Malaya
Journal ofMJM
an international journal of mathematical sciences with
computer applications...

Double quadrilateral snakes on k-odd sequential harmonious labeling of graphs

Dr. A. Manonmani^{*a*,*} and R. Savithiri^{*b*}

^{a,b} Department of Mathematics, LRG Government Arts College for Women, Tirupur-641604, Tamil Nadu, India.

Abstract

www.malayajournal.org

The objective of this paper is to investigate some k-odd sequential harmonious labeling of graphs. In particular, we show that k-odd sequential harmonious labeling of double quadrilateral snakes ($2Q_x$ -snakes) for each $x \ge 1$. We also prove that, $2mQ_x$ -snakes are k-odd sequential harmonious labeling of graphs for each $m, x \ge 1$. Finally, we present some examples and verified to illustrate proposed theories.

Keywords: Labeling, Harmonious, *k*-odd sequential harmonious, Double quadrilateral snake.

2010 MSC: 34G20.	(C)2012 MJM. All rights reserved.

1 Introduction

All the graphs in this paper are finite, simple and undirected. The symbols V(G) and E(G) denote the vertex set and the edge set of a graph G.

The cardinality of the vertex set is called the order of *G*. The cardinality of the edge set is called the size of *G*. A graph with *p* vertices and *q* edges is called a (p,q) graph.

Definition : 1.1

If the vertices are assigned values subject to certain condition(s) then it is known as graph labeling.

Definition : 1.2

A graph G is said to be harmonious if there exist an injection $f: V(G) = \{0, 1, 2, \dots, 2q - 1\}$ such that the induced function $f^+: E(G) = \{0, 1, 2, \dots, 2q - 1\}$ defined by $f^+(uv) = (f(u) + f(v))(\mod q - 1)$ is a bijection and f is said to be harmonious labeling of G.

Definition : 1.3

An odd sequential harmonious labeling if there exist an injection f from the vertex set V to $\{0, 1, 2, \dots, 2q-1\}$ such that the induced mapping f^+ from the edge set E to $\{1, 3, 5, \dots, 2q-1\}$ defined by

$$f^+(uv) = \begin{cases} f(u) + f(v), & \text{if } f(u) + f(v) \text{ is even} \\ f(u) + f(v) + 1, & \text{if } f(u) + f(v) \text{ is odd are distinct.} \end{cases}$$

A graph G is said to be an odd sequential harmonious graph if it admits an odd sequential harmonious labeling.

*Corresponding author.

E-mail address: manonmani_velu@yahoo.com (A. Manonmani), savithiri7965@gmail.com(R. Savithiri).

Definition : 1.4

For any integer $k \ge 1$, A labeling is an k-odd sequential harmonious labeling if there exist an injection f from the vertex set V to $\{k - 1, k, k + 1, \dots, k + 2q - 2\}$ such that the induced mapping f^+ from the edge set E to $\{2k - 1, 2k + 1, 2k + 3, \dots, 2k + 2q - 3\}$ defined by

$$f^+(uv) = \begin{cases} f(u) + f(v), & \text{if } f(u) + f(v) \text{ is even} \\ f(u) + f(v) + 1, & \text{if } f(u) + f(v) \text{ is odd are distinct.} \end{cases}$$

A graph *G* is said to be an *k*-odd sequential harmonious graph if it admits an *k*-odd sequential harmonious labeling.

In this paper, we investigate Double Quadrilateral Snakes on *k*-odd sequential harmonious labeling of graphs. Throughout this paper, *k* denote any positive integer ≥ 1 . For brevity, we use *k*-OSHL for *k*-odd sequential harmonious labeling.

2 Main Results

Definition : 2.1

The Quadrilateral snake Q_x is obtained from the $v_1, v_2, v_3 \dots, v_n$ by joining v_i and v_{i+1} to new vertices u_{2i-1} and u_{2i} . That is, every edge of a path is replaced by a cycle C_4 .

Definition : 2.2

Let Q_x be the Quadrilateral snake is obtained from the path $v_1, v_2, v_3, \dots, v_n$. Then the double quadrilateral snake $D(Q_x)$ is obtained from Q_x by adding new vertices $w_1, w_2, w_3, \dots, w_{2n-2}$ and new edges $v_i w_{2i-2}$ for $2 \le i \le n$ and $w_{2i-1} w_{2i}$, $v_i w_{2i-1}$ for $1 \le i \le n-1$.

Theorem : 2.3

Double quadrilateral snake is a *k*-odd sequential harmonious graph for each $x \ge 1$.

Proof. Let $2Q_x$ - snake be a double quadrilateral snake.

Let the vertices of $2Q_x$ be $\{v_i: 1 \le i \le n\} \cup \{u_i: 1 \le i \le 2n-2\} \cup \{w_i: 1 \le i \le 2n-2\}$. The edges of $2Q_x$ be $\{v_iv_{i+1}: 1 \le i \le n-1\} \cup \{u_{2i-1}u_{2i}: 1 \le i \le n-1\} \cup \{w_{2i-1}w_{2i}: 1 \le i \le n-1\} \cup \{v_iu_{2i-1}: 1 \le i \le n-1\} \cup \{v_iu_{2i-2}: 2 \le i \le n\} \cup \{v_iw_{2i-1}: 1 \le i \le n-1\} \cup \{v_iw_{2i-2}: 2 \le i \le n\}$, which are denoted in Fig.2.3(a).

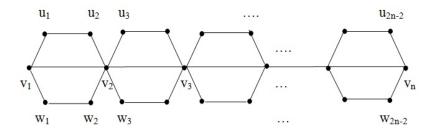


Fig.2.3(a) : $D(Q_x)$ with ordinary labeling

```
We first, label the vertices of D(Q_x) as follows,
Define f: V(DQ_x) \{k - 1, k, k + 1, \dots, k + 2q - 2\} by
f(v_i) = 3i - 1 + k 1 \le i \le n
f(u_i) = 3i - 2 + k 1 \le i \le 2n - 2
f(w_i) = 3i - k + 1 1 \le i \le 2n - 2
```

Then the induced edge labels are

$$\begin{cases} f^+(v_i v_{i+1}) = 2i + 2k + 1 \\ f^+(u_{2i-1} u_{2i}) = 4i - 2k + 1 \end{cases} 1 \le i \le n - 1 \begin{cases} f^+(w_{2i-1} w_{2i}) = 6i - 2k + 1 \\ f^+(v_i u_{2i-1}) = 6i + 2k - 1 \end{cases}$$

 $\begin{aligned} f^+(v_i u_{2i-2}) &= 6i + 2k + 1 & 2 \le i \le n \\ f^+(v_i w_{2i-1}) &= 6i + 2k + 3 & 1 \le i \le n - 1 \\ f^+(v_i w_{2i-2}) &= 6i + 2k - 3 & 2 \le i \le n \end{aligned}$

Clearly, the edge labels are odd and distinct, $f^+(E) = \{2k - 1, 2k + 1, 2k + 3, \dots, 2k + 2q - 3\}$. Hence, the graph $D(Q_x)$ is a k-odd sequential harmonious graph.

EXAMPLE : 2-OSHL of $D(Q_3)$ is shown in Fig.2.3(b).

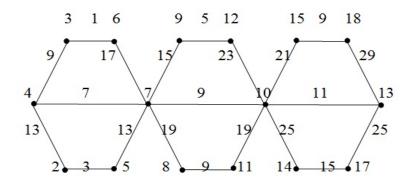


Fig.2.3(b) : 2-OSHL of $2(Q_3)$

Theorem: 2.4

Double *m*-quadrilateral snake is a *k*-odd sequential harmonious graph for each $m, x \ge 1$.

Proof. Let $2mQ_x$ -snake be a double *m*-quadrilateral snake.

Let the vertices of $2mQ_x$ be $\{v_i : 1 \le i \le n\} \cup \{u_i : 1 \le i \le 2n-2\} \cup \{u_i^1 : 1 \le i \le 2n-2\} \cup \{u_i^2 : 1 \le i \le 2n-2\} \cup \{w_i^2 : 1 \le i \le 2n-2\} \cup \{w_i^1 : 1 \le i \le 2n-2\} \cup \{w_i^2 : 1 \le i \le 2n-2\}$.

The edges of $2mQ_x$ be $\{v_iv_{i+1}: 1 \le i \le n-1\} \cup \{u_{2i-1}u_{2i}: 1 \le i \le n-1\} \cup \{u_{2i-1}^1u_{2i}^1: 1 \le i \le n-1\} \cup \{u_{2i-1}u_{2i}^1: 1 \le i \le n-1\} \cup \{u_{2i-1}u_{2i}^2: 1 \le i \le n-1\} \cup \{u_{2i-1}u_{2i}^2: 1 \le i \le n-1\} \cup \{u_{2i-1}u_{2i}^2: 1 \le i \le n-1\} \cup \{v_{2i-1}u_{2i-1}^2: 2 \le i \le n\} \cup \{v_{2i-1}u_{2i-1}^2: 1 \le i \le n-1\} \cup \{v_{2i-1}u_{2i-1}^2: 1 \le i \le n-1\} \cup \{v_{2i-1}u_{2i-1}^2: 2 \le i \le n\} \cup \{v_{2i-1}u_{2i-1}u_{2i-1}^2: 2 \le i \le n$

We first, label the vertices of $2m(Q_x)$ as follows, Define $f: V(2mQ_x) i(k-1, k, k+1, \dots, k+2q-2)$ by $f(v_i) = 4i - 6 + k$ $1 \le i \le n$

$$\begin{aligned} f(u_i) &= 4i - 4 + k \\ f(u_i^1) &= 4i + 4 + k \\ f(u_i^2) &= 4i - 2 - k \end{aligned} \} \ 1 \le i \le 2n - 2 \begin{cases} f(w_i) &= 4i + k - 1 \\ f(w_i^1) &= 4i + k + 1 \\ f(w_i^2) &= 4i - k + 1 \end{cases} \end{aligned}$$

Then the induced edge labels are

 $f^+(v_i v_{i+1}) = 8i + 2k + 3 \qquad 1 \le i \le n - 1$

$$\begin{cases} f^{+}(u_{2i-1}u_{2i}) = 8i + 4k - 1 \\ f^{+}(u_{2i-1}^{1}u_{2i}^{1}) = 8i - 4k + 1 \\ f^{+}(u_{2i-1}^{2}u_{2i}^{2}) = 8i - 4k + 3 \end{cases} 1 \le i \le n - 1 \begin{cases} f^{+}(w_{2i-1}w_{2i}) = 6i - 2k - 1 \\ f^{+}(w_{2i-1}^{1}w_{2i}^{1}) = 6i - 2k + 3 \\ f^{+}(w_{2i-1}^{2}w_{2i}^{2}) = 8i - 2k + 3 \end{cases}$$

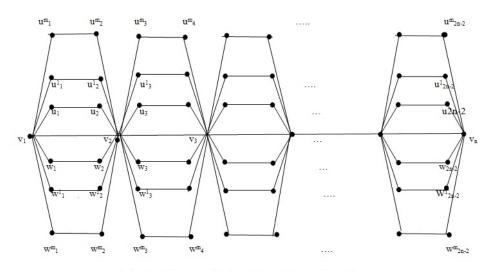


Fig.2.4(a) : 2m(Q_x) with ordinary labeling

$$\begin{cases} f^{+}(v_{i}u_{2i-1}) = 8i + 4k - 3\\ f^{+}(v_{i}u_{2i-1}^{1}) = 2i + 2k + 3\\ f^{+}(v_{i}u_{2i-1}^{2}) = 2i + 2k - 3 \end{cases} 1 \le i \le n - 1 \begin{cases} f^{+}(v_{i}w_{2i-1}) = 8i + 2k - 3\\ f^{+}(v_{i}w_{2i-1}^{1}) = 8i - 2k - 3\\ f^{+}(v_{i}w_{2i-1}^{2}) = 8i - 2k - 3\\ f^{+}(v_{i}w_{2i-1}^{2}) = 10i - 2k + 1 \end{cases}$$
$$\begin{cases} f^{+}(v_{i}w_{2i-1}) = 10i - 2k + 1\\ f^{+}(v_{i}u_{2i-2}^{1}) = 4i + 2k + 1\\ f^{+}(v_{i}u_{2i-2}^{2}) = 4i + 2k - 1 \end{cases} 2 \le i \le n \begin{cases} f^{+}(v_{i}w_{2i-2}) = 10i - 2k - 1\\ f^{+}(v_{i}w_{2i-2}^{1}) = 10i + 2k + 1\\ f^{+}(v_{i}w_{2i-2}^{2}) = 10i + 2k - 1 \end{cases} \end{cases} 2 \le i \le n \begin{cases} f^{+}(v_{i}w_{2i-2}) = 10i - 2k - 1\\ f^{+}(v_{i}w_{2i-2}^{1}) = 10i + 2k - 1\\ f^{+}(v_{i}w_{2i-2}^{2}) = 10i + 2k - 1 \end{cases}$$

Clearly, the edge labels are odd and distinct, $f^+(E) = \{2k-1, 2k+1, 2k+3, \dots, 2k+2q-3\}$. Hence, the graph $2m(Q_x)$ is a *k*-odd sequential harmonious graph.

EXAMPLE:

2-OSHL of $6(Q_3)$ is shown in Fig.2.4(b)

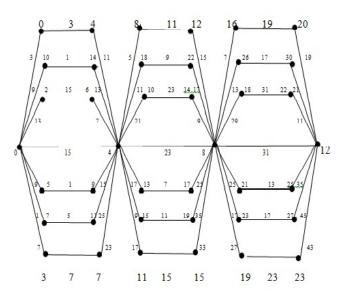


Fig.2.4(b) : 2-OSHL of 6(Q₃)

References

- [1] S.K.Vaidya and N.H.Shah, odd sequential harmonious labeling of some graphs Presented in International Journal of Mathematical sciences, vol.3(2012), 105-112.
- [2] B.Gayathri and V.Hemalatha, On sequential harmonious labeling of graphs, In Proceeding of the International Conference on Mathematics and Computer Science.
- [3] R.Ponraj and S.Sathish Narayanan, Difference cordiality of some graphs obtained from double alternate snake graphs, Global journal of mathematical sciences,5(2013),167-175.
- [4] Z.Liang and Z.Bai, On the odd harmonious graphs with applications, J.Appl. Math. Comput. 29(2009), 105-116.
- [5] B.Gayathri and D.Muthuramakrishnan, k-odd sequential harmonious labeling of some graphs.
- [6] S.C.Shee, On harmonious and related graphs, Ars Combin.,23(1987) A,237-247.
- [7] R.Ponraj, S.Sathish Narayanan and R.Kala, Difference cordial labeling of subdivision of snake graphs, Universal journal of Applied mathematics 2(1):40-45,2014.
- [8] J.Yuan and W.Zhu, Some results on harmonious labeling of graphs, J.Zhengzhou Univ. Nat. Sci. Ed., 30(1998)7-12.
- [9] R.G.Sun, Harmonious and sequential labeling of the book graphs B_m , Gaoxiao yingyong shuxue xuebao ser. A, 9(1994)335-337.
- [10] G.S.Singh and T.K.M. Varkey, On odd sequential and bisequential graphs, preprint.
- [11] R.Ponraj, S.Sathish Narayanan and R.Kala Difference cordial labeling of graphs obtained from double snakes, International journal of mathematics research,5,Number3(2013),317-322.

Received: August 10, 2015; Accepted: November 23, 2015

UNIVERSITY PRESS

Website: http://www.malayajournal.org/