I) \cup V(\chi_J)$ and the result follows. \Box

Theorem 3.3. If $\{\theta_i \mid i \in \Lambda\}$ (Λ is any indexing set) is a family of fuzzy subsets of L, then $V(\bigcup {\theta_i \mid i \in \Lambda})$ = $\bigcap \{V(\theta_i) \mid i \in \Lambda\}.$

Proof. We have

$$
\mu \in V \left(\bigcup \{ \theta_i \mid i \in \Lambda \} \right) \iff \bigcup \{ \theta_i \mid i \in \Lambda \} \subseteq \mu
$$

$$
\iff \theta_i \subseteq \mu \quad \forall i \in \Lambda
$$

$$
\iff \mu \in V(\theta_i) \quad \forall i \in \Lambda
$$

$$
\iff \mu \in \bigcap \{ V(\theta_i) \mid i \in \Lambda \}.
$$

This sows that $V(\bigcup {\theta_i | i \in \Lambda}) = \bigcap {V(\theta_i) | i \in \Lambda}.$

Remark 3.2. *Unlike in a crisp case* {*V* (*θ*) | *θ* is a fuzzy subset of *L*} *does not offer a system of closed sets for a* topology on the set Σ though V $(\bigcup \{ \theta_i | i\in \Lambda\})=\cap\{V(\theta_i)|i\in \Lambda\}$ (where Λ is any indexing set) holds. This happens $as V(\sigma) \cup V(\theta) \neq V(\sigma \cap \theta)$ *for some fuzzy subsets* θ *and* σ *of* L.

Theorem 3.4. 1. *V* (*a*) ∪ *V* (*b*) = *V*(*a* ∨ *b*); ∀ *a*, *b* ∈ *L*

2. $V(\chi_E) = \bigcap \{ V(a) \mid a \in E \}$; $\forall E \subseteq L$.

Proof. (1) Let $\mu \in V(a) \cup V(b)$. Then $\mu \in V(a)$ or $\mu \in V(b)$. If $\mu \in V(a)$, then $\mu(a) = 1$. As μ is a fuzzy filter, $\mu (a \vee b) \ge \mu (a) = 1$ that is $\mu (a \vee b) = 1$. But then $\mu \in V(a \vee b)$ so that $V(a) \subseteq V(a \vee b)$. Similarly if $\mu \in V(b)$, then $\mu \in V(a \vee b)$. Therefore $V(b) \subseteq V(a \vee b)$. Hence $V(a) \cup V(b) \subseteq V(a \vee b)$. Let $\mu \in V(a \vee b)$ then μ ($a \vee b$) = 1. μ being a fuzzy prime filter, by Result [2.2](#page-1-1), μ ($a \vee b$) = μ (a) \vee μ (b). Thus either μ (a) = 1 or $\mu(b) = 1$ that is $\mu \in V(a)$ or $\mu \in V(b)$ so that $\mu \in V(a) \cup V(b)$. Thus $V(a \vee b) \subseteq V(a) \cup V(b)$. Combining both the inclusions, (1) follows

(2) As $E = \bigcup \{a \mid a \in E\}$, we have $\chi_E = \bigcup \{\chi_{\{a\}} \mid a \in E\}$. Therefore $V(\chi_E) = V\left(\bigcup \{\chi_{\{a\}} \mid a \in E\}\right)$ $\bigcap \{V(a) \mid a \in E\}$ (By Theorem [3.3\)](#page-2-0). \Box

Theorem 3.5. Let $\mathfrak{B} = \{X(a) \mid a \in L\}$ where $X(a) = X\left(\chi_{\{a\}}\right) = \Sigma \setminus V(a)$. Then \mathfrak{B} constitutes a base for the *open sets of some topology on* Σ*.*

 \Box

Proof. By Theorem [3.1,](#page-1-0) (4), we have $X(0) = \Sigma \setminus V(0) = \Sigma \setminus \emptyset = \Sigma$. Therefore

$$
\Sigma = \bigcup \{ X \left(a \right) \mid a \in L \} \tag{1}
$$

Let $a, b \in L$. Then

$$
\mu \in X(a) \cap X(b) \iff \mu \in (\Sigma \setminus V(a)) \cap (\Sigma \setminus (V(b)))
$$

\n
$$
\iff \mu \in \Sigma \setminus (V(a) \cup V(b))
$$

\n
$$
\iff \mu \in \Sigma \setminus V(a \lor b) \text{ (by Theorem 3.4 (1))}
$$

\n
$$
\iff \mu \in X(a \lor b)
$$

Thus

$$
X(a) \cap X(b) = X(a \lor b)
$$
 (2)

From (1) and (2) it follows that $\mathfrak B$ forms a base for a topology on Σ .

Let τ denote the topology with base \mathfrak{B} on Σ . The topological space $\langle \Sigma, \tau \rangle$ is called fuzzy prime spectrum of *L* and is denoted by *Fspec* (*L*).

Theorem 3.6. *If L is a chain or a finite lattice, then* $\mathcal{B} = \tau$ *.*

Proof. Any open set *O* in $Fspec(L)$ is expressed as $O = \bigcup \{X(a) | a \in A \subseteq L\}$. By assumption, $[A] = [t]$ for some *t* ∈ *A*. Hence

$$
O = \bigcup \{ X (a) \mid a \in A \subseteq L \} = \Sigma \setminus \bigcap \{ V(a) \mid a \in A \}
$$

= $\Sigma \setminus V (\chi_A)$ (by Theorem 3.4 (2))
= $\Sigma \setminus V (\chi_{[A)})$ (by Theorem 3.1 (3))
= $\Sigma \setminus V (\chi_{[t)})$
= $\Sigma \setminus V (t)$
= $X (t)$

Thus any open set $O = X(t)$ for some $t \in L$ imply $\tau \subseteq \mathfrak{B}$. But always we have $\mathfrak{B} \subseteq \tau$. Hence $\mathfrak{B} = \tau$. \Box **Theorem 3.7.** *The space Fspec* (*L*) *is a compact space.*

Proof. Consider an open cover $\{X(a) \mid a \in A \subseteq L\}$ of Σ consisting of basic open sets. Therefore

$$
\Sigma = \bigcup \{ X (a) \mid a \in A \}
$$

\n
$$
= \bigcup \{ \Sigma \setminus V (a) \mid a \in A \}
$$

\n
$$
= \Sigma \setminus \bigcap \{ V (a) \mid a \in A \}
$$

\n
$$
= \Sigma \setminus V (\chi_A) \quad \text{(by Theorem 3.4, (2))}
$$

\n
$$
= \Sigma \setminus V (\chi_{[A)}) \text{ (by Theorem 3.1, (3))}
$$

Therefore $V\left(\chi_{\lbrack A \rbrack}\right)$ $=\emptyset$ (1)

If $[A] \subset L$, then as every proper filter of a 0 - distributive lattice is contained in a prime filter (see [\[14\]](#page-6-11)) there exists a prime filter *P* of *L* containing [*A*). Hence $\chi_{[A]} \subseteq \chi_P$ and χ_P is a fuzzy prime filter of *L* (by Result [2.6\)](#page-1-2). Thus $\chi_P\in V\left(\chi_{[A)}\right)=\varnothing$ (by (1)); a contradiction. This proves that $[A)=L.$ This results into $0\in [A)$ and consequently $0 = a_1 \wedge a_2 \wedge ... \wedge a_n$; *n* is finite, $a_i \in A \quad \forall i = 1, 2, ..., n$. Let $S = \{a_1, a_2, ..., a_n\} \subseteq A$. Then by using (1) and the fact that $[A) = L = [S)$ we have $V\left(\chi_S\right) = V\left(\chi_{[S)}\right) = V\left(\chi_L\right) = V\left(\chi_{[A)}\right) = \varnothing$ Therefore

$$
\bigcup \{ X (a_i) \mid i = 1, 2, ..., n \text{ and } a_i \in S \} = \bigcup \{ \Sigma \setminus V (a_i) \mid i = 1, 2, ..., n \text{ and } a_i \in S \}
$$

= $\Sigma \setminus \bigcap \{ V (a_i) \mid i = 1, 2, ..., n \text{ and } a_i \in S \}$
= $\Sigma \setminus V (\chi_S)$
= $\Sigma \setminus \emptyset = \Sigma$

 \Box

This shows that $\{X(a_i) \mid a_i \in S, i = 1, 2, \ldots, n\}$ is a finite subcover of the basic open cover $\{X(a) \mid a \in A\}$ of Σ. Hence *Fspec* (*L*) is compact. \Box

Theorem 3.8. *A subset* $\mathcal F$ *of* Σ *is closed in Fspec* (*L*) *if and only if there exists* $F \subseteq L$ *such that* $\mathcal F = V(\chi_F)$

Proof. Let $\mathcal{F} = V(\chi_F)$ for some subset *F* of *L*. Then $\mathcal{F} = V(\chi_F) = \bigcap \{V(a) \mid a \in F\}$ (by Theorem [3.4,](#page-2-1) (2)). As $V(a)$ is a closed set in *Fspec* (*L*), we get $\mathcal F$ is closed in *Fspec* (*L*).

Conversely suppose F is a closed set in *Fspec* (*L*). Then $\Sigma \setminus F$ is open in *Fspec* (*L*) and therefore we have

$$
\Sigma \setminus \mathcal{F} = \bigcup \{ X(a) \mid a \in F \} \text{ for some } F \subseteq L
$$

=
$$
\bigcup \{ \Sigma \setminus V(a) \mid a \in F \}
$$

=
$$
\Sigma \setminus \bigcap \{ V(a) \mid a \in F \}
$$

=
$$
\Sigma \setminus V(\chi_F) \quad \text{(by Theorem 3.4, (2))}
$$

Thus $\mathcal{F} = V(\chi_F)$ for some $F \subseteq L$. This completes the proof.

 \Box

Theorem 3.9. Let \wp denote the set of all prime filters of L. Then the set $\mathcal{H} = {\chi_{P} | P \in \wp}$ is dense in Fspec (L).

Proof. By Result [2.6,](#page-1-2) $\mathcal{H} \subseteq \Sigma$. Let $\mu \in \Sigma \setminus \mathcal{H}$. Let *X* (*a*) be a basic open subset of *Fspec*(*L*) containing *μ*. Then the 1 - level subset $\mu_1 = \{x \in L \mid \mu(x) = 1\}$ is proper and hence a prime filter of *L* (By Result [2.5\)](#page-1-3). $\mu \in X$ $(a) = \Sigma \setminus V(a)$ imply μ $(a) \neq 1$ so that $a \notin \mu_1$ that is $\chi_{\mu_1}(a) = 0 \neq 1$. This gives $\chi_{\mu_1} \in X$ (a) . As μ_1 is a prime filter of *L*, $\chi_{\mu_1} \in \mathcal{H}$. Thus any *X* (*a*) containing μ contains a point of \mathcal{H} . Thus every member of $\Sigma \backslash \mathcal{H}$ is a limit point of H. Hence $\overline{\mathcal{H}} = \Sigma$ which proves the result. \Box

Remark 3.3. *The subspace* H *of Fspec* (L) *is homeomorphic with the prime spectrum* \wp *(the set equipped with Zariski topology)* under the homeomorphism $f : \wp \to H$ *defined by* $f(P) = \chi_P$; $\forall P \in \wp$ *.*

Theorem 3.10. For any subset U of Σ , the closure of U i.e. $\overline{\mathcal{U}} = V(\chi_F)$, where $F = \bigcap \{\mu_1 \mid \mu \in \mathcal{U}\}.$

Proof. Let $\sigma \in \mathcal{U}$. Also if $\chi_F(x) = 1$ then $x \in F$ and by definition of *F* we have $x \in \sigma_1$ (since $\sigma \in \mathcal{U}$). But then $\sigma(x) = 1$ which gives $\chi_F \subseteq \sigma$. Thus $\sigma \in V(\chi_F)$. This proves that $\mathcal{U} \subseteq V(\chi_F)$. As $V(\chi_F)$ is a closed set we get $U \subseteq V(\chi_F)$

Now let $\mu \in V(\chi_F)$. If $\mu \in \mathcal{U}$, then $\mu \in \overline{\mathcal{U}}$ and we get $V(\chi_F) \subseteq \overline{\mathcal{U}}$. Otherwise suppose $X(a)$ be a basic open set containing μ . Then $\mu \notin V(a)$ so that $\mu(a) \neq 1$. As $\mu \in V(\chi_F)$ we get $\chi_F(a) \neq 1$. Thus $a \notin F =$ \cap { $\sigma_1 \mid \sigma \in \mathcal{U}$ } imply $\sigma(a) \neq 1$ for some $\sigma \in \mathcal{U}$. Therefore $\chi_{\{a\}} \not\subseteq \sigma$ and consequently $\sigma \notin V\left(\chi_{\{a\}}\right) = V(a)$ that is $\sigma \in X(a)$. Thus any basic open set $X(a)$ containing μ contains a point σ of $\mathcal U$. Therefore μ is a limit point of U. Thus $\mu \in \overline{U}$. Hence $V(\chi_F) \subseteq \overline{U}$. Combining both the inclusions the result follows. \Box

Corollary 3.1. *For any* $\mu \in \Sigma$, $\{\mu\} = V(\chi_{\mu_1})$ *and for* $\mu, \theta \in \Sigma$, $\{\mu\} = \{\theta\}$ *if and only if* $\mu_1 = \theta_1$ *.*

Proof. $\overline{\{\mu\}} = V(\chi_{\mu_1})$ follows by Theorem [3.10.](#page-4-0) Suppose $\{\mu\} = \{\theta\}$. Then $V(\chi_{\mu_1}) = V(\chi_{\theta_1})$ (by Theorem [3.10\)](#page-4-0). Now

$$
a \in \mu_1 \Rightarrow \chi_{\mu_1}(a) = 1
$$

\n
$$
\Rightarrow \sigma(a) = 1; \forall \sigma \in V(\chi_{\mu_1})
$$

\n
$$
\Rightarrow \sigma(a) = 1 \forall \sigma \in V(\chi_{\theta_1}) \dots \text{ (since } V(\chi_{\mu_1}) = V(\chi_{\theta_1}))
$$

\n
$$
\Rightarrow \chi_{\theta_1}(a) = 1 \dots \text{ (as } \chi_{\theta_1} \in V(\chi_{\theta_1}))
$$

\n
$$
\Rightarrow a \in \theta_1
$$

This shows that $\mu_1 \subseteq \theta_1$. Similarly we can prove $\theta_1 \subseteq \mu_1$. Therefore $\mu_1 = \theta_1$. Conversely suppose $\mu_1 = \theta_1$. Then $\chi_{\mu_1} = \chi_{\theta_1} \Longrightarrow V(\chi_{\mu_1}) = V(\chi_{\theta_1}) \Longrightarrow \overline{\{\mu\}} = \overline{\{\theta\}}$ (by Theorem [3.10\)](#page-4-0). \Box

Figure 1:

This result suggests that for a 0 - distributive lattice *L* the space $Fspec(L)$ need not be T_0 - space. To verify this consider the 0 - distributive lattice *L* as depicted by the Hasse diagram in Figure [1.](#page-5-0)

Define $\mu = \{(0,0.2), (a, 0.4), (b, 0.8), (c, 1), (1, 1)\}\$ and $\theta = \{(0,0.3), (a, 0.5), (b, 0.7), (c, 1), (1, 1)\}\$. Then μ and θ are fuzzy prime filters of *L* i.e. μ , $\theta \in Fspec(L)$. Clearly, $\mu \neq \theta$. But $\mu_1 = \theta_1 = \{c, 1\}$. Hence by Corollary [3.1](#page-4-1) we have $\overline{\{\mu\}} = \overline{\{\theta\}}$. This shows that $Fspec(L)$ is not a T₀ - space.

Theorem 3.11. Let L and L' be bounded 0 - distributive lattices and let $f : L \to L'$ be a lattice homomorphism. For \mathcal{C} *each* $\mu' \in \mathsf{Fspec}\,(L')$ *define* $f^*: \mathsf{Fspec}\,(L') \to \mathsf{Fspec}\,(L)$ by $f^*\,(\mu') = f^{-1}\,(\mu').$ Then *(i) f* [∗] *is a continuous mapping.* (*ii*) If f is surjective, then f^* is injective.

Proof. By Result [2.7](#page-1-4) , *f* ∗ is well defined map. (i) For any basic closed set *V* (*a*) in *Fspec* (*L*) where $a \in L$ we have

$$
f^{*-1}(V (a)) = \{ \mu' \in Fspec (L') | f^* (\mu') \in V (a) \}
$$

= { $\mu' \in Fspec (L') | [f^* (\mu')] (a) = 1 \}$
= { $\mu' \in Fspec (L') | [f^{-1} (\mu')] (a) = 1 \}$
= { $\mu' \in Fspec (L') | \mu' (f (a)) = 1 \}$
= { $\mu' \in Fspec (L') | \chi_{\{f(a)\}} \subseteq \mu' \}$
= $V (\chi_{\{f(a)\}}) = V(f(a))$

which is a closed set in *Fspec*(*L* 0). Thus inverse image under *f* [∗] of a basic closed set in *Fspec* (*L*) is a closed set in $Fspec(L')$. Hence f^* is continuous.

(ii) Let *f* be surjective and μ' , $\theta' \in Fspec(L')$ such that $f^*(\mu') = f^*(\theta')$. Then

$$
(f^*(\mu'))(x) = (f^*(\theta'))(x) \; ; \; \forall \; x \in L \implies \left(f^{-1}(\mu')\right)(x) = \left(f^{-1}(\theta')\right)(x) \; ; \; \forall \; x \in L
$$

$$
\implies \mu'(f(x)) = \theta'(f(x)) \; \forall \; x \in L
$$

$$
\implies \mu' = \theta'
$$

This proves f^* is an injective map.

Theorem 3.12. If $f: L \to L'$ is an isomorphism, then $Fspec(L)$ is homeomorphic to $Fspec(L')$.

Proof. By hypothesis, the functions f^* : $Fspec(L') \longrightarrow Fspec(L)$ defined by $f^*(\mu') = f^{-1}(\mu')$ and g^* : $Fspec(L) \longrightarrow Fspec(L')$ defined by $g^*(\mu) = f(\mu)$, are well defined and inverses of each other (see Result [2.7](#page-1-4)) and Result [2.8](#page-1-5)). Further, analogous to the proof in theorem 3.17, it can be proved that they are continuous. \square

 \Box

References

- [1] P. Balasubramani and P. V. Venkatnarsimhan, Characterizations of 0-distributive Lattices, *Indian J. pure appl. Math.,* 32(3) (2001), 315-324.
- [2] P. Balasubramani, Stone topology of the set of prime filters of a 0-distributive lattice, *Indian J. Pure and Appl. Math.,* 35(2) (2004), 149-158.
- [3] Bo Yuan and Wangming Wu, Fuzzy ideals on a distributive lattice, *Fuzzy sets and systems,* 35 (1990), 231 - 240.
- [4] G. Grätzer, Lattice Theory - First concepts and Distributive Lattices, *Freeman and Company, San Francisco*, (1971).
- [5] Kelly J.L., General Topology, *New York, Van Nostrand,* 1969.
- [6] Klir George J. and Bo Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, *Prentice Hall of India Pvt. Ltd.,New Delhi,110001,* (1997).
- [7] Koguep B.B.N., Nkuimi C., Lele C., On Fuzzy prime ideals of lattice, *SJPAM,*, 3 (2008), 1-11.
- [8] Y. S. Pawar, 0-1 distributive lattices, *Indian J. Pure and Appl. Math.,* 24 (1993), 173-179.
- [9] Y. S. Pawar and N. I. Dhanshetti, Stone's Topology for 0 - distributive lattices, *Journal of Indian Math. Soc.,* 59 (1993), 79-86.
- [10] Pawar Y. S. and Khopade S. S., Spectrum of L - fuzzy prime ideals of a distributive lattice, *Fuzzy Systems and Mathematics,* 27(1) (2013), 12-19.
- [11] Rosenfeld A., Fuzzy Groups, *Journal Mathematical Analysis and Applications,* 35 (1971), 512-517.
- [12] Swamy U. M. and Raju D. Viswanadha, Fuzzy ideals and congruence of lattices, *Fuzzy Sets and Systems,* 95 (1998), 249-253.
- [13] Varlet J., A generalization of the notion of pseudo-complementedness, *Bull. soc. Liege.,* 37(1968), 149-158.
- [14] P. V. Venkatanarasimhan, Pseudo-Complements in Posets, *Proc. Amer. Math. Soc.,* 28(1) (1971), 9 - 17.
- [15] P. V. Venkatanarasimhan, Stone's Topology for Pseudocomplemented and Bicomplemented Lattices, *Trans. Amer. Math. Soc.,* 170 (1972), 57-70.
- [16] L. A. Zadeh, Fuzzy sets, *Inform. and Control,*, 8 (1965), 338-353.

Received: July 01, 2015; *Accepted*: September 02, 2015

UNIVERSITY PRESS

Website: http://www.malayajournal.org/