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Abstract

In this paper an integro-differential system of equations, with fixed moments of non instantaneous impulse
effects is considered. Sufficient conditions for stability and asymptotic stability of this system have been
worked out. The investigations are carried out by means of piecewise continuous functions, analogous
to Lyapunov functions and by means of the theory of differential inequalities for such functions. A new
comparison lemma, connecting the solution of the given impulsive integro-differential system to the solution
of a scalar impulsive differential system is also established.
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1 Introduction

The literature on abstract impulsive differential equations considers basically the problems on existence
and qualitative properties of solutions of equations of the type

x′ = f (t, x), t 6= ti, (1.1)

∆x = Ii(x), t = ti, (1.2)

where, i ∈ N, t ∈ R+, Ii(x) = x(t+i )− x(t−i ), x ∈ Rn, f : R+ × Rn → Rn and 0 = t0 < t1 < t2 < t3 < · · · < ∞.
Here Ii:Rn → Rn is a sequence of instantaneous impulse operators and have been used to describe abrupt
changes such as shocks, harvesting , natural disasters etc.

It seems that the above instantaneous impulsive differential equations models can not characterize the
dynamics of evolution process completely in pharmacotherapy. For example as in [1], consider the
hemodynamical equilibrium of a person. In the case of decompensation (e.g. high or low levels of glucose),
one can prescribe some intravenous drugs(insulin) and the introduction of the drugs in the bloodstream and
the consequent absorption for the body are gradual and continuous processes. In fact the above situation has
fallen in new impulsive action which starts abruptly and stays active on a finite time interval. Thus we have
to use a new model to describe such an evolution process.

To the best of our knowledge, Hernandez and O’Regan [1] in 2013, initially offered to study a new class of
abstract impulsive differential equations with non instantaneous impulses in a PCα-normed Banach
space.Then Pierre and Rolnik[2] continued the work in a PCα- normed Banach space and developed the
results in [1].UlamHyers stability and Lyapunov stability of this type of non instantaneous differential
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systems were established recently in [6,8] and [4] respectively.Existence of solutions for integer/fractional
differential and integro-differential equations with non instantaneous impulses was presented in[3, 5,7].

Motivated by the above stated work on non instantaneous impulsive differential systems, in this paper,
we consider the following, new model of impulsive integro -differential equations to describe an evolution
process, in which an impulse action starts at an arbitrary fixed point and keeps active on a finite time interval
and establish sufficient conditions its stability and asymptotic stability

x′(t) = f (t, x(t), Lx), t ∈ (si, ti+1], i = 0, 1, 2, 3, · · · , m, (1.3)

x(t) = gi(t, x(t), Mx), t ∈ (ti, si], i = 0, 1, 2, 3, · · · , m, (1.4)

where 0 = t0 = s0 < t1 ≤ s1 ≤ t2 ≤ · · · sm−1 ≤ tm ≤ sm ≤ tm+1 = T are pre fixed numbers, f : J × Rn × Rn →
Rn, where J = [0, T] is continuous and gi:[ti, si]× Rn × Rn → Rn is continuous for all i = 1, 2, · · · , m, which are
called non instantaneous impulses.

Lx =
∫ t

t0
K(s, x(s))ds, K: J × Rn → Rn and Mx =

∫ t
t0

I(s, x(s))ds, I: J × Rn → Rn are continuous functions.
As far as existence of solution of system (1.3)-(1.4), is concerned, we refer [3,7]. Assume that we can measure
the state of the process at any time to get a function x(·) as a solution of (1.3)-(1.4). To ensure the existence of
trivial solution of the system (1.3)-(1.4), let us assume that f (t, 0, 0) = 0, K(t, 0) = 0, gi(t, 0, 0) = 0, I(t, 0).

The novelty of our paper is to establish stability and asymptotic stability of solutions of integro-differential
system of equations with non instantaneous impulses. A new comparison lemma for this non instantaneous
impulsive systems is proved and by using this, the study of the solution of impulsive integro-differential
system is replaced by the study of the solutions of a scalar Impulsive integro-differential system as done in
[12,15] .

In section 2, some preliminaries notes and definitions are given. In section 3, a new comparison lemma,
connecting the solution of the given impulsive integro-differential system to the solution of a scalar impulsive
integro-differential system is worked out. This lemma plays an important role in establishing the main results
of the paper. Sufficient conditions for stability and asymptotic stability of impulsive integro-differential
system of equations with non instantaneous fixed time impulse effect, are established by using the lemma.

2 PRELIMINARIES

Let C(J, Rn) be the Banach space of all continuous function from J into Rn with the norm ‖x‖ =
Max

{
‖x1‖C, ‖x2‖C, ‖x3‖C, · · · , ‖xn‖C

}
for x ∈ C(J, Rn), where ‖xk‖C = sup |xk(t)|. Also we use the Banach

space PC(J, Rn) =
{

x : J → Rn : x ∈ C
(
(tk, tk+1], Rn) : k = 0, 1, 2, · · · , m

}
and for k = 1, 2, · · · , m there exists

x(t−k ) and x(t+k ) such that x(t−k ) = x(t+k ) with the norm ‖x‖PC = max
{
‖x1‖PC, ‖x2‖PC, ‖x3‖PC, · · · , ‖xn‖PC

}
.

Denote PC1(J, Rn) =
{

x ∈ PC
(

J, Rn) : x′ ∈ PC
(

J, Rn)}. Set ‖x‖PC1 = max
{
‖x‖PC, ||x′||PC. Clearly

PC1(J, Rn) endowed with the norm || · ||PC1 is also a Banach space. If x, y ∈ Rn, x = (x1, x2, · · · , xn), y =
(y1, y2, · · · , yn) by x ≤ y we mean that xi ≤ yi ∀i = 1, 2, · · · , n.

Referring [3,5,7] , a function x ∈ PC1(J, Rn) is called classical solution of the impulsive Cauchy problem

x′(t) = f
(
t, x(t), Lx

)
, t ∈ (si, ti+1], i = 0, 1, 2, · · · , m,

x(t) = gi
(
t, x(t), Mx

)
, t ∈ (ti, si], i = 0, 1, 2, · · · , m,

x(0) = x0.

If satisifes x(0) = x0, x(t) = gi(t, x(t), Mx), t ∈ (ti, si], i = 1, 2, · · · , m. And

x(t) = x0 +
∫ t

t0

f
(

s, x(s),
∫ t

t0

K(τ, x(τ))dτ

)
ds, t ∈ (0, t1],

x(t) = gi

(
si, x(si),

∫ t

t0

I(τ, x(τ))dτ

)
+
∫ t

t0

f
(

s, x(s),
∫ t

t0

K(τ, x(τ))dτ

)
, t ∈ (si, ti+1],

i = 1, 2, · · · , m.

Let us introduce the intervals : Gi = (si, ti+1] : i = 1, 2, · · · , m with G =∪m
i=0Gi and Hi = (ti, si] : i = 0, 1, 2, · · · , m

with H = ∪m
i=0Hi.

Definition 2.1. [10, 14] A function V: J × Rn → R+ is said to belong to class V0 if



Anju Sood et al. / Lyapunov Approach for... 121

(i) V is continuous in Gi ∪ Hi, i = 0, 1, 2, · · · , m.

(ii) V is locally Lipschitz continuous in its second argument on each of Gi, i = 0, 1, 2, · · · , m.

(iii) V(t + 0, gi(t, x)) ≤ V(t, x) for each x ∈ Hi , i = 0, 1, 2, · · · , m.

(iv) For i = 1, 2, · · · , m in , V(ti − 0, x) = V(ti, x) and V(ti + 0, x) = lim
t→ti+0

V(ti, x) .

Further for t ∈ Gi and x ∈ PC(J, Rn),we define the following derivative ,

D+
(2)V(t, x) = lim

h→0
sup

1
h

[
V
(

t + h, x + h f
(

t, x(t),
∫ t

t0

K(s, x(s))ds
))
−V(t, x)

]
Note that if x(t) is a solution of the system (1.3)-(1.4), then D+

(2)V(t, x) = V′(2)(t, x). We shall now use the following
classes of functions:
K =

{
a ∈ C

[
J, R+

]
: a(·) is monotonically increasing and a(0) = 0

}
.

CK =
{

a ∈ C
[

J × R+, R+
]

: a(t, ·) ∈ K for each t ∈ J
}

.
Together with system (1.3)-(1.4), we consider the following scalar impulsive differential system of equations:

u′(t) = g
(
t, u(t), Pu

)
, t ∈ (si, ti+1], i = 0, 1, 2, · · · , m, (2.1)

u(t) = fi
(
t, u(t), Qu

)
, t ∈ (ti, si], i = 0, 1, 2, · · · , m, (2.2)

x(t+0 ) = u0 ≥ 0, (2.3)

where g: J × R+ × R+ → R+, fi: [ti, si]× R+ × R+ → R+, Pu =
∫ t

t0
K1(τ, u(τ))dτ, K1: J × R+ → R+ and Qu =∫ t

t0
I1(τ, u(τ))dτ, I1: J× R+ → R+. Let S(ρ) =

{
(t, x) ∈ J× Rn : ||x|| < ρ, ρ > 0

}
. We shall say that the conditions

(A) are satisfied if the following hold:

(A1) f ∈ PC
(
S(ρ)× Rn, Rn).

(A2) K ∈ C
(
S(ρ), Rn).

(A3) g(t, 0, 0) = 0 for t ∈ J.

(A4) ψk ∈ C
[
R+, R+

]
is non decreasing function with ψk(0) = 0 and ψk

(
rk−1

(
tk; tk−1, u+

k−1

))
= u+

k , where
rk
(
t, tk, u+

k
)

is the maximal solution of the system (2.1)-(2.3), if it occurs in (tk, tk+1] = Hk ∪ Gk, k =
0, 1, 2, · · · , m.

(A5) Let ||gi(t, x(t), Mx)|| < ρ for each t ∈ Hi, i = 0, 1, 2, · · · , m.

Definition 2.2. [14] The system (1.3)-(1.4) is said to be stable, if for each ε > 0, ∃ a δ = δ(t0, ε) > 0 such that for any
solution x(t) = x(t, t0, x0) of (1.3)-(1.4), the inequality ||x0|| ≤ δ⇒ ||x(t)|| < ε, ∀t ≥ t0.

Definition 2.3. [14] The system (1.3)-(1.4) is said to be attractive, if for each ε > 0, ∃ two numbers δ = δ(t0) > 0 and
Γ = Γ(t0, ε) > 0 such that for any solution x(t) = x(t, t0, x0) of (1.3)-(1.4), the inequality ||x0|| ≤ δ ⇒ ||x(t)|| < ε,
∀t ≥ t0 + Γ.

Definition 2.4. [14] The system (1.3)-(1.4) is said to be asymptotically stable if it is stable and attractive.

Definition 2.5. [14] A function V ∈ V0is said to be :

(i) positive definite if there exists a δ > 0 and a function a ∈ K such that ||x|| < δ⇒ a(||x||) ≤ V(t, x).

(ii) weakly decrescent if there exists a δ > 0 and a function b ∈ CK such that ||x|| < δ⇒ V(t, x) ≤ b(t, ||x||).

3 MAIN RESULTS

Before establishing the main results of the paper, we will prove the following lemma:

Lemma 3.1. Let the following conditions be fulfilled:

1. Conditions (A1)-(A4) hold.
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2. Let V ∈ S(ρ)→ R+ and V ∈ V0 . Assume that

(i) D+
(2)V(t, x(t)) ≤ g(t, V(t, x(t))) : t ∈ Gi.

(ii) V(tk + 0, x(tk + 0)) ≤ ψk(V(tk, x(tk))) : k = 1, 2, · · · , m.

(iii) V(s, x(s)) ≤ V(t, x(t)) :for t, s ∈ Hi such that 0 ≤ t ≤ s.

3. The solution x(t) = x(t; t0, x0) of system (1.3)-(1.4) is such that (t, x(t + 0, t0, x0)) ∈ S(ρ) for t ∈ J.

4. Let r(t, t0, u0) , the maximal solution of (2.1)-(2.3) satisfying u0 ≥ V(t0 + 0, x0)exists on J .

Then

V(t, x(t; t0, x0)) ≤ r(t; t0, u0) : t ∈ J. (3.1)

Proof. The maximal solution r(t, t0, u0) of the system (2.1)-(2.3) can be defined as follows:

r(t, t0, u0) =



r0(t, t0, u+
0 ), t0 < t ≤ t1

r1(t, t1, u+
1 ), t1 < t ≤ t2

· · ·
· · ·
rm(t, tm, u+

m), tm < t ≤ tm+1,

where ri(t, t1, u+
i ) is the maximal solution of the system (2.1)-(2.3), in (ti, ti+1] = Hi ∪ Gi, for which

ψi
(
ri−1

(
ti; ti−1, u+

i−1

))
= u+

i , i = 1, 2, · · · , m and u+
0 = u0. We claim (3.1) by considering the following three

cases;
Case 1: For t ∈ (si, ti+1) = Gi − {ti+1} let us say m(t) = V(t, x(t; t0, x0)) so that for small h > 0 we have

m(t + h)−m(t) = V(t + h, x(t + h))−V(t, x(t))

= V(t + h, x(t + h))−V
(

t + h, x + h f
(

t, x(t),
∫ t

t0

K(s, x(s))ds
))

+ V
(

t + h, x + h f
(

t, x(t),
∫ t

t0

K(s, x(s))ds
))
−V(t, x(t)).

As in Definition 2.1, V(t, x(t)) is locally Lipschitzian in x for t ∈ G, using assumption 2(i) of the statement of
lemma, we arrive at D+

(2)m(t) ≤ g(t, m(t)) : t ∈ Gi − {ti+1}. Then by theorem 3.1.1 in [13] we observe that

m(t) ≤ r(t), i.e.V(t, x(t; t0, x0)) ≤ r(t; t0, u0) : t ∈ Gi − {ti+1}. ( 3.2)

Case 2: For t ∈ Hi = (ti, si] ,Using condition 2(iii) of the lemma and the fact that u0 ≥ V(t0 + 0, x0) , it is clear
that

V(t, x(t; t0, x0)) ≤ V(t0 + 0, x0) ≤ u0 ≤ r(t; t0, u0). (3.3)

Case 3: For t ∈ {t1, t2, · · · , tm+1}, i.e. the moments of impulses .w.l.o.g. let us assume that t = tk . Then by
using assumption 2(ii) of the lemma, we see

V(ti + 0, x(ti + 0; t0, x0)) ≤ ψi(V(ti, x(ti; t0, x0))) ≤ ψi(ri(ti, ti−1, u+
i−1)) = u+

i .

Again using this condition V(t, x(t; ti + 0, x0)) ≤ u+
i in place of u0 ≥ V(t0 + 0, x0) and as done in case 1,we

get

V(t, x(t; t0, x0)) ≤ r(t; t0, u0)for each = 1, 2, · · · , m. (3.4)

Thus from (3.2), (3.3) and (3.4), we conclude that V(t, x(t; t0, x0)) ≤ r(t; t0, u0) : t ∈ J and hence (3.1) is
established.

Theorem 3.1. Let the following conditions hold:
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1. Conditions (A) are satisfied.

2. Let V ∈ S(ρ)→ R+ and V ∈ V0 such that it is positive definite and weakly decrescent.

3. Assume that for t > t0 ≥ 0

(i) D+
(2)V(t, x(t)) ≤ g(t, V(t, x(t))) : t ∈ Gi ,

(ii) V(tk + 0, x(tk + 0)) ≤ ψk(V(tk, x(tk))): k = 1, 2, · · · , m

(iii) V(s, x(s)) ≤ V(t, x(t)): for t, s ∈ Hi such that 0 ≤ t ≤ s

Then,

(a) if the zero solution of the system (2.1)-(2.3) is stable then the system (1.3)-(1.4) will also be stable.

(b) if the zero solution of the system (2.1)-(2.3) is asymptotically stable then the system (1.3)-(1.4) will also be
asymptotically stable.

Proof. proof of (a):
Since V ∈ V0 is positively definite in S(ρ), there exists a function a ∈ K and a such that δ1 > 0, 0 < δ1 ≤

ρ||x|| < δ1 implies

a(||x||) ≤ V(t, x). (3.5)

Since V ∈ V0 is weakly decrescent, there exists a function a ∈ CK and a δ2 > 0 such that ||x|| < δ2 implies

V(t + 0, x) ≤ b(t + 0, ||x||). (3.6)

Now as assertion in the statement of theorem, zero solution of the system (2.1)-(2.3) is stable, by definition of
stability that there exists a δ3(t0, ε) > 0 such that ||u0|| < δ3 implies

∣∣|u(t; t0, u0)
∣∣| < a(ε) for t ≥ t0 and in

particular
∣∣|r(t; t0, u0)

∣∣| < a(ε) for t ≥ t0 , where r(t; t0, u0) is the maximal solution of (2.1)-(2.3) for which

r(t0 + 0; t0, u0) = u0. (3.7)

Choose δ4 = δ4(t0, ε) satisfying b(t0 + 0, δ4) < δ3 and let δ = δ(t0, ε) = min{δ3, δ4}. Then for ||x0|| < δ, we have
V(t0 + 0, x0) ≤ b(t0 + 0, ||x||) ≤ (t0 + 0, δ) < δ3. Therefore we see that

V(t0 + 0, x0) < δ3, for ||x|| < δ. (3.8)

Thus
∣∣|r(t; t0, V(t0 + 0, x0))

∣∣| < a(ε) for t ≥ t0. Let x(t) = x(t; t0, x0) be a solution of system (1.3)-(1.4). Then to
prove that zero solution of system (1.3)-(1.4) will be stable,we claim that for above mentioned δ = δ(t0, ε) > 0
, ||x|| < δ implies that for every ε > 0 we have

||x(t)|| < ε, for t ≥ t0. (3.9)

If possible let this be false. Then there exists some t∗ > t0 such that tk < t∗ ≤ tk+1 for some k satisfyingwwx(t∗)
ww ≥ ε and wwx(t)

ww < ε, for t0 < t ≤ tk. (3.10)

Again for
wwx(t+k )

ww =
wwgi(t, x(t), Mx)

ww < ρ and
wwx(tk)

ww < ε from(3.9) . Hence we can find a t0 such that
tk < t0 ≤ t∗ and ε ≤

wwx(t0)
ww < ρ with wwx(t)

ww < ρ, for t0 ≤ t ≤ t0. (3.11)

Set m(t) = V(t, x(t; t0, x0)) for t0 ≤ t ≤ t0 . We note here that m(t+0 ) = V(t+0 , x(t; t0, x0)) = u0 and all the
conditions of lemma 3.1, are fulfilled in the interval [t0, t0]. Therefore, applying the lemma for the system (2.1)-
(2.3) of integro-differntial equations in the interval [t0, t0], instead of interval J = [0, T] , we have the following
inequality:

m(t) = V(t, x(t; t0, x0)) ≤ r(t; t0, u0)

= r
(
t; t0, V(t+0 , x0)

)
: t ∈

[
t0, t0], (3.12)
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where r(t; t0, u0) is the maximal solution of (2.1)-(2.3) in [t0, t0] . We then have, by using(3.10), (3.5), (3.12),
(3.11) and (3.7)

a(ε) ≤
(wwx(t0)

ww) ≤ V
(
t0, x(t0)

)
≤ r(t; t0, V(t+0 , x0)) < a(ε)

which is a contradiction. Therefore (3.9) holds true and hence for every given ε > 0, there exists a δ = δ(t0, ε),
such that ||x0|| < δ implies ||x(t)|| < ε for t ≥ t0 . Thus the zero solution of the system (1.3)-(1.4) is stable.
proof of (b): It is given that the zero solution of the system (2.1)-(2.3) is asymptotically stable, which means it
is stable and attractive. As proved in part (a), stability of system (2.1)-(2.3) implies that the system (1.3)-(1.4)
is stable. Therefore, by definition,there exists a δ01 = δ01(t0, ε) > 0, such that ||x0|| < δ01 implies ||x(t)|| < ε

for t ≥ t0. In particular if we take ε = ρ we have,
∣∣|x(t)|| < ρ for ||x0|| < δ01 , t ≥ t0.

Again as zero solution of system (2.1)-(2.3) is attractive, by definition 2.3, for each ε > 0, ∃ two numbers
δ02 = δ02(t0) > 0 and Γ = Γ(t0, ε) such that

||u0|| ≤ δ02 ⇒
wwr(t, t0, u0)

ww < a(ε), t ≥ t0 + Γ. (3.13)

Choose δ03 = δ03(t0) > 0 such that

δ03 < δ02, with b(t0, δ03) < δ02. (3.14)

Then from (3.6) and (3.14), we get,

V(t0 + 0, x0) ≤ b(t0 + 0, ||x0||) ≤ b(t0 + 0, δ03) < δ02.

Therefore,
wwr(t; t0, V(t0 + 0, x0))

ww < a(ε) for t ≥ t0 + Γ. Set δ0 = δ0(t0) = min{δ01, δ02, δ03}. Now let ||x0|| < δ0
and apply lemma, it follows that if x(t) = x(t; t0, x0) is a solution of the system(1.3)-(1.4), then

V(t, x(t; t0 + x0)) ≤ r(t; t0, V(t0 + 0, x0)) : t ≥ t0 + Γ. (3.15)

Now, to prove that system (1.3)-(1.4) is attractive , we claim that for above mentioned δ0 = δ0(t0) > 0 , ||x0|| < δ

implies that for every ε > 0, we have
wwx(t)

ww < ε for t ≥ t0 + Γ. If possible let it be false. Then as done in
the proof of part(a), by using (3.13), (3.14) and (3.15) we will arrive at contradiction and hence the system
(1.3)-(1.4) is attractive. Thus the system (1.3)-(1.4) is asymptotically stable.

4 CONCLUSION

A variety of results concerning Lyapunov stability , eventual stability and practical stability for the
impulsive differential systems of type (1.1)-(1.2) with instantaneous impulses(fixed time and variable time
impulses), are established in literature by using Lyapunov functions along with comparison theorems
([9,10,11,14] and the references there in). in this paper, we established stability and asymptotic stability for a
new impulsive integro-differential system in which, impulses are non instantaneous and that to the best of
our knowledge, are proved for the first time. A new lemma by which the study of the solution of impulsive
integro-differential system is replaced by the study of the solutions of a scalar Impulsive integro-differential
system is also proved. The desired results are obtained by using Lyapunov functions and comparison
differential inequalities.
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