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Abstract

The aim of the present paper is to investigate some new integral inequalities for k-fractional integrals.
Moreover, special cases of the integral inequalities in this paper have been obtained by Tariboon et.al. in [22].
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1 Introduction and Preliminaries

Integration with weight functions is used in countless mathematical problems such as approximation
theory, spectral analysis, statistical analysis and the theory of distributions. Griiss developed an integral
inequality [11} p. 236] in 1935. During the last few years, many researchers focused their attention on the study
and generalizations of the Griiss inequality [7H9) [14, [18]. The integral inequality that establishes a connection
between the integral of the product of two functions and the product of the integrals is known in the literature
as the Griiss inequality. The Griiss inequality is as follows:

Theorem 1.1. Let f,g : [a,b] — R be integrable functions such that ¢ < f (x) < ® and p < g(x) < ¥ for all
x € [a,b], where ¢, ®,p, ¥ are constants. Then
1 b 1 b 1 b
ot [ s [ e dx

<1@-9) (Y-,

where the constant %L is sharp. (see, [11] p. 236])

Fractional calculus and its widely applications have recently been paid more and more attention. For
more recent development on fractional calculus, we refer the reader to [1H4] [10} 16} 19} 20, 24]. There are
several known forms of the fractional integrals which have been studied extensively for their applications
[5, 13} [15} 21} 23]

The first is the Riemann-Liouville fractional integral of order « > 0 for a continuous function f on [a, b]
which is defined by

JEF(t) = r(la) /;(t ) f(r)dT > 0, a < t< b,
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This integral is motivated by the well known Cauchy formula:

/axdh /at] dtz---/at"*]f(tn)dtn = r(ln)/ax(x_ H"Lf(H)dt; n € N.

The second is the Hadamard fractional integral introduced by Hadamard [12]. It is given by:

“(f) = r(luo/ (1og§)“*1f(t)?,a S0, x>a>0.

The Hadamard integral is based on the generalization of the integral
Ydty [hodty ti-1 f(tn) 1 x x\ -1 dt
p L. dt, = / 1 _ ) —
/a t1/,1 f /a th " T T(@) ) (Ogt) F5
forn € IN.

Recently, in [6], Diaz and Pariguan have defined new functions called k-gamma and k-beta functions and
the Pochhammer k-symbol, that is respectively generalization of the classical gamma and beta functions and
the classical Pochhammer symbol:

k" (k)% 1
I (x) = lim M, (k>0),
=0 (x)n,k

where (x),,  is the Pochhammer k-symbol for factorial function defined by

() =x(x+k)(x+2k)--- (x+nk), ke R, neN.

It has been shown that the Mellin transform of the exponential function e*tk is the k-gamma function,
explicitly given by

o] k
Ir(x) = /0 e~ dt, x > 0.

Clearly,
Y . x_q be
I(x) = lim T(x), Te(x) = ki 'T (%) and Ty (x + k) = xT(x).

Later, under the above definitions, in [17], Mubeen and Habibullah have introduced the k-fractional integral
of the Riemann-Liouville type as follows:

JEF(E) = krkl() [ =0t a> 0,5 >0 (L.1)

Note that when k — 1, then it reduces to the classical Riemann-liouville fractional integral.

Recently in [22] some new fractional integral inequalities of Griiss type were proved, by replacing the
constants appeared as bounds of the functions f and g, by four integrable functions. In this paper we extend
the results of [22] to k-fractional integral inequalities of Griiss type.

2 Main results

Throughout of this paper, we denote the Riemann-Liouville fractional integral of order « of a function f
which have limit zero by J§ f(t) = (J*f(t)

Theorem 2.1. Let f be an integrable function on [0, co). Assume that:
(Hy) There exist two integrable functions ¢1, ¢ on [0,00) such that
p1(t) < f(t) < @a(t) forall te€[0,00).
Then, fort > 0, «, 8 > 0, k > 0, we have

JPo1 (ORI F (1) + kT 02 (OkJPF(1) = k] 2 (Di]P o1 (8) + W J*F ()P (8). (2.2)
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Proof. From (Hy), forall T > 0, p > 0, we have

(92(7) = f(1)) (f(p) = ¢1(0)) = 0.

Therefore
P2(T)f(p) + 91(0) f(7) = ¢1(p)92(7) + () f (p)- 23)
Multiplying both sides of by (t — )k~ /k[x(a), T € (0,t), we get
_ i1 _ %1 -1 Y
s e+ o0 1) 2 ) e 4 0 . e

Integrating both sides of ([2.4]) with respect to T on (0, t), we obtain

Sl

f(P)/O W(I’Z(T)dT+§91(P)/

J0

E(t—1)f !
K@) f(r)dr

f-ok

tr_ )51
> 4’1(P)/0 UH:()DC)GDZ(T)deLf(P)/O Wf(f)dT,

which yields
f(o) k] 2(t) + @1(0) 1 F () = @1(0) kT @2(t) + f(p) k] f (1) (2.5)

Multiplying both sides of by (t — p)gfl/kfk(ﬁ), p € (0,t), we have

_ e _ e
Foa) s o)+ 1) 0 )

(t—p)t ! (t—p)t"
kT (B) k

Integrating both sides of (2.6 with respect to p on (0,t), we get

(2.6)

> J%pa(t) p1(p) +Jf(t)

1

Fo(y %*1 _
kI“(pz(t)/ %f(p)dpﬂ“f(f)/o (kr%%(p)dp

o kIk(B)
> i ea(t) | (k_rp()ﬁ) P1(p)dp+ " f (1) /otUk_sz()ﬂ)

Hence, we deduce inequality (2.2)) as requested. This completes the proof. O

*‘\‘m

»\‘m

1

o
|
—_

f(p)dp.

As special cases, we give the following results for the Theorem 2.1
Remark 2.1. If we take k = 1 in the Theorem we obtain the Theorem 2 in [22]].

Corollary 2.1. If we take « = B in the Theorem[2.1] we obtain

W (@1 +@2) () JF(8) > W 1 (E) 1) o2 (t) + (I F ().

Corollary 2.2. Let f be an integrable function on [0, co) satisfying m < f(t) < M, forall t € [0,00) and m, M € R.
Then for t > 0and «, B > 0, we have
¢t te 5
v b “F(ORIPE().
i O+ ME e PR > M g FOUPA )

Corollary 2.3. Ifwe take & = B in the Corollary 2.2} we obtain

g O 2 MM ()

(m+ M)
(Ti(a +k))
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Theorem 2.2. Let f be an integrable function on [0, 00) and constants 61,0, > 0 satisfying 1/61 +1/6, = 1. Suppose
that (Hy) holds. Then, fort > 0, «, B > 0and k > 0, we have

1 tf 1tk ,
Rl (0= 5") O+ g prge” ((F—o)™)
+ S 2 (kTP o1 () + kT F (TP £ (1)
> 1 J @ (kTP F(E) + T F (TP i (1) (2.7)

Proof. According to the well-known Young’s inequality

9—1x91—i-9l2y92 > xy, Vx,y >0, 61,6, >0, %—1-9% 1,
setting x = ¢2(7) — f(t) and y = f(p) — ¢1(p), T,p > 0, we have
& (920 = )" + - (7(6) = 91(0)® = (92(0) = A7) = 1)) 2.8)

I B
Multiplyin bothsidesofb (=) (=) € (0, 1), we get
py g ° y kzrk(ﬂé)rk(‘B) ’ /P vy g

1 (- (= p)k P N L (L
FR TP T B G B AL A My & W1 ()
(t—7)h1 F-1

(t—p)
W(G’?z(ﬂ _f(T>)W

Integrating the above inequality with respect to T and p from 0 to t, we have

(f(p) = 92(p))*

(f(p) — 1(p))-

G PO (92 = %0 + i OO = 902 (0) = (g2 = NP = en)(8),
which implies (2.7)). O

Corollary 2.4. Let f be an integrable function on [0, c0) satisfying m < f(t) < M, forall t € [0,00) and m, M € R.
Then fort > 0, a, > 0 and k > 0, we have
£ £ tk
o 2 B2 o B
t 2 t t

(m + M)?

ﬁ

> 2(m+M)< (,B—l—k)k]“f() (oc—i—k)k]ﬂf( )>

Theorem 2.3. Let f be an integrable function on [0, 00) and constants 61,0, > 0 satisfying 61 + 6, = 1. In addition,
suppose that (Hy) holds. Then, fort > 0, a, > 0 and k > 0, we have

B «
23 " Ik
lek] ¢2(t) + QZWk]ﬂf(t)

B

> 4 (p2 = P (OWIP(F = 90" (0) + O (D)

+6, )kﬂg P1(). (2.9)

tk
Fk(zx +k
Proof. From the well-known Weighted AM-GM inequality

01x + 6 erl 92, Vx,y >0, 61,00 >0, 6 +6,=1,
Y y y
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and setting x = ¢2(7) — f(7) and y = f(p) — ¢1(p), T,p > 0, we have

01(p2(7) — f(1) +62(f(p) — 91(0)) = (92(T) = F(D))* (f(0) — 1(0))*. (2.10)
a_ B_
Multiplying both sides of ([2.10}) by (t I:Z)l"kk(:c)(lt"k(g)) ‘ 1, 7,0 € (0,t), we get
Y R bl )k
et (920~ F() + e g B (70— 02(e)
(-t o (t=p)f ! b
=z W((PZ(T) - f(1)) W(f(ﬁ’) —¢1(0))"™.

Integrating the above inequality with respect to T and p from 0 to t, we have
0117 (1) ()] (92 = £) (1) + 62 (D) (P (f — 1) (8)
> W] (92— N OP(f = o)™ ().

Therefore, we deduce inequality (2.9)). O

Corollary 2.5. Let f be an integrable function on [0, c0) satisfying m < f(t) < M, forall t € [0,00) and m, M € R.
Then fort > 0, a, B > 0and k > 0, we have
£ tE o £

t [
LaronGeR Rt Y 2 "rareneee Tnead 0
2] (M= )2 (E)JP (f —m)? (8).

Theorem 2.4. Let f and g be two integrable functions on [0,00). Suppose that (Hy) holds and moreover we assume
that:

(H,) There exist 1y and i integrable functions on [0, 00) such that
$r(t) < g(t) < go(t) forall t€[0,00).
Then, for t > 0, a, B > 0,k > 0 the following inequalities hold:
(@) (JPr(t) ) F () + kT p2(t) (JP8(E) = 1 JPpr(E) k] @2 () + (£ (1) kJPG(1).
©) (JPr(t) (J*8(H) + I a(t) (JPF(1) = 1P @r(t) k] a(t) + (P F(E) kT*g(E).
(©) kJ*a(t) tJPpa(t) + kI F (1) 1IPg(t) = 1J 2 (t) kJP(1) + kP2 (t) K] f (1)
(@) (T or(DTPpr(t) + kT F(£) (JPQ(H) = 4T 1 (t) kTPg(t) + kTPpr(8) (] F(1).
Proof. To prove (a), from (H;) and (H,), we have for ¢ € [0, c0) that

(92(7) = (1)) (8(p) —¥1(p)) = 0

Therefore
P2(T)g(p) + 91(0)f(7) = P1(p)92(7) + f(T)8(p)- 211)
Multiplying both sides of by (t — T) k"1 /kTy(a), T € (0, 1), we get
_ )i _ )i
50 g 0 )

- e 2.12)
> o) el gal) + 90— o)
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Integrating both sides of ([2.12)) with respect to T on (0, t), we obtain

o (t . T)%71

g(p) /0 TR )

@
t _ a—1 t _ a—1
> o) [ i et glo) [ s

ot . %71
i+ pilp) [ e

0

Then we have

8O @2() + 1 ()] f (1) = 1 ()] 92(t) + g ()" f (#)- (213)

Multiplying both sides of by (t — )% L/kTe(B), p € (0,t), we have
PN L i p)f !
k] @2(0 kl—wk(‘B) g(P) +/j ]1 f(t> (‘3) l/’l( ) . 2.14)
4 (t )% o (t — p)F_
> ) sz(t)WlPl( p)+ k] f(t)Wg(P)-
Integrating both sides of with respect to p on (0, t), we get the desired inequality (a).
To prove (b)-(d), we use the following inequalities

(0) (¢2(7) = g(1)) (f(0) = 91(p)) = O.
() (92(7) = f(7)) (8(p) = ta(p)) < 0.
(@) (¢1(7) = £(7)) (8(p) = ¥1(p)) <O. 0

Remark 2.2. If we take k = 1 in the Theorem we obtain the Theorem 5 in [22]].
As a special case of Theorem 2.4} we have the following Corollary.

Corollary 2.6. Let f and g be two integrable functions on [0, 00). Assume that:
(Hj3) There exist real constants m, M, n, N such that

m<f(t)<M and n<g(t) <N forall tec]0,0).

Then, for t > 0, «, B > 0, k > 0 we have

ntf Mtt Mt X
(al) (ﬁ—i—k) K f () + Wk] g()*l“k(zx—i—k) ([3+k)+k] f(t)k]ﬁg(t)-
mtﬁ " NtF mNtM "
(bl) EN] K g(t) + L@tk K] f()_FK(OC+k) (ﬁ+1)+k]ﬁf(t)k] g(t).

MNEF i MtE N .

a+p
mnt &k

3 ﬂ
@) farpnEeR T O 2 %kfﬂg<t> Fs i

Theorem 2.5. Let f and g be two positive integrable functions on [0, co). Assume that (Hy) and (Hy) hold with
(Hy) @1(t) > 0and ¢1(t) > 0 forall t € [0, c0).

Then, for t > 0, a, B > 0 and k > 0 the following inequalities holds

K 12 (O o (D) A (DIP2 (1)

1 (2.15)
(T4 P1f (D TPPr1g(t) + kT @af (i TBuag () ~ 4 '



106 Jessada Tariboon et al. / Some new integral inequalities...

Proof. To prove (2.15), using the conditions (H;)-(H3), we obtain

¢2(7) T) 0,

<1P1 () g(p)
(5@

and
SO _ (T ) >0
gle)  $alp))
which imply that
a(7) (0 f) o FT) | r(D)ea(o) )16
(5 ) 50 % £ o) @10
Multiplying both sides of by ¢1(p)¥2(0)g*(p), we have
o1 (D) f(D)1(0)8(0) + 92(T) f(T)92(0)3(0) = Y1 (0)2(0) f2(7) + p1(T) p2(T)g% (0)- (2.17)
F1(p— o)t
Multiplying both sides of by (t= Tz) (t=p) , and double integrating with respect to T and p from
k2T () Tk (B)

0 to t, we have

JEPLf (kP18 (8) + 1 2 f (DT Pag (8) = k] F (DT Pyrpa(b) + T P12 (D] (1)
Applying the AM-GM inequality, we get

TP + T 0o f (i P9ag(t) = 20/ OTF P g2 (8 o192 PE(E),
which leads to the desired inequality in (2.15). The proof is completed. O

As a special case of Theorem 2.5, we get the following result:

Corollary 2.7. Let f and g be two positive integrable functions on [0, c0) satisfying (Hs) with m,n > 0. Then for
t>0,a B> 0andk > 0, we have

x+p
tE k)OSR k]ﬂg | mn [MN
T +K)T(B+K) (2 £ (1) Pg(t) ( i >

Lemma 2.1. Let f be an integrable function on [0,00) and @1, ¢, are two integrable functions on [0, 00). Assume that
the condition (Hy) holds. Then, for t > 0, & > 0, k > 0, we have

(;"+k) JUAO = G = (et — JF(0) W F() = K ga()

tk

g I ()~ SO (D) — ()
tk
rk(ﬂé +k

+ (;k+ g e () kP2 )

te— ] K o1f(t) — k] 1 ()]  f (1) (2.18)

k

t
o1 (O)e]*2(t) — =—— ¢J* t).
+ 1S 1 ()] pa(t) Te(a+K) K] p192(t)
Proof. For any T > 0 and p > 0, we have

(
1
T)f(0) = 91(T)92(p) (2.19)
+

§01(T
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Multiplying (§ . ) by (t — )k~ /kT(a), T € (0,t), t > 0 and integrating the resulting identity with respect
to T from 0 to ¢, we get

(2(0) = f(0)) GI*f(t) = kJ"@1(8)) + (& J"@2(t) — WJ*f (1)) (f(p) — (P1(P)}£

+ kI ((@2(t) — f(1) (f(t) — @1(t))) — (@2(p) — f(p)) (f(0) — @1(p)) m
= JUF2(t) +f2(0)ﬁ = 2f ()]  f(t) + @2(0)i ] f(£) + f ()] @1 ()
+o2(0)e) ¢1(t) + f(0)e]* 2(8) + @r1(0)eJ*f (1) — @r(p)i]“2(t) — ] 2£ (1)

i prgalt) — (e f(H) — <P2(P)f(P)ﬁ + 91 (p)q)z(p)%
te

+T¢1 (P)f(P)W~

(2.20)

Multiplying (2.20) by (t — p)% 1 /kT(a), p € (0,1), t > 0 and integrating the resulting identity with respect
to p from O to f, we have

(I @2(8) = J£(8)) (T () =i T 1.(£))

+ (W 2 (8) = J°F (1) I f(8) = a1 (1))
(2 = FO) (F0 = 0 0) g
kV«zW—fMMﬂﬂ—%WD—é%ﬂ

nélm“”() T MO 2 F O SO F S 2 (O F (D)

(
e 1 (O] f (1) — k] 1] a(t) + k]a#’z(t)@]“f(f) + 1 1 ()] (1)
B QO 92(0) — g 10 1)+ g )

£k o

HVCETR J o1 f(t) — VCE) kI 2 f (£) + ﬁk]“fpmoz(t)

tE

"o £ (1), 221
rk(“—f—k)k] p1f(t) ( )
which implies (2.18)). O

Remark 2.3. If we take k = 1 in the Lemmal[2.1} we obtain the Lemma 7 in [22]].

If p1(t) = mand ¢2(t) = M, m, M € R, for all t € [0,0), then inequality ([2.18) reduces to the following
corollary.

Corollary 2.8. Let f be an integrable function on [0, co) satisfying m < f(t) < M, forall t € [0,00). The forall t > 0,
« > 0 we have

==

t

o o _ a a t%
e U0~ () (MHM+M—UJVO<Uf@—mnm+m> 02

Remark 2.4. If we take k = 1 in the Corollary[2.8} we obtain the Corollary 8 in [22]].

Theorem 2.6. Let f and g be two integrable functions on [0,00) and @1, @2, P1 and gy are four integrable functions
on [0, c0) satisfying the conditions (Hy) and (Hp) on [0,00). Then for all t > 0, & > 0,k > 0, we have

tk

rk(ﬂ(+k> k]“fg( ) k]af( )k]a \/T §01/ (pz) (g,¢1,¢2) (2.23)
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where T (u,v, w) is defined by

T(,0,0) = (J*(e) = (Ju(t) (Ju(t) = (J00) + b b oue) — Jo(e) g *u(t)
+ﬁ”w”(” — J () 1 ut) i () 1 w(t) — m Jrow(t).

Proof. Let f and g be two integrable functions defined on [0, o0) satisfying (H;) and (H). Define

H(z,p) == (f(1) = f(0)) (8(1) = &(p)), T,p€(0,8), t>0.

Multiplying both sides of 1} by (t — )t —p)El/ k’T%(a), T,p € (0,t) and integrating the resulting
identity with respect to T and p from 0 to t, we can state that

(2.24)

e ) =R ) G o = e A~ W ). @25)
Applying the Cauchy-Schwarz inequality to , we have
« 2
£k
T 8 = wJUf (1) ] 8(t) )
(r (e tk) k k (2.26)
< ( e 0~ (A ( e 0 - (u“g(t))z) .
Since (@a(t) — f(1))(f(t) — @1(t)) > 0and (ya(t) — g(t))(g P1(t)) > 0for t € [0,00), we have
i (02 = O — (1) 2 0
and .
e+ () = ()5~ ()
Thus, from Lemmam we get
(;’; GHPO=GPFOP < (W 0at) = dF) W FO —Pa(0)
+rk(;k R ORI MOS0 (227)
+m K] @2 f () — k] pa(t) k] f(£)
+ i 1) 2 (t) — ﬁ K  pr2(t)
= T(f, 91, 92),
and
imfﬁ g O = (817 < (W2(0) = WJ*8(0) (J'8(1) = W n(8)
+Fk(;k+ g () — () s ) (228)

+ (;:_ 9 K Pag(t) — J ¢a(t) ] g(t)

+ 1S 1 (t) k] 2 (t) — (;Jrk) K] p1a(t)
= T(g’ lplr ¢2)
From (2.26)), (2.27)) and (2.28)), we obtain (2.23)). O
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Remark 2.5. If we take k = 1 in the Theorem|2.6] we obtain the Theorem 9 in [22].

Remark 2.6. If T(f, 91, 92) = T(f,m, M) and T(g,¥1,¥2) = T(g,p,P), m, M, p,P € R then inequality (2.23)
reduces to

+E

a 2
o « « tk
Tra i 80 = W (g0 < <2Fk()> (M —m)(P - p). (2.29)

x+k
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