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Periodic boundary value problem for the graph differential equation and

the matrix differential equation
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Abstract

A network can be represented by graph which is isomorphic to its adjacency matrix. Thus the analysis of
networks involving rate of change with respect to time reduces to the study of graph differential equations
and its associated matrix differential equations. In this paper we develop monotone iterative technique for
graph differential equations and its associated matrix differential equations using Periodic boundary value
problem.
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1 Introduction

It is a well established fact that a graph represents interconnections in a physical or a biological system and
a graph that varies with time models physical phenomena that are time dependent. Such systems naturally
arise in all disciplines of knowledge including social sciences. In [1,2] the concept of the derivative of a
graph was considered and graph differential equations(GDEs) were introduced. In [2] a solution of the
graph differential equations was obtained by developing monotone iterative technique [3] for initial value
problems(IVPs) of the corresponding matrix differential equations(MDEs). In [4] the concept of a pseudo
graph was introduced and a graph was used to study prey predator problem. The idea of using MDEs to
study the corresponding GDEs is justified by the existence of an isomorphism between graphs with n-vertices
and n× n matrices.

In this paper, we obtain a solution for the periodic boundary value problem(PBVP) of a GDE by studying
the corresponding PBVP of the MDE. Using the approach used in [5] we develop a sequence of monotone
iterates which are solutions of a sequence of IVPs of linear matrix differential equations. We develop
different types of iterative sequences as in [6,7] using the iterative scheme given in [8] to obtain the monotone
sequences. Next, we show that the sequence converges to a solution of the PBVP and that the corresponding
graph function is a solution for the considered PBVP for a GDE.

2 Preliminaries

In this section, we give certain definitions,notations,results and preliminary facts related to GDEs that are
required to study the main results in the problem.

Definition 2.1. Pseudo simple graph: A simple graph having loops is called as a pseudo simple graph.
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Let v1, v2, ...vN be N vertices,where N is any positive integer. Let DN be the set of all weighted directed
pseudo simple graphs D=(V, E). Then (DN ,+, .) is a linear space w.r.t the operations + and . defined in [1,2].

Let the set of all corresponding adjacency matrices be EN . Then (EN ,+, .) is a matrix linear space where
’+’ denotes matrix addition and ’.’ denotes scalar multiplication. With this basic structure defined, the
comparison theorems, existence and uniqueness results of a solution of a MDE and the corresponding GDE
follow as in [2].

Definition 2.2. Continuous and differentiable matrix function:
(1) A matrix function E : I → Rn×n defined by E(t) = (eij(t))N×N is said to be continuous if and only if each
entry eij(t) is continuous for all i, j = 1, 2, . . . , N where eij : I → R.
(2) A continuous matrix function E(t) is said to be differentiable if and only if each entry eij(t) is differentiable
for all i, j = 1, 2, . . . , N. The derivative of E(t) (if exists) is denoted by E′ and is given by E′(t) = (e′ij)N×N .

Definition 2.3. Continuous and differentiable graph function: Let D : I → DN be a graph function and
E : I → Rn×n be its associated adjacency matrix function. Then
(1) D(t) is said to be continuous if and only if E(t) is continuous.
(2) D(t) is said to be differentiable if and only if E(t) is differentiable.

If for any graph function D the corresponding adjacency matrix function is differentiable then we say that
D is differentiable and the derivative of D (if exists) is denote by D′.

Consider the initial value problem
D′ = G(t, D), D(t0) = D0 (2.1)

Let E, E0 be adjacency matrices corresponding to any graph D and the initial graph D0.

Then the MDE is given by
E′ = F(t, E), E(t0) = E0 (2.2)

where F(t,E) is the adjacency matrix function corresponding to G(t,D).

Definition 2.4. Any continuous differentiable matrix function E(t) is said to be a solution of (2.2), if and only
if it satisfies (2.2).

Definition 2.5. By a solution of GDE (2.1), we mean the graph function D(t) corresponding to the matrix
solution E(t) of the MDE (2.2).

In order to obtain a solution of (2.1), we use the corresponding adjacency MDE. As there exists an
isomorphism between graphs and matrices, the graph function corresponding to the solution obtained for
the MDE will be a solution of the corresponding GDE.

Definition 2.6. Let {En} be a sequence of matrices and E be a matrix. Then En converges to E if and only if
given ε > 0 there exist n ≥ N such that ||En − E|| ≤ ffl for all n ≥ N. This means enij → eij for all 1 ≤ i, j ≤ N.

Definition 2.7. Consider two matrices A and B of order N. We say that A ≤ B if and only if aij ≤ bij for all
i, j = 1, 2, . . . , N.

Definition 2.8.

Let D1 and D2 be two graphs. Let e1
ij(t) be the weight of the edge joining the vertex vj to vi, i, j = 1, 2, ..., n

in D1 and e2
ij(t) be the weight of the edge joining the vertex vj to vi, i, j = 1, 2, ..., n in D2 then we say that

D1 ≤ D2 if and only if e1
ij ≤ e2

ij.

Theorem 2.1.

If {Un(t)} ∈ C1[I, Rn×n] is a sequence of equicontinuous and equibounded multimappings defined on an
interval I, then we can extract a subsequence that converges uniformly to a continuous multimapping U(t) on
I.

With the necessary preliminaries in place, we proceed to the next section to develop the main results.
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3 Main results

In this section, we obtain a solution for the PBVP for GDE through the solution of the PBVP for MDE.
Consider the PBVP for GDE given by

D′ = G1(t, D) + G2(t, D), D(0) = D(T), (3.3)

where G1, G2 ∈ C[I × DN , DN ] and I=[0,T].

The graphs G1 and G2 generate two matrix mappings F1, F2 ∈ C1[I ×Rn×n, Rn×n] such that the weight
of the edge joining the vertex vk to the vertex vl , k, l = 1, 2, ..., n is given by ei

lk(t), for i = 1, 2 that is,
(ei

lk(t))n×n is the weight matrix corresponding to the graph Gi and is denoted by Fi = (ei
lk(t))n×n. Further, let

E(t) = (elk(t)) be any arbitrary matrix function corresponding to any arbitrary graph function D(t) and then
consider the following MDE corresponding to GDE (3.3) as

E′ = F1(t, E) + F2(t, E), E(0) = E(T), (3.4)

where F1, F2 ∈ C[I ×Rn×n, Rn×n].
We next proceed to gives several possible notions of lower and upper solutions relative to MDE (3.4).

Definition 3.9. Let V0, W0 ∈ C1[I, Rn×n]. Then V0, W0 are said to be
(a) natural lower and upper solutions of (3.4) if

V′0 ≤ F1(t, V0) + F2(t, V0), V0(0) ≤ V0(T).
W ′0 ≥ F1(t, W0) + F2(t, W0), W0(0) ≥W0(T), t ∈ I;

}
(3.5)

(b) coupled lower and upper solutions of Type I of (3.4) if

V′0 ≤ F1(t, V0) + F2(t, W0), V0(0) ≤ V0(T),
W ′0 ≥ F1(t, W0) + F2(t, V0), W0(0) ≥W0(T), t ∈ I;

}
(3.6)

(c) coupled lower and upper solutions of Type II of (3.4) if

V′0 ≤ F1(t, W0) + F2(t, V0), V0(0) ≤ V0(T),
W ′0 ≥ F1(t, V0) + F2(t, W0), W0(0) ≥W0(T), t ∈ I;

}
(3.7)

(d) coupled lower and upper solutions of Type III of (3.4) if

V′0 ≤ F1(t, W0) + F2(t, W0), V0(0) ≤ V0(T),
W ′0 ≥ F1(t, V0) + F2(t, V0), W0(0) ≥W0(T), t ∈ I.

}
(3.8)

We observe that whenever V0(t) ≤W0(t), t ∈ I, if F1(t, E) is nondecreasing in E for each t ∈ I and F2(t, E)
is nonincreasing in E for each t ∈ I, the lower and upper solutions defined by (3.5) and (3.8) reduce to (3.7)
and consequently, it is sufficient to investigate the cases (3.6) and (3.7).

We prove the following lemma that deals with developing the MIT for the equation (3.4).

Lemma 3.1. Let P ∈ C1[I, Rn×n] such that P′(t) ≤ 0 and P(0) ≤ 0 then P(t) ≤ 0

Proof. Consider the linear matrix differential equation

P′(t) = M(t)P + H(t), P(0) = 0

Whose unique solution is given by

P(t) = eM(t−t0)P(0) +
∫ t

t0

eM(t−s)H(s)ds

Then by hypothesis, we get, P(t) ≤ 0
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Theorem 3.2. Assume that
(A1) V0, W0 ∈ C1[I, Rn×n] are coupled lower and upper solutions of Type I relative to (3.4) with
V0(t) ≤W0(t), t ∈ I;
(A2) F1, F2 ∈ C[I ×Rn×n, Rn×n] , F1(t, E) is nondecreasing in E for each t ∈ I and F2(t, E) is nonincreasing in E for
each t ∈ I;
(A3) F1 and F2 map bounded sets into bounded sets in Rn×n.

Then there exist monotone sequences {Vn},{Wn} in Rn×n such that Vn → ρ, Wn → R where (ρ, R) are the
coupled minimal and maximal solutions of (3.4), that is, they satisfy

ρ′ = F1(t, ρ) + F2(t, R), ρ(0) = ρ(T),

R′ = F1(t, R) + F2(t, ρ), R(0) = R(T).

Proof. For each n ≥ 0, consider the initial value problems

V′n+1 = F1(t, Vn) + F2(t, Wn), Vn+1(0) = Vn(T), (3.9)

W ′n+1 = F1(t, Wn) + F2(t, Vn), Wn+1(0) = Wn(T), (3.10)

where V(0) ≤W(0).

Our aim is to prove that the solutions of (3.9) and (3.10) satisfy the relation,

V0 ≤ V1 ≤ ... ≤ Vn ≤Wn ≤ ... ≤W1 ≤W0, t ∈ I. (3.11)

Since Vo is the coupled lower solution of Type I of (3.4), we have, using the fact V0 ≤W0 and the nondecreasing
character of F,

V′0 ≤ F1(t, V0) + F2(t, W0).

Also from (3.9) we get for n = 0,
V′1 = F1(t, V0) + F2(t, W0), (3.12)

V1(0) = V0(T). (3.13)

Clearly equations (3.12), (3.13) have a unique solution denoted by V1(t), t ∈ I. Now we show that V0 ≤ V1 on
I. Set P(t) = V0(t)− V1(t),

P′(t) ≤ F1(t, V0) + F2(t, W0)− F1(t, V0)− F2(t, V0) ≤ 0

and P(0) = V0(0)− V1(0) ≤ V0(T)− V0(T) ≤ 0. Then by Lemma 3.2, we get P(t) ≤ 0. Thus V0 ≤ V1 on I.
A similar argument shows that W1 ≤ W0 on I. For the purpose of showing V1 ≤ W1, consider (3.12), (3.13)
along with

W ′1 = F1(t, W0) + F2(t, V0), (3.14)

W1(0) = W0(T). (3.15)

Put P(t) = V1(t)−W1(t), then P′(t) = F1(t, V0) + F2(t, W0)− F1(t, W0)− F2(t, V0). Since V0 ≤W0 on I, using
the monotone nature of F1 and F2 gives
P′(t) ≤ 0 and P(0) = V1(0)−W1(0) = V0(T)−W0(T) ≤ 0. Therefore by Lemma 3.2, we get P(t) ≤ 0. Thus
V1 ≤W1 on I. Hence

V0 ≤ V1 ≤W1 ≤W0, on I. (3.16)

Assume that for j ≥ 1,
Vj−1 ≤ Vj ≤Wj ≤Wj−1, on I. (3.17)

Then we will show that
Vj ≤ Vj+1 ≤Wj+1 ≤Wj, on I. (3.18)

To do this consider,
V′j = F1(t, Vj−1) + F2(t, Wj−1), (3.19)
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Vj(0) = Vj−1(T), (3.20)

V′j+1 = F1(t, Vj) + F2(t, Wj), (3.21)

Vj+1(0) = Vj(T). (3.22)

Now we show that Vj(t) ≤ Vj+1(t) on I. Consider P(t) = Vj(t) − Vj+1(t).
Then P′(t) = F1(t, Vj−1) + F2(t, Wj−1)− F1(t, Vj)− F2(t, Wj), Now using the fact that Vj−1 ≤ Vj, Wj ≤ Wj−1,
and the monotone nature of F1 and F2, we obtain P′(t) ≤ 0 and P(0) = Vj(0)− Vj+1(0) = Vj−1(T)− Vj(T)
≤ 0. Again by using Lemma 3.2, we get P(t) ≤ 0. Thus Vj ≤ Vj+1 on I. Similarly we get Wj+1 ≤Wj on I.

Next we show that Vj+1 ≤Wj+1 t ∈ I. We have from (3.9), (3.10)

V′j+1 = F1(t, Vj) + F2(t, Wj), Vj+1(0) = Vj(T), (3.23)

W ′j+1 = F1(t, Wj) + F2(t, Vj), Wj+1(0) = Wj(T). (3.24)

Set P(t) = Vj+1(t)−Wj+1(t), then P′(t) = F1(t, Vj) + F2(t, Wj)− F1(t, Wj)− F2(t, Vj), Arguing as earlier we
conclude P′(t) ≤ 0 and P(0) = Vj+1(0) −Wj+1(0) = Vj(T) −Wj(T) ≤ 0. By Lemma 3.2, we get P(t) ≤ 0.
Thus Vj+1 ≤Wj+1 on I.
Hence (3.18) follows and consequently, by induction (3.18) is valid for all n. Clearly the sequences {Vn},{Wn}
are uniformly bounded on I.
To show that these sequences are equicontinuous, consider for any s ≥ t, where t, s ∈ I,

|Vn(t)−Vn(s)| = |Vn(0) +
∫ t

0
(F1(ξ, Vn−1(ξ)) + F2(ξ, Wn−1(ξ)))dξ

−Vn(0)−
∫ s

0
(F(ξ, Vn−1(ξ)) + G(ξ, Wn−1(ξ)))dξ|

= |
∫ t

0
(F1(ξ, Vn−1(ξ)) + F2(ξ, Wn−1(ξ)))dξ

−
∫ s

0
(F1(ξ, Vn−1(ξ)) + F2(ξ, Wn−1(ξ)))dξ|

≤ |
∫ t

s
(F1(ξ, Vn−1(ξ)) + F2(ξ, Wn−1(ξ)))dξ|

≤ M|t− s|.

Here we utilized the properties of integral, together with the fact F1 and F2 are bounded and {Vn},{Wn} are
uniformly bounded. Hence {Vn(t)} is equicontinuous on I. The corresponding Ascoli’s Theorem, Theorem
2.9, gives a subsequence {Vnk} which converges uniformly to ρ(t) ∈ Rn×n, t ∈ I, and since {Vn(t)} is
nondecreasing sequence, the entire sequence {Vn(t)} converges uniformly to ρ(t) on I.

Similar arguments apply to the sequence {Wn(t)} and we obtain Wn(t)→ R(t) uniformly on I. It therefore
follows, using the integral representation of (3.9), (3.10) that ρ(t), R(t) satisfy

ρ′(t) = F1(t, ρ(t)) + F2(t, R(t)), ρ(0) = ρ(T);

R′(t) = F1(t, R(t)) + F2(t, ρ(t)), R(0) = R(T).

and that
V0 ≤ ρ ≤ R ≤W0, t ∈ I.

Next we claim that (ρ, R) are coupled minimal and maximal solutions of (3.4), that is, if U(t) is any solution
of (3.4) such that

V0 ≤ U ≤W0, on I, (3.25)

then
V0 ≤ ρ ≤ U ≤ R ≤W0, on I. (3.26)

Suppose that for some n,
Vn ≤ U ≤Wn on I. (3.27)
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Then we have using the monotone nature of F1, F2 and (3.4)

U′ = F1(t, U) + F2(t, U) ≥ F1(t, Vn) + F2(t, Wn), U(0) = U(T).

V′n+1 = F1(t, Vn) + F2(t, Wn), Vn+1(0) = Vn(T).

Now we show that Vn+1 ≤ U on I. Set P(t) = Vn+1(t) − U(t),
P′(t) = F1(t, Vn) + F2(t, Wn)− F1(t, Vn)− F2(t, Wn) ≤ 0 and P(0) = Vn+1(0)−U(0) = Vn(T)−U(T) ≤ 0.
Then by Lemma 3.2, we get P(t) ≤ 0. Thus Vn+1 ≤ U on I. Similarly Wn+1 ≥ U on I.
Hence by induction (3.27) is true for all n ≥ 1. Now taking the limit as n → ∞, we get (3.26), proving the
claim. The proof is complete.

In the following theorem we use a different set of iterative scheme to form the existence a result for the
MDE (3.4).

Theorem 3.3. Let the hypothesis of Theorem 3.4 hold with V0 ≤W0 on I. Then the iterative scheme given by

V′n+1 = F1(t, Wn) + F2(t, Vn), (3.28)

Vn+1(0) = Wn(T). (3.29)

and
W ′n+1(t) = F1(t, Vn) + F2(t, Wn), (3.30)

Wn+1(0) = Vn(T). (3.31)

yield alternating sequences {V2n, W2n+1} converging to ρ and {W2n, V2n+1} converging to R uniformly on I such that
the relation

V0 ≤W1 ≤ ... ≤ V2n ≤W2n+1 ≤ U ≤ V2n+1 ≤W2n ≤ ... ≤ V1 ≤W0. (3.32)

holds on I. Further ρ and R are coupled minimal and maximal solutions of Type II for the MDE (3.4).

Proof.
Clearly the IVPs (3.28), (3.29), (3.30) and (3.31) have unique solutions for each n = 0, 1, 2, ... denoted by

Vn+1(t) and Wn+1(t) respectively. Setting n = 0 in the iterative scheme we obtain that V1 and W1 are solutions
of the IVPs for MDEs given by

V′1 = F1(t, W0) + F2(t, V0), (3.33)

V1(0) = W0(T), (3.34)

and
W ′1(t) = F1(t, V0) + F2(t, W0), (3.35)

W1(0) = V0(T). (3.36)

First we show that V0 ≤ W1 on I. Set P(t) = V0(t) −W1(t), then P′(t) ≤ 0, due to the fact that V0 ≤ W0
and F1 and F2 are monotone in E. Also P(0) ≤ 0. Then by Lemma 3.2, we get P(t) ≤ 0. Thus V0 ≤ W1 on I. A
similar argument shows that V1 ≤W0, W1 ≤ V1 on I. Thus, V0 ≤W1 ≤ V1 ≤W0 on I.
We now proceed to prove that V0 ≤ W1 ≤ V2 ≤ W3 ≤ V3 ≤ W2 ≤ V1 ≤ W0 on I. To do this, set n = 1 in
(3.28), (3.29) then

V′2 = F1(t, W1) + F2(t, V1), V2(0) = W1(T). (3.37)

Now we show that W1 ≤ V2 on J. Put P(t) = W1(t)−V2(t), then by using V0 ≤ W0 and monotone nature of
F1 and F2, we arrive at P′(t) ≤ 0 and also P(0) ≤ 0. Hence by Lemma 3.2, we get P(t) ≤ 0. Thus W1 ≤ V2 on
I. Working in a similar fashion we shows that W2 ≤ V1 on I.
To prove V2 ≤W3, set n = 1 in (3.28), (3.29) and n = 2 in (3.30), (3.31) then

V′2 = F1(t, W1) + F2(t, V1),

V2(0) = W1(T).

and
W ′3 = F1(t, V2) + F2(t, W2),
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W2(0) = V2(T).

We now proceed to prove that V2 ≤ W3 on I. Consider P(t) = V2(t)−W3(t). Since W1 ≤ V2, W2 ≤ V1 on I
and using the monotone nature of F1 and F2, gives P′(t) ≤ 0 and also we get P(0) ≤ 0. Then by Lemma 3.2,
we have P(t) ≤ 0. Thus V2 ≤ W3 on I. Working in a similar fashion we shows that W2 ≤ V1 on I. Working as
earlier, it can be easily shown that W3 ≤ V3 on I.
Now assume that the relation (3.32) holds for some integer n = k such that

W2k−1 ≤ V2k ≤W2k+1 ≤ U ≤ V2k+1 ≤W2k ≤ V2k−1. (3.38)

To apply mathematical induction we need to prove that

W2k+1 ≤ V2k+2 ≤W2k+3 ≤ U ≤ V2k+3 ≤W2k+2 ≤ V2k+1 on I. (3.39)

For this, set n = 2k + 1 in (3.28), (3.29) and n = 2k in (3.30), (3.31). Then,

V′2k+2 = F1(t, W2k+1) + F2(t, V2k+1), V2k+2(0) = W2k+1(T). (3.40)

and
W ′2k+1 = F1(t, V2k) + F2(t, W2k), W2k+1(0) = V2k(T). (3.41)

Further, we show that V2k+2 ≤ W2k+3 on I. Set P(t) = V2k+2(t)−W2k+3(t). Then P′(t) ≤ 0, due to the fact
that W1 ≤ V2, W2 ≤ V1 and monotone nature of F1 and F2. Also P(0) ≤ 0. Applying by Lemma 3.2, we get
P(t) ≤ 0. Thus V2 ≤W3 on I. Similarly, V2k+3 ≤W2k+2, W2k+2 ≤ V2k+1 all hold on I.
Thus we are in a position to apply mathematical induction and claim that the relation (3.32) holds. Working
as in Theorem 3.3, we can show that the sequences {V2n}, {V2n+1}, {W2n}, {W2n+1} are equicontinuous and
uniformly bounded. Thus from Theorem 2.9, which is the Arzela-Ascoli Theorem, we conclude that they are
uniformly convergent and that V2n → ρ, W2n+1 → ρ and W2n → R and V2n+1 → R as n→ ∞.

The proof is complete if we show that ρ and R are coupled minimal and maximal solutions of the MDE
(3.4). This follows by considering the corresponding Hukuhara integral and using the properties of uniform
continuity of F1 and F2 and uniform convergence of the sequences {V2n}, {W2n+1} and {V2n+1}, {W2n}. As
the details are routine, we omit them and the proof of the theorem is complete.

Now in order to extend our results to GDEs, we define the various notions of lower and upper solutions
of (3.3) and use the results obtained earlier to obtain solutions of the PBVP (3.3).

Definition 3.10. Let X0, Y0 ∈ C1[I, DN ] be graph functions then we say that X0 and Y0 are
(a) natural lower and upper solutions of (3.3) if

X′0 ≤ G1(t, X0) + G2(t, X0), X0(0) ≤ X0(T).
Y′0 ≥ G1(t, Y0) + G2(t, Y0), Y0(0) ≥ Y0(T), t ∈ I;

}
(3.42)

(b) coupled lower and upper solutions of Type I of (3.3) if

X′0 ≤ G1(t, X0) + G2(t, Y0), X0(0) ≤ X0(T),
Y′0 ≥ G1(t, Y0) + G2(t, X0), Y0(0) ≥ Y0(T), t ∈ I;

}
(3.43)

(c) coupled lower and upper solutions of Type II of (3.3) if

X′0 ≤ G1(t, Y0) + G2(t, X0), X0(0) ≤ X0(T),
Y′0 ≥ G1(t, X0) + G2(t, Y0), Y0(0) ≥ Y0(T), t ∈ I;

}
(3.44)

(d) coupled lower and upper solutions of Type III of (3.3) if

X′0 ≤ G1(t, Y0) + G2(t, Y0), X0(0) ≤ X0(T),
Y′0 ≥ G1(t, X0) + G2(t, X0), Y0(0) ≥ Y0(T), t ∈ I.

}
(3.45)

Theorem 3.4. Assume that
(A1) X0, Y0 ∈ C1[I, DN ] are coupled lower and upper solutions of Type I relative to (3.3) with X0(t) ≤ Y0(t), t ∈ I;

(A2) G1, G2 ∈ C1[I × DN , DN ], G1(t, E) is nondecreasing in D for each t ∈ I and G2(t, D) is nonincreasing in D for
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each t ∈ I;

(A3) G1 and G2 map bounded sets into bounded sets in DN .

Then there exists solutions Gρ(t) and GR(t) where (Gρ, GR) are the coupled minimal and maximal solutions of
(3.3), that is, they satisfy

G′ρ(t) = G1(t, Gρ) + G2(t, GR), Gρ(0) = Gρ(T),

G′R(t) = G1(t, GR) + G2(t, Gρ), GR(0) = GR(T),

Proof.
Consider the given graph differential equation (3.3). and its corresponding MDE is (3.4).

By hypothesis we have that X0, Y0 are coupled lower and upper solutions of type I of GDE (3.3). with X0(t) ≤
Y0(t), t ∈ I
By using the isomorphism that exists between graphs and matrices we note that corresponding to X0, Y0 ∈
C[I, DN ] there exists V0, W0 ∈ C1[I, Rn×n] such that V0 and W0 are coupled lower and upper solutions of MDE
(3.4) with V0(t) ≤W0(t), t ∈ I. Hence hypothesis (A1) of Theorem 3.3 holds.
Now here G1(t, D) ∈ C[I × DN , DN ] is nondecreasing in D and there exists F1(t, E) ∈ C[I × Rn×n, Rn×n]

which is nondecreasing in E and similarly F2(t, E) is nonincreasing in E for each t. Therefore the hypothesis
(A2), (A3) of Theorem 3.3 holds. Clearly F1 and F2 map bounded sets into bounded sets. Since G1 and G2 map
bounded sets into bounded sets.

Thus we conclude that there exists ρ(t), R(t) ∈ C[I, Rn×n] such that (ρ(t), R(t)) are the coupled minimal
and maximal solution of the MDE (3.4). By using isomorphism between are obtained that there exist
Gρ(t), GR(t) ∈ C1[I, DN ] such that (Gρ(t), GR(t)) are the coupled minimal and maximal solution of GDE
(3.3).
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