Malaya Journal of Matematik

MJM an international journal of mathematical sciences with computer applications...

A note on inventory model for perishable items with trapezoidal type market demand and time-varying holding cost under partial backlogging

Smrutirekha Debta^{*a*,*} and Milu Acharya ^{*b*}

^aDepartment of Mathematics, Utkal University, Vani Vhiar, Bhubaneswar, Odisha, India. ^bDepartment of Mathematics, SOA University, Bhubaneswar, Odisha, India.

Abstract

In this paper, we studied an inventory model for perishable items with time dependent trapezoidal type demand. Shortages are allowed and partially backlogged with a constant rate. Holding cost is assumed to be linearly dependent with time. The rate of deterioration of the items dependent on both time and life of the products. The numerical solution of the model is obtained. Sensitivity analysis is performed to show the effect of changes in the parameter on the optimum solution.

Keywords: Trapezoidal type demand function, Partial backlogging, Time dependent deterioration rate, Time-varying holding cost.

2010 MSC: 90B05.

©2012 MJM. All rights reserved.

1 Introduction

An inventory system with time dependent deteriorating items is one of considerable attention in the recent years. In daily situations such as failure of electric bulb, batteries as they age, expiry of drugs, evaporation of volatile liquids, are common problem to all of us, so, we should not neglect the effect of deterioration on the replenishment policies. In fact, the stock level of inventory is continuously depleting because of the combined effects of its demand and deterioration. In the last few years, many attention has been given to the inventory control system involve with deteriorating items. Ghare and Schrader [1] developed an inventory model by taking into account the effect of deterioration of items in storage. In their model, they introduced a constant deterioration rate, while the demand rate was also taken to be constant. Afterward, Covert and Philip [2] and Tadikamalla [3] extended Ghare and Schrader's work by introducing variable rates of deterioration. Then, immediately Shah [29] provided a further generalization of all these models by considering shortages and using a general distribution for the deterioration rate.

All the above inventory models are based on static environment where the demand is assumed to be constant and steady over a finite replenishment cycle. However, in the real business market scenario, demand should not be constant which is increasing with time during the market growth phase. Then, after reaching its peak, the demand becomes stable for a finite time period. Thereafter, the demand starts decreasing with time. For example, we can easily think that some kind of winter season winter products. In the beginning of the winter season, about October or November, the sale increases up to the month of December and the sale reaches its climatic and maintain this climate sales situation until the end of the winter season. This type of market demand may be approximated by a ramp type demand function. The inventory control with ramp type demand rate first time proposed by Hill [5], they introduced the inventory models for increasing demand followed by a constant demand. Thereafter, Hariga [6] developed an

*Corresponding author.

E-mail address: srdebata83@gmail.com (Smrutirekha Debata), milu_acharya@yahoo.co.in(Milu Achary).

inventory lot sizing model for deteriorating items with general continuous time varying demand over a finite planning horizon under three replenishment policies and considered deterioration rate is a constant fraction of the on hand inventory, shortages are allowed and completely back-ordered. Subsequently, several authors discussed inventory models with ramp type demand rates from various aspects. Here, (please see the table-1) we listed some authors those who have used ramp type demand function to study inventory systems in different environments.

Apart from the above discussion, we may think, when some seasonal goods are coming to the market, the demand rate of such type of items may increase with time up to the certain time and then reaches a peak, the demand becomes stable for a finite time period, and finally the market demand rate gradually decreases to a constant or zero. We hope such type of demand is more realistic to construct some EOQ model. This type of demand is named as trapezoidal type demand. Cheng and Wang [27] first introduced trapezoidal type demand. They extended Hill's [5] ramp type demand rate to trapezoidal type demand. Subsequently, several authors discussed inventory models with trapezoidal type demand rates from different angles. Here we listed (please see the table-II) some authors those who have considered a trapezoidal type demand function to formulate some EOQ models in different domain.

All articles given in table-2, shows that, all the researchers studied economic order quantity model by considering the trapezoidal type demand, deterioration (constant/linear/Weibull), shortages (allowed/not allowed), backlogging (partial/complete), and constant holding costs. However, always constant holding cost may not help to develop a better approximate EOQ model in real life scenario, perhaps. So, holding cost may not be constant over time always, as there is a change in time value of money and change in the price index.

Hence, the motivation behind this article is, to prepare a more general inventory model, which includes; (a) Trapezoidal type demand, which is piecewise linear continuous function with time (b) Shortages are allowed with partially backlogged, and backlogging rate is constant (c) Deterioration depends on both time and life on an item, which is reflected more realistic than constant. (d) Linear increasing holding cost with time.

2 Notations and assumptions

The model is based on following assumptions and notations:

1. The demand rate D(t) is assumed to be a trapezoidal type function, which is piecewise linear continuous with time , defined as follows;

$$D(t) = \begin{cases} a_1 + b_1 t & \text{if } 0 \le t \le \mu_1 \\ D_0 & \text{if } \mu_1 \le t \le \mu_2 \end{cases}$$

 $a_2 - b_2 t$ if $\mu_2 \le t \le T \le \frac{a_2}{b_2}$ where μ_1 is the point in time axis, when demand reaches peak position and maintain constant, and μ_2 is the point in time axis, when demand start decreases.

- 2. The replenishment rate is infinite, thus replenishment is instantaneous, i. e. lead time is zero.
- 3. *T* is the length of each ordering cycle.
- 4. I(t) is level of inventory at time $t, 0 \le t \le T$.
- 5. S = I(0) is the maximum inventory level for the ordering cycle.
- 6. $\theta(t) = \frac{1}{1+R-t}$ is the deteriorating rate of inventory items, where *R* is the maximum life time of item.
- 7. t_1 is the time when the inventory level reaches zero due to both demand and deterioration.
- 8. Shortage is allowed and partially backlogged.
- 9. β is the backlogging rate; $0 \le \beta \le 1$, if β is 1 or 0, then shortage is completely backlogged or lost.
- 10. $H(t) = h + \alpha t$ is the holding cost, where $\alpha > 0, h > 0$.
- 11. c_1 is the constant shortage cost per unit per unit time.

- 12. *c* is the constant purchasing cost per unit.
- 13. *L* is the constant lost sale cost per unit.
- 14. *A* is the fixed ordering cost per order.
- 15. $C_1(t_1)$ is the total average cost per unit (when $0 \le t_1 \le \mu_1$).
- 16. $C_2(t_1)$ is the total average cost per unit (when $\mu_1 \le t_1 \le \mu_2$).
- 17. $C_3(t_1)$ is the total average cost per unit (when $\mu_2 \le t_1 < T$).
- 18. t_1^* is the optimal time, when the inventory level reaches zero.

3 Formulation of mathematical model and its solutions

Here, we consider the time dependent deteriorating inventory model with trapezoidal type demand rate. Inventory level attains maximum at t = 0, when replenishment occurs. From t = 0 to $t = t_1$, the level of inventory reduces due to both demand and deterioration. At t_1 the inventory level reaches zero, then shortage starts occurring during the time interval (t_1, T) , and all the demand during the shortage period (t_1, T) is partially backlogged with constant backlogging rate (β) , $(0 \le \beta \le 1)$. The total number of backlogged items is replaced by the next replenishment. The rate of change of the inventory during the positive stock period $(0, t_1)$ and shortage period (t_1, T) is described by the following differential equations:

$$\frac{dI(t)}{dt} = -\theta(t)I(t) - D(t), \ 0 < t < t_1$$
(3.1)

and

$$\frac{dI(t)}{dt} = -\beta D(t), \ t_1 < t < T.$$
(3.2)

with boundary condition $I(t_1) = 0$.

As per the nature of the demand function, our work can be completed through three cases, because, the shortage of inventory may occur during $(0, \mu_1]$, or $[\mu_1, \mu_2]$, or $[\mu_2, T)$. Hence, to make a complete study of the inventory model, we should take care about all three cases. These three cases are given as follows.

3.1 Case-I $(0 < t \le \mu_1)$

Due to demand and deterioration, the inventory level gradually decreases during the time interval $(0, t_1]$ and finally falls to zero at time $t = t_1$, i. e. shortage starts during $(0, \mu_1]$. Hence equations (3.1) and (3.2) reduce to

$$\frac{dI(t)}{dt} = -\frac{I(t)}{1+R-t} - (a_1 + b_1 t), \ 0 < t < t_1,$$
(3.3)

$$\frac{dI(t)}{dt} = -(a_1 + b_1 t)\beta, \ t_1 < t < \mu_1,$$
(3.4)

$$\frac{dI(t)}{dt} = -D_0\beta, \ \mu_1 < t < \mu_2, \tag{3.5}$$

and

$$\frac{dI(t)}{dt} = -(a_2 - b_2 t)\beta, \ \mu_2 < t < T.$$
(3.6)

Solving the above differential equations (3.3-3.6) with the condition $I(t_1) = 0$ and continuity property of I(t), we get

$$I(t) = (1+R-t) \left[a_1 \ln\left(\frac{1+R-t}{1+R-t_1}\right) + b_1(1+R) \ln\left(\frac{1+R-t}{1+R-t_1}\right) + b_1(t-t_1) \right], \ 0 \le t \le t_1,$$
(3.7)

$$I(t) = \beta a_1(t_1 - t) + \beta \frac{b_1}{2}(t_1^2 - t^2), \ t_1 \le t \le \mu_1,$$
(3.8)

$$I(t) = -D_0\beta t + a_1\beta t_1 + \beta \frac{b_1}{2}(t_1^2 + \mu_1^2), \ \mu_1 \le t \le \mu_2,$$
(3.9)

and

$$I(t) = \beta a_1 t_1 - \beta a_2 t + \beta \frac{b_2}{2} (t^2 + \mu_2^2) + \beta \frac{b_1}{2} (t_1^2 + \mu_1^2), \ \mu_2 \le t \le T.$$
(3.10)

The beginning inventory level can be obtained as

$$S = I(0) = (1+R) \left[\ln \left(\frac{1+R}{1+R-t_1} \right) (a_1 + b_1(1+R)) - b_1 t_1 \right].$$
(3.11)

Inventory is available in the system during the time period $(0, t_1)$. So, the cost for holding inventory in stock is computed for time period $(0, t_1)$ only.

Holding cost is as follows:

ı

$$\begin{aligned} HC &= \int_{0}^{t_{1}} H(t)I(t)dt \\ &= \int_{0}^{t_{1}} (h+\alpha t)(1+R-t) \left[\ln\left(\frac{1+R-t}{1+R-t_{1}}\right)(a_{1}+b_{1}(1+R))+b_{1}(t-t_{1}) \right] dt \\ &= (a_{1}+b_{1}(1+R))(t_{1}-(1+R)) \left[t_{1}+(1+R)\ln\left(\frac{1+R-t_{1}}{1+R}\right)+\frac{(R\alpha+\alpha-h)}{2} \left[(1+R)t_{1}+\frac{t_{1}^{2}}{2} \right] \right] \\ &+ (1+R)^{2}\ln\left(\frac{1+R-t_{1}}{1+R}\right) - \alpha \left[(1+R)^{2}t_{1}+(1+R)\frac{t_{1}^{2}}{2}+\frac{t_{1}^{3}}{3}+(1+R)^{3}\ln\left(\frac{1+R-t_{1}}{1+R}\right) \right] \\ &+ b_{1}\left(\frac{\alpha}{12}t_{1}^{4}-\frac{(R\alpha+\alpha-h)}{6}t_{1}^{3}-\frac{h(1+R)}{2}t_{1}^{2}\right). \end{aligned}$$
(3.12)

Shortage due to stock out is accumulated in the system during the time period (t_1, T) . The optimum level of shortage is occur at t = T, hence, the total shortage cost during the above mentioned time period is as follows:

$$SC = c_{1} \int_{t_{1}}^{T} -I(t)dt$$

$$= c_{1} \left[-\int_{t_{1}}^{\mu_{1}} I(t)dt - \int_{\mu_{1}}^{\mu_{2}} I(t)dt - \int_{\mu_{2}}^{T} I(t)dt \right]$$

$$= -c_{1} \left[\int_{t_{1}}^{\mu_{1}} \left(\beta a_{1}(t_{1}-t) + \beta \frac{b_{1}}{2}(t_{1}^{2}-t^{2}) \right) dt + \int_{\mu_{1}}^{\mu_{2}} \left(-D_{0}\beta t + \beta a_{1}t_{1} + \beta \frac{b_{1}}{2}(t_{1}^{1}+\mu_{1}^{2}) \right) dt \right]$$

$$+ \int_{\mu_{2}}^{T} \left(\beta a_{1}t_{1} - \beta a_{2}t + \beta \frac{b_{2}}{2}(t^{2}+\mu_{2}^{2}) + \beta \frac{b_{1}}{2}(t_{1}^{2}+\mu_{1}^{2}) \right) dt \right]$$

$$= c_{1} \left[\beta \frac{a_{1}}{2}(t_{1}-\mu_{1})(t_{1}+\mu_{1}-2T) + \beta \frac{b_{1}}{6}(2t_{1}^{3}-2\mu_{1}^{3}+3T\mu_{1}^{2}-3Tt_{1}^{2}) + \beta \frac{a_{2}}{2}(\mu_{2}^{2}-T^{2}) \right]$$

$$+ \beta \frac{b_{2}}{6}(3T\mu_{2}^{2}-T^{3}-2\mu_{2}^{3}) + \beta \frac{D_{0}}{2}(\mu_{1}-\mu_{2})(\mu_{1}+\mu_{2}-2T) \right].$$
(3.13)

Due to stock out during the time period (t_1, T) , shortage is accumulated, but not all customers are willing to wait for the next lot size to arrive. Hence, this results in some loss of sale which accounts to loss in profit. Lost sale cost is calculated as follows:

$$LSC = L \int_{t_1}^{T} (1-\beta)D(t)dt$$

= $L(1-\beta) \left[\int_{t_1}^{\mu_1} D(t)dt + \int_{\mu_1}^{\mu_2} D(t)dt + \int_{\mu_2}^{T} D(t)dt \right]$
= $L(1-\beta) \left[a_1(\mu_1-t_1) + \frac{b_1}{2}(\mu_1^2-t_1^2) + D_0(\mu_2-\mu_1) + a_2(T-\mu_2) - \frac{b_2}{2}(T^2-\mu_2^2) \right].$ (3.14)

Purchase cost is as follows:

$$PC = c \left[I(0) + \int_{t_1}^{T} \beta D(t) dt \right]$$

= $c(1+R) \left[a_1 \ln \left(\frac{1+R}{1+R-t_1} \right) + b_1(1+R) \ln \left(\frac{1+R}{1+R-t_1} \right) - b_1 t_1 \right] + c \beta \left[a_1(\mu_1 - t_1) + \frac{b_1}{2}(\mu_1^2 - t_1^2) + D_0(\mu_2 - \mu_1) + a_2(T - \mu_2) - \frac{b_2}{2}(T^2 - \mu_2^2) \right].$ (3.15)

The total average cost is given by

$$\begin{split} C_{1}(t_{1}) &= \frac{1}{T} \bigg[A + PC + HC + SC + SLC \bigg] \\ &= \frac{1}{T} \bigg[A + c(1+R) \bigg[a_{1} \ln \bigg(\frac{1+R}{1+R-t_{1}} \bigg) + b_{1}(1+R) \ln \bigg(\frac{1+R}{1+R-t_{1}} \bigg) - b_{1}t_{1} \bigg] \\ &+ c\beta \bigg[a_{1}(\mu_{1}-t_{1}) + \frac{b_{1}}{2}(\mu_{1}^{2}-t_{1}^{2}) + D_{0}(\mu_{2}-\mu_{1}) + a_{2}(T-\mu_{2}) - \frac{b_{2}}{2}(T^{2}-\mu_{2}^{2}) \bigg] \\ &+ L(1-\beta) \bigg[a_{1}(\mu_{1}-t_{1}) + \frac{b_{1}}{2}(\mu_{1}^{2}-t_{1}^{2}) + D_{0}(\mu_{2}-\mu_{1}) + a_{2}(T-\mu_{2}) - \frac{b_{2}}{2}(T^{2}-\mu_{2}^{2}) \bigg] \\ &+ c_{1}\beta \frac{a_{1}}{2}(t_{1}-\mu_{1})(t_{1}-\mu_{1}-2T) + c_{1}\frac{\beta b_{1}}{6}(2t_{1}^{3}-2\mu_{2}^{3}+3T\mu_{1}^{2}-3Tt_{1}^{2}) \\ &+ c_{1}\beta \frac{a_{2}}{2}(\mu_{2}-T)^{2} + c_{1}\beta \frac{b_{2}}{6}(3T\mu_{2}^{2}-T^{3}-2\mu_{2}^{3}) + c_{1}\beta \frac{D_{0}}{2}(\mu_{1}-\mu_{2})(\mu_{1}+\mu_{2}-2T) \\ &+ (a_{1}+b_{1}(1+R))(t_{1}-(1+R)) \bigg[t_{1}+(1+R) \ln \bigg(\frac{1+R-t_{1}}{1+R} \bigg) + \frac{(R\alpha+\alpha-h)}{2} \bigg[(1+R)t_{1}+\frac{t_{1}^{2}}{2} \\ &+ (1+R)^{2} \ln \bigg(\frac{1+R-t_{1}}{1+R} \bigg) \bigg] - \alpha \bigg((1+R)^{2}t_{1}+(1+R) \frac{t_{1}^{2}}{2} + \frac{t_{1}^{3}}{3} + (1+R)^{3} \ln \bigg(\frac{1+R-t_{1}}{1+R} \bigg) \bigg) \bigg] \\ &+ b_{1} \bigg(\frac{\alpha}{12}t_{1}^{4} - \frac{(R\alpha+\alpha-h)}{6}t_{1}^{3} - \frac{h(1+R)}{2}t_{1}^{2} \bigg) \bigg]. \end{split}$$

Equation (3.16) is highly non linear in nature with t_1 . We can find the optimum values of t_1 for minimum average cost $C_1(t_1)$ from the solutions of the following equations by the help of Mathematica 10,

$$\frac{dC_1(t_1)}{dt_1} = 0. (3.17)$$

3.2 Case-II (for $t_1 \in [\mu_1, \mu_2]$)

The differential equations governing the inventory model can be expressed as follows:

$$\frac{dI(t)}{dt} = -\frac{I(t)}{1+R-t} - (a_1 + b_1 t), \ 0 < t < \mu_1,$$
(3.18)

$$\frac{dI(t)}{dt} = -\frac{I(t)}{1+R-t} - D_0, \ \mu_1 < t < t_1,$$
(3.19)

$$\frac{dI(t)}{dt} = -D_0\beta, \ t_1 < t < \mu_2 \tag{3.20}$$

and

$$\frac{dI(t)}{dt} = -\beta(a_2 - b_2 t), \ \mu_2 < t < T.$$
(3.21)

Solving the above differential equations (3.18-3.21) with the help of $I(t_1) = 0$ and continuity property of I(t), we obtain

$$I(t) = (1+R-t) \left[a_1 \ln \left(\frac{1+R-t}{1+R-t_1} \right) + b_1(1+R) \ln \left(\frac{1+R-t}{1+R-\mu_1} \right) + b_1 \mu_1 \ln \left(\frac{1+R-\mu_1}{1+R-t_1} \right) + b_1(t-\mu_1) \right], \quad 0 \le t \le \mu_1,$$
(3.22)

$$I(t) = (1+R-t)D_0 \ln\left(\frac{1+R-t}{1+R-t_1}\right), \ \mu_1 \le t \le t_1,$$
(3.23)

$$I(t) = \beta D_0(t_1 - t), \ t_1 \le t \le \mu_2$$
(3.24)

and

$$I(t) = -\beta a_2(t - t_1) - \beta b_2 \mu_2 t_1 + \frac{\beta b_2}{2} (t^2 + \mu_2^2), \ \mu_2 \le t \le T.$$
(3.25)

The beginning inventory level can be obtained as

$$S = I(0)$$

= $(1+R) \left[a_1 \ln \left(\frac{1+R}{1+R-t_1} \right) + b_1(1+R) + b_1(1+R) \ln \left(\frac{1+R}{1+R-t_1} \right) + b_1 \mu_1 \ln \left(\frac{1+R-\mu_1}{1+R-t_1} \right) - b_1 \mu_1 \right].$ (3.26)

The total cost per ordering cycle is consists by following five different costs, these are as follows:

1. Ordering cost.

$$OC = A. \tag{3.27}$$

2. Holding cost

$$\begin{split} HC &= \int_{0}^{\mu_{1}} (h+\alpha t)(1+R-t) \left[a_{1} \ln \left(\frac{1+R-t}{1+R-t_{1}} \right) + b_{1}(1+R) \ln \left(\frac{1+R-t}{1+R-\mu_{1}} \right) \right. \\ &+ b_{1}\mu_{1} \ln \left(\frac{1+R-\mu_{1}}{1+R-t_{1}} \right) + b_{1}(t-\mu_{1}) \right] dt + \int_{\mu_{1}}^{t_{1}} (h+\alpha t) b_{0} \ln \left(\frac{1+R-t}{1+R-t_{1}} \right) dt \\ &= \left[a_{1} \ln \left(\frac{1+R-\mu_{1}}{1+R-t_{1}} \right) + b_{1}\mu_{1} \ln \left(\frac{1+R-\mu_{1}}{1+R-t_{1}} \right) - b_{1}\mu_{1} \right] \left[h(1+R)\mu_{1} + (R\alpha + \alpha - h) \frac{\mu_{1}^{2}}{2} - \frac{\alpha\mu_{1}^{3}}{3} \right] \\ &+ \left[ah(1+R)(t_{1} - (1+R)) + b_{1}h(1+R)^{2}(\mu_{1} - (1+R)) \right] \left[\mu_{1} + (1+R) \ln \left(\frac{1+R-\mu_{1}}{1+R} \right) \right] \right] \\ &+ \left[(1+R)\mu_{1} + \frac{\mu_{1}^{2}}{2} + (1+R)^{2} \ln \left(\frac{1+R-\mu_{1}}{1+R} \right) \right] \left[a_{1}(t_{1} - (1+R)) \left(\frac{R\alpha + \alpha - h}{2} \right) \right] \\ &+ \left[(1+R)(\mu_{1} - (1+R)) \left(\frac{R\alpha + \alpha - h}{2} \right) \right] - \left[(1+R)^{2}\mu_{1} + \left(\frac{1+R}{2} \right) \mu_{1}^{2} + \frac{\mu_{1}^{3}}{3} \right] \\ &\times \left[\frac{\alpha}{3}a_{1}(t_{1} - (1+R)) + \frac{\alpha}{3}b_{1}(1+R)(\mu_{1} - (1+R)) \right] + b_{1}h(1+R) \frac{\mu_{1}^{2}}{2} + (R\alpha + \alpha - h)b_{1}\frac{\mu_{1}^{3}}{3} \\ &- \frac{\alpha b_{1}\mu_{1}^{4}}{4} + D_{0}(t_{1} - (1+R))h \left[(t_{1} - \mu_{1}) + (1+R) \ln \left(\frac{1+R-t_{1}}{1+R-\mu_{1}} \right) \right] \\ &+ \left(t_{1} - (1+R) \right) \frac{\alpha D_{0}}{2} \left[(1+R)(t_{1} - \mu_{1}) + \frac{t_{1}^{2} - \mu_{1}^{2}}{2} + (1+R)^{2} \ln \left(\frac{1+R-t_{1}}{1+R-\mu_{1}} \right) \right]. \end{split}$$
(3.28)

3. Purchase cost

$$PC = c \left[(1+R) \left(a_1 \ln \left(\frac{1+R}{1+R-t_1} \right) + b_1 (1+R) \ln \left(\frac{1+R}{1+R-t_1} \right) + b_1 \mu_1 \ln \left(\frac{1+R-\mu_1}{1+R-t_1} \right) - b_1 \mu_1 \right) + \beta D_0 (\mu_2 - t_1) + \beta a_2 (T - \mu_2) - \frac{\beta b_2}{2} (T^2 - \mu_2^2) \right].$$
(3.29)

4. Shortage cost

$$SC = \frac{c_1\beta D_0}{2}(t_1 - \mu_2)^2 + \frac{c_1\beta a_2}{2} \left[(T - t_1^2) - (\mu_2 - t_1^2) \right] + c_1\beta b_2\mu_2 t_1(T - \mu_2) + \frac{c_1\beta b_2}{2} \left[\frac{T^3 - \mu_2^3}{3} + \mu_2^2(T - \mu_2) \right].$$
(3.30)

5. Lost sale cost

$$LSC = L(1-\beta) \left[D_0(\mu_2 - t_1) + a_2(T-\mu_2) - \frac{b_2}{2}(T^2 - \mu_2^2) \right].$$
(3.31)

-

The total average cost is given by

$$\begin{split} C_{2}(t_{1}) &= \frac{1}{T} \bigg[OC + HC + PC + SC + LSC \bigg] \\ &= \frac{1}{T} \bigg[A + c \bigg[(1 + R) \bigg(a_{1} \ln \bigg(\frac{1 + R}{1 + R - t_{1}} \bigg) + b_{1} (1 + R) \ln \bigg(\frac{1 + R}{1 + R - t_{1}} \bigg) + b_{1} \mu_{1} \ln \bigg(\frac{1 + R - \mu_{1}}{1 + R - t_{1}} \bigg) - b_{1} \mu_{1} \bigg) \\ &+ \beta D_{0}(\mu_{2} - t_{1}) + \beta a_{2} (T - \mu_{2}) - \frac{\beta b_{2}}{2} (T^{2} - \mu_{2}^{2}) \bigg] \\ &+ L(1 - \beta) \bigg[D_{0}(\mu_{2} - t_{1}) + a_{2} (T - \mu_{2}) - \frac{b_{2}}{2} (T^{2} - \mu_{2}^{2}) \bigg] \\ &+ \frac{c_{1} \beta D_{0}}{2} (t_{1} - \mu_{2})^{2} + \frac{c_{1} \beta a_{2}}{2} \bigg[(T - t_{1}^{2}) - (\mu_{2} - t_{1}^{2}) \bigg] \\ &+ c_{1} \beta b_{2} \mu_{2} t_{1} (T - \mu_{2}) + \frac{c_{1} \beta b_{2}}{2} \bigg[\frac{T^{3} - \mu_{2}^{3}}{3} + \mu_{2}^{2} (T - \mu_{2}) \bigg] \\ &+ \bigg[a_{1} \ln \bigg(\frac{1 + R - \mu_{1}}{1 + R - t_{1}} \bigg) + b_{1} \mu_{1} \ln \bigg(\frac{1 + R - \mu_{1}}{1 + R - t_{1}} \bigg) - b_{1} \mu_{1} \bigg] \bigg[h(1 + R) \mu_{1} + (R\alpha + \alpha - h) \frac{\mu_{1}^{2}}{2} - \frac{\alpha \mu_{1}^{3}}{3} \bigg] \\ &+ \bigg[ah(1 + R)(t_{1} - (1 + R)) + b_{1} h(1 + R)^{2} (\mu_{1} - (1 + R)) \bigg] \bigg[\mu_{1} + (1 + R) \ln \bigg(\frac{1 + R - \mu_{1}}{1 + R} \bigg) \bigg] \bigg] \\ &+ \bigg[(1 + R) \mu_{1} + \frac{\mu_{1}^{2}}{2} + (1 + R)^{2} \ln \bigg(\frac{1 + R - \mu_{1}}{1 + R} \bigg) \bigg] \bigg[a_{1} (t_{1} - (1 + R)) \bigg(\frac{R\alpha + \alpha - h}{2} \bigg) \\ &+ 3(1 + R) (\mu_{1} - (1 + R)) \bigg(\frac{R\alpha + \alpha - h}{2} \bigg) \bigg] - \bigg[(1 + R)^{2} \mu_{1} + \bigg(\frac{1 + R}{2} \bigg) \mu_{1}^{2} + \frac{\mu_{1}^{3}}{3} \bigg] \\ &\times \bigg[\frac{\alpha}{3} a_{1} (t_{1} - (1 + R)) + \frac{\alpha}{3} b_{1} (1 + R) (\mu_{1} - (1 + R)) \bigg] + b_{1} h(1 + R) \frac{\mu_{1}^{2}}{2} + (R\alpha + \alpha - h) b_{1} \frac{\mu_{1}^{3}}{3} \\ &- \frac{\alpha b_{1} \mu_{1}^{4}}{4} + D_{0} (t_{1} - (1 + R)) h \bigg[(t_{1} - \mu_{1}) + (t_{1} + R) \ln \bigg(\frac{1 + R - t_{1}}{1 + R - \mu_{1}} \bigg) \bigg] . \end{split}$$
(3.32)

Equation (3.32) is highly non linear in nature with t_1 . We can find the optimum values of t_1 for minimum average cost $C_2(t_1)$ from the solutions of the following equations by the help of Mathematica 10,

$$\frac{dC_2(t_1)}{dt_1} = 0. ag{3.33}$$

Case-III ($t_1 \in [\mu_2, T]$) 3.3

г

The differential equation governing the inventory model can be expressed as follows:

$$\frac{dI(t)}{dt} = -\frac{I(t)}{1+R-t} - (a_1 + b_1 t), \ 0 < t < \mu_1,$$
(3.34)

$$\frac{dI(t)}{dt} = -\frac{I(t)}{1+R-t} - D_0, \ \mu_1 \le t < \mu_2,$$
(3.35)

$$\frac{dI(t)}{dt} = -\frac{I(t)}{1+R-t} - (a_2 - b_2 t), \ \mu_2 \le t < t_1$$
(3.36)

and

$$\frac{dI(t)}{dt} = -\beta(a_2 - b_2 t), \ t_1 < t < T.$$
(3.37)

Solving the above differential equations (3.34-3.37) with the help of $I(t_1) = 0$ and continuity property of I(t), we obtain

$$I(t) = (1+R-t) \left[a_1 \ln(1+R-t) + b_1(1+R) \ln(1+R-t) + b_1t + (b_2(1+R)-a_2) \ln(1+R-t_1) - b_2R \ln(1+R-\mu_2) - b_2(t_1-\mu_2) - b_1R \ln(1+R-\mu_1) - b_1\mu_1 \right], \quad 0 \le t < \mu_1,$$
(3.38)

$$I(t) = (1+R-t) \left[D_0 \ln(1+R-t) + (b_2(1+R) - a_2) \ln(1+R-t_1) - b_2 R \ln(1+R-\mu_2) + b_2(t_1-\mu_2) \right], \ \mu_1 \le t \le \mu_2,$$
(3.39)

$$I(t) = (1+R-t) \left[a_2 \ln\left(\frac{1+R-t}{1+R-t_1}\right) - b_2(1+R) \ln\left(\frac{1+R-t}{1+R-t_1}\right) + b_2(t_1-t), \ \mu_2 \le t \le t_1$$
(3.40)

and

$$I(t) = \beta a_2(t_1 - t) + \frac{\beta b_2}{2}(t^2 - t_1^2), \ t_1 < t < T.$$
(3.41)

In this case the begging inventory level can be obtained as

$$S = I(0)$$

= $(1+R) \Big[a_1 \ln(1+R) + b_1(1+R) \ln(1+R) + (b_2(1+R) - a_2) \ln(1+R - t_1) - b_2 R \ln(1+R - \mu_2) - b_2(t_1 - \mu_2) - b_1 R \ln(1+R - \mu_1) - b_1 \mu_1 \Big].$ (3.42)

The total cost per order cycle is consist by following different costs, these are as follows:

1. Ordering cost

2. Holding cost

$$\begin{split} HC &= \ln(1+R-\mu_1) \left[h(1+R)\mu_1 + (R\alpha + \alpha - h) \frac{\mu_1^2}{2} - \frac{2\mu_1^3}{3} \right] (a_1 + b_1(1+R)) - (a_1 + b_1(1+R))h(1+R) \\ &\times \left[\mu_1 + (1+R)\ln\left(\frac{1+R-\mu_1}{1+R}\right) \right] - (a_1 + b_1(1+R)) \left(\frac{R\alpha + \alpha - h}{2}\right) \left[(1+R)\mu_1 \\ &+ \frac{\mu_1^2}{2} + (1+R)^2\ln\left(\frac{1+R-\mu_1}{1+R}\right) \right] + (a_1 + b_1(1+R)) \frac{\alpha_1}{3} \left[(1+R)^2\mu_1 + (1+R) \frac{\mu_1^2}{2} \\ &+ \frac{\mu_1^3}{3} + (1+R)^3\ln\left(\frac{1+R-\mu_1}{1+R}\right) \right] + h(1+R)b_1 \frac{\mu_1^2}{2} + (R\alpha + \alpha - h) \frac{b_1\mu_1^3}{3} - \frac{ab_1\mu_1^4}{4} \\ &+ \left[(b_1(1+R) - a_2)\ln(1+R - t_1) - b_2R\ln(1+R - \mu_2) - b_2(t_1 - \mu_2) - b_1R\ln(1+R - \mu_1) \\ &- b_1\mu_1 \right] \left[h(1+R)\mu_1 + (R\alpha + \alpha - h) \frac{\mu_1^2}{2} - \frac{\alpha\mu_1^3}{3} \right] + D_0\ln\left(\frac{1+R-\mu_2}{1+R-\mu_1}\right) \left[h(1+R)(\mu_2 - \mu_1) \\ &+ (R\alpha + \alpha - h) \frac{\mu_2^2 - \mu_1^2}{2} - \frac{\alpha(\mu_2^3 - \mu_1^3)}{3} \right] + D_0h(1+R) \left[\mu_2 - \mu_1 + (1+R)\ln\left(\frac{1+R-\mu_2}{1+R-\mu_1}\right) \right] \\ &+ D_0\left(\frac{R\alpha + \alpha - h}{2}\right) \left[(1+R)(\mu_2 - \mu_1) + \frac{\mu_2^2 - \mu_1^2}{2} + (1+R)^2\ln\left(\frac{1+R-\mu_2}{1+R-\mu_1}\right) \right] \\ &- \frac{\alpha_3}{3} D_0 \left[(1+R)^2(\mu_2 - \mu_1) + \frac{1+R}{2}(\mu_2^2 - \mu_1^2) + \frac{\mu_2^3 - \mu_1^3}{3} \right] + \left[(b_2(1+R) - a_2)\ln(1+R - t_1) \\ &- b_2R\ln(1+R-\mu_2) + b_2(t_1 - \mu_2) \right] \left[h(1+R)(\mu_2 - \mu_1) + \frac{R\alpha + \alpha - h}{2}(\mu_2^2 - \mu_1^2) - \frac{\alpha}{3}(\mu_2^3 - \mu_1^3) \right] \\ &+ (a_2 - b_2(1+R))(1+R - t_1) \frac{\alpha}{3} \left[(1+R)^2(t_1 - \mu_2) + \frac{1+R}{2}(t_1^2 - \mu_2^2) + (1+R)^3\ln\left(\frac{1+R-t_1}{1+R-\mu_2}\right) \right] \\ &- (a_2 - b_2(1+R))(1+R - t_1) \frac{R\alpha + \alpha - h}{2} \left[(1+R)(t_1 - \mu_2) + \frac{t_1^2 - \mu_2^2}{2} + (1+R)^2\ln\left(\frac{1+R-t_1}{1+R-\mu_2}\right) \right] \\ &+ h(1+R)b_2t_1(t_1 - \mu_2) + (R\alpha + \alpha - h)b_2t_1\frac{t_1^2 - \mu_2^2}{2} - ab_2t_1\frac{t_1^3 - \mu_3^3}{3} \\ &+ h(1+R)b_2\frac{t_1^2 - \mu_2^2}{2} + (R\alpha + \alpha - h)b_2\frac{t_1^3 - \mu_2^2}{3} - ab_2\frac{t_1^3 - \mu_2^3}{4} . \end{split}$$

3. Purchase cost

$$PC = c \left[(1+R) \left[a_1 \ln(1+R) + b_1(1+R) \ln(1+R) + (b_2(1+R) - a_2) \ln(1+R - t_1) + \beta a_2(T-t_1) - b_2 R \ln(1+R - \mu_2) - b_2(t_1 - \mu_2) - b_1 R \ln(1+R - \mu_1) - b_1 \mu_1 \right] - \beta \frac{b_2}{2} (T^2 - t_1^2) \right].$$
(3.45)

4. Shortage cost

$$SC = c_1 \bigg[\beta a_2 t_1(t_1 - T) + \beta a_2 \frac{T^2 - t_1^2}{2} - \frac{\beta b_2}{6} (T^3 - t_1^3) + \frac{\beta b_2}{2} t_1^2 (T - t_1) \bigg].$$
(3.46)

5. Lost sale cost

$$LSC = L(1-\beta) \left[a_2(T-t_1) - \frac{b_2}{2}(T^2 - t_1^2) \right].$$
(3.47)

The total average cost is given by

$$\begin{split} C_{3}(l_{1}) &= \frac{1}{T} \left[A + \ln(1 + R - \mu_{1}) \left[h(1 + R) \mu_{1} + (R\alpha + \alpha - h) \frac{\mu_{1}^{2}}{2} - \frac{2\mu_{1}^{3}}{3} \right] (a_{1} + b_{1}(1 + R)) - (a_{1} + b_{1}(1 + R)) \right] \\ &\times h(1 + R) bigg[\mu_{1} + (1 + R) \ln \left(\frac{1 + R - \mu_{1}}{1 + R} \right) \right] - (a_{1} + b_{1}(1 + R)) \left(\frac{R\alpha + \alpha - h}{2} \right) \left[(1 + R)\mu_{1} \right] \\ &+ \frac{\mu_{1}^{2}}{2} + (1 + R)^{2} \ln \left(\frac{1 + R - \mu_{1}}{1 + R} \right) \right] + h(1 + R) b_{1} \frac{\mu_{1}^{2}}{2} + (R\alpha + \alpha - h) \frac{b_{1}\mu_{1}^{3}}{2} - \frac{ab_{1}\mu_{1}^{4}}{4} \\ &+ \left[(b_{1}(1 + R) - a_{2}) \ln(1 + R - t_{1}) - b_{2}R \ln(1 + R - \mu_{2}) - b_{2}(t_{1} - \mu_{2}) - b_{1}R \ln(1 + R - \mu_{1}) \right] \\ &- b_{1}\mu_{1} \right] \left[h(1 + R)\mu_{1} + (R\alpha + \alpha - h) \frac{\mu_{2}^{2}}{2} - \frac{a\mu_{1}^{3}}{3} \right] + D_{0} \ln \left(\frac{1 + R - \mu_{2}}{1 + R - \mu_{1}} \right) \right] h(1 + R)(\mu_{2} - \mu_{1}) \\ &+ (R\alpha + \alpha - h) \frac{\mu_{2}^{2} - \mu_{1}^{2}}{3} - \frac{a(\mu_{2}^{3} - \mu_{1}^{2})}{3} \right] + D_{0}h(1 + R) \left[\mu_{2} - \mu_{1} + (1 + R) \ln \left(\frac{1 + R - \mu_{2}}{1 + R - \mu_{1}} \right) \right] \\ &+ D_{0} \left(\frac{R\alpha + \alpha - h}{2} \right) \left[(1 + R)(\mu_{2} - \mu_{1}) + \frac{\mu_{2}^{2} - \mu_{1}^{2}}{2} + (1 + R)^{2} \ln \left(\frac{1 + R - \mu_{2}}{1 + R - \mu_{1}} \right) \right] \\ &+ D_{0} \left(\frac{R\alpha + \alpha - h}{2} \right) \left[(1 + R)(\mu_{2} - \mu_{1}) + \frac{\mu_{2}^{2} - \mu_{1}^{2}}{3} + \frac{\mu_{1}^{3}}{3} \right] + \left[(b_{2}(1 + R) - a_{2}) \ln(1 + R - t_{1}) \right] \\ &- b_{2}R \ln(1 + R - \mu_{2}) + b_{2}(t_{1} - \mu_{2}) \right] \left[h(1 + R)(\mu_{2} - \mu_{1}) + \frac{R\alpha + \alpha - h}{2} \left(\mu_{2}^{2} - \mu_{1}^{2} \right) - \frac{\alpha}{3}(\mu_{3}^{3} - \mu_{1}^{3}) \right] \\ &+ (a_{2} - b_{2}(1 + R))(1 + R - t_{1})\frac{\alpha}{3} \left[(1 + R)^{2}(t_{1} - \mu_{2}) + \frac{1 + R}{2}(t_{1}^{2} - \mu_{2}^{2}) + (1 + R)^{3} \ln \left(\frac{1 + R - t_{1}}{1 + R - \mu_{2}} \right) \right] \\ &- (a_{2} - b_{2}(1 + R)) \ln \left(\frac{1 + R - \mu_{2}}{1 + R - t_{1}} \right) \left[h(1 + R)\mu_{2} + (R\alpha + \alpha - h) \frac{\mu_{2}^{2}}{2} - \frac{\alpha \mu_{2}^{3}}{3} \right] \\ &- (a_{2} - b_{2}(1 + R)) \ln \left(\frac{1 + R - \mu_{2}}{1 + R - t_{1}} \right) \left[h(1 + R)\mu_{2} + (R\alpha + \alpha - h) \frac{\mu_{2}^{2}}{2} - \frac{\alpha \mu_{2}^{3}}{3} \right] \\ &- (a_{2} - b_{2}(1 + R)) \ln \left(\frac{1 + R - \mu_{2}}{1 + R - t_{1}} \right) \left[h(1 + R)\mu_{2} + (R\alpha + \alpha - h) \frac{\mu_{2}^{2}}{2} - \frac{\alpha \mu_{2}^{3}}{3} \right] \\ &- (a_{2} - b_{2}(1 + R)) \ln \left(\frac{1 + R - \mu_{2}}{1$$

Equation (48) is highly non linear in nature with t_1 . We can find the optimum values of t_1 for minimum average cost $C_3(t_1)$ from the solutions of the following equations by the help of Mathematica 10,

$$\frac{dC_3(t_1)}{dt_1} = 0. ag{3.49}$$

4 Numerical example and sensitivity analysis

In this section, we use Mathematica 10 to get a numerical solutions and sensitivity analysis of model for different parameters.

Example 4.1. The parameter values is given as follows:

A = \$350 per order, T = 12 weeks, $\mu_1 = 4$ weeks, $\mu_2 = 10$ weeks, $a_1 = 150$ unit, $b_1 = 50$ unit, $a_2 = 450$ unit, $b_2 = 10$ unit, c = \$75 per unit, R = 13 weeks, L = \$7 per unit, $\alpha = 0.2$ unit, h = 5 unit, $c_1 = 5 per unit, $\beta = 0.4$, $t_1^* = 3.20578$ weeks, minimum cost $C_1(t_1^*) = 90137.07715 .

Example 4.2. The parameter values is given as follows:

 $A = \$350 \text{ per order}, T = 12 \text{ weeks}, \mu_1 = 2.5 \text{ weeks}, \mu_2 = 9 \text{ weeks}, a_1 = 150 \text{ unit}, b_1 = 50 \text{ unit}, a_2 = 450 \text{ unit}, b_2 = 10 \text{ unit}, c = \$75 \text{ per unit}, R = 13 \text{ weeks}, L = \$7 \text{ per unit}, \alpha = 0.2 \text{ unit}, h = 5 \text{ unit}, c_1 = \$5 \text{ per unit}, \beta = 0.4, t_1^* = 4.901507 \text{ weeks}, \text{minimum cost } C_2(t_1^*) = \$62503.3333.$

Example 4.3. The parameter values is given as follows:

 $A = \$350 \text{ per order}, T = 12 \text{ weeks}, \mu_1 = 2 \text{ weeks}, \mu_2 = 4.5 \text{ weeks}, a_1 = 150 \text{ unit}, b_1 = 40 \text{ unit}, a_2 = 450 \text{ unit}, b_2 = 10 \text{ unit}, c = \$75 \text{ per unit}, R = 13 \text{ weeks}, L = \$7 \text{ per unit}, \alpha = 0.2 \text{ unit}, h = 5 \text{ unit}, c_1 = \$5 \text{ per unit}, \beta = 0.4, t_1^* = 8.051037 \text{ weeks}, \min \text{ mum cost } C_3(t_1^*) = \$11873.09731.$

Based on the above numerical examples (1, 2 & 3), the performed sensitivity analysis by \pm 50% and \pm 25% changing one parameter at a time and keeping the remaining parameters at their original values. The table (3, 4 & 5) summarize the results of sensitivity analysis. Based on the results of sensitivity analysis from table (3, 4 & 5) the following observations can be done.

From table-3, the total average cost decreases with decrease in the parameters α , β , h, c_1 , L, c, a_1 , a_2 , b_1 , b_2 and A, however, the total average cost increases with decrease in the value of R. The total average cost is highly sensitive to changes in R, c_1 , c, a_1 , a_2 , and b_1 . It is less sensitive to changes in α , β , h, L, b_2 and A. The time duration of shortage is increases with decrease in the parameters α , β , h, a_2 , b_1 , A and R, however, the time duration of shortage is decreases with decrease in the parameters c_1 , L, c, a_1 and b_2 .

From table-4, the total average cost gradually decreases with decrease in the parameters α , β , h, c_1 , L, c, a_1 , a_2 , b_1 , b_2 and A, however, the total average cost increases with decrease in the value of R. The total average cost is less sensitive to changes in all parameters. The time duration of shortage is decreases with decrease in the parameters α , whereas, the time duration of shortage is increases with decrease in the parameters c_1 , L, c, a_1 , b_2 , β , h, a_2 , b_1 , A and R.

From table-5, the total average cost gradually decreases with decrease in the parameters α , β , h, c_1 , L, c_2 , a_1 , a_2 , b_1 , b_2 and A, however, the total average cost increases with decrease in the value of the parameter R. The total average cost is less sensitive to changes in all parameters, except R. The model is highly sensitive to change the parameter R. The time duration of shortage is increases with decrease the value of all parameters.

5 Conclusions

In this paper, we developed an economic order quantity model when the market demand is followed by trapezoidal type function. Shortages are allowed and partially backlogged. Time varying holding cost, deterioration rate of the items dependent on both time and life of items are considered. Numerical examples are carried out to illustrate the model and the solution procedure. Subsequently, sensitivity analysis is carried out with respect to all key parameters to observe interesting managerial insights. Finally, in this paper, from numerical example and sensitivity analysis, we conclude that the model without shortage is more profitable than the model allow with shortage. This is happening because of the deterioration rate is not only depend on time but also depend on life of the product. If the life of product is more than the length of replenishment cycle, then the model without shortage is profitable. In this paper, we have taken life of the products is more than the length of replenishment cycle. Therefore, our paper is conclude that the model without shortage is more profitable than shortage.

6 Acknowledgment

The authors would like to convey their sincere thanks to the reviewer and editor.

References

- P. M. Ghare and G. H. Schrader, A model for exponentially decying inventory system, *International Journal* of *Production Research*, 21 (1963), 449-460.
- [2] R. P. Covert and G. C. Philip, An EOQ model for items with Weibull distribution deterioration, AIIE Transaction, 5 (4) (1973), 323-326.
- [3] P. R. Tadikamalla, An EOQ inventory model for items with Gamma distribution, *AIIE Transaction*, 10 (1978), 100-103.
- [4] Y. K. Shah, An Order level lot size inventory model for deteriorating items, *AIIE Transaction*, 9 (1977), 108-112.
- [5] R. M. Hill, Inventory model for increasing demand followed by level demand, *Journal of the Operational Research Society*, 46 (10) (1955), 1250-1259.
- [6] M. Hariga, Optimal EOQ models for deteriorating items with time varying demand, *Journal of Operational Research Society*, 47 (1996), 1228-1246.
- [7] B. Mandal and A. K. Pal, Order level inventory system with ramp type demand rate for detriorating items, *Journal of Interdisciplinary Mathematics*, 1 (1) (1998), 49-66.
- [8] J. W. Wu, C. Lin, B. Tan and W. C. Lee, An EOQ inventory model with ramp type demand rate for items with Weibull deterioration, *Information and Management Sciences*, 10(3) (1999), 41-51.
- [9] K. S. Wu and L. Y. Ouyang, A replenishment Policy for deteriorating items with ramp type demand rate, *Proceedings of National Science Council ROC (A)*, 24 (2000), 279-286.
- [10] K. S. Wu, A EOQ inventory model for items with Weibull distribution deterioration, ramp type demand rate and partial backlogging, *Production Planning and Control*, 12 (8) (2001), 787-793.
- [11] B. C. Giri, A. K. Jalan and K. S. Chaudhuri, Economic order quantity model will Weibull deterioration distribution, shortage and ramp type demand, *International Journal of Systems Science*, 34 (4) (2003), 237-243.
- [12] P. S. Deng, Improved inventory models with ramp type demand and Weibull deterioration, *Information and Management Sciences*, 16 (4) (2005), 79-85.
- [13] L. H. Chen, L. Y. Ouyang and J. J. Teng, On EOQ model with ramp type demand rate and time dependent deterioration rate, *International Journal of Information and Management Sciences*, 17 (4) (2006), 51-66.
- [14] S. K. Manna and K. S. Chaudhuri, An EOQ model with ramp type demand rate, time dependent detrioration rate, unit production cost and shortages, *European Journal of Operational Research*, 171 (2) (2006), 557-566.
- [15] P. S. Deng, H. J. Lin Robert and P. Chu, A note on the inventory models for deteriorating items with ramp type demand rate, *European Journal of Operational Research*, 178 (1) (2007), 112-120.
- [16] S. Panda, S. Senapati and M. Basu, Optimal replenishment policy for perishable seasonal products in a season with ramp type time dependent demand, *Coputers and Industrial Engineering*, 54 (2) (2008), 301-314.
- [17] K. S. Wu, L. Y. Ouyang and C. T. Yang, Retailer's optimal ordering policy for deteriorating items with ramp type demand under stock-dependent consumption rate, *Information and Management Sciences*, 19 (2) (2008), 245-262.
- [18] K. Skouri, I. Konstantaras, S. Papachristos and I. Ganas, Inventory models with ramp type demand rate, partial backlogging and Weibull deterioration rate, *European Journal of Operational Research*, 192 (1) (2009), 79-92.

- [19] S. Panda, S. Senapati and M. Basu, A single cycle perishable inventory model with time dependent quadratic ramp type demand and partial backlogging, *International Journal of Operational Research*, 5 (1) (2009), 110-129.
- [20] G. C. Mahanta and A. Goswami, A fuzzy replenishment policy for deteriorating items with ramp type demand rate under inflation *International Journal of Operational Research* 5(3) (2009), 328-348.
- [21] S. Panda and S. Saha, Optimal production rate and production stopping time for perishable seasonal products with ramp type time dependent demand, *International Journal of Mathematics in Operational Research*, 2 (6) (2010), 657-673.
- [22] T. Roy and K. Chaudhuri, A finite time horizon EOQ model with ramp type demand rate under inflation and time discounting, *International Journal of Operational Research*, 11 (1) (2011), 100-118.
- [23] S. Agarwal and S. Banarjee, Two warehouse inventory model with ramp type demand and partially backlogged shortages, *International Journal of Systems Science*, 42 (7) (2011), 1115-1126.
- [24] C. K. Tripathy and U. Mishra, An EOQ model with time dependent Weibull deterioration and ramp type demand, *International Journal of Industrial Engineering and Computation*, 2 (2011), 307-318.
- [25] S. K. Goyal, S. R. Singh and H. Dem, Production policy for ameliorating/deteriorating items with ramp type demand, *International Journal of Procurment Management* 6 (4) (2013), 444-465.
- [26] S. S. Sanni and W. I. E. Chukwa, An economic order quantity model for items with three parameter Weibull distribution deterioration, ramp type demand and shortages, *Applied Mathematical Modelling*, 37 (23) (2013), 9698-9706.
- [27] M. Cheng and G. Wang, A note on the inventory model for deteriorating items with trapezoidal type demand rate, *Computers & Industrial Engineering*, 56 (2009), 1296-1300.
- [28] M. Cheng, B. Zhang and G. Wang, Optimal policy for deteriorating items with trapezoidal type demand and partial backlogging, *Applied Mathematical Modelling*, 35 (7) (2011), 3552-3560.
- [29] S. Saha, S. Das and M. Basu, Optimal discount time for seasonal products with trapezoidal type price and time sensitive demand pattern, *International Journal of Management Science and Engineering Management*, 6 (1) (2011), 14-22.
- [30] K. J. Cheng, The correct process of arguments of the solution procedure on the inventory model for deteriorating items with trapezoidal type demand rate in supply chain management, *Applied Mathematics Letters*, 25 (11) (2012), 1901-1905.
- [31] R. Uthayakumar and M. Rameswari, An economic order quantity model for defective items with trapezoidal type demand rate, *Journal of Optim. Theor. Appl.* 154 (3) (2012), 1055-1079.
- [32] K. W. Chuang, C. N. Lin and C. H. Lan, Order policy analysis for deteriorating inventory model with trapezoidal type demand rate, *Journal of Networks*, 8 (8) (2013), 1838-1844.
- [33] T. Singh and H. Pattnayak, An EOQ model for deteriorating items with varying trapezoidal type demand rate and Weibull distribution deterioration, *Journal of Information and Optimization Sciences*, 34 (6) (2013), 341-360.
- [34] L. Zhao, An inventory model under trapezoidal type demand, Weibull distributed distributed distributed backlogging, *Journal of Applied Mathematics*, 2014, Article ID 747419, 10 pages.
- [35] J. Lin, K. C. Hung and P. Julian, Technical note on inventory model with trapezoidal type demand, Applied Mathematical Modelling, 38 (19-20) (2014), 4941-4948.
- [36] H. Dem, S. R. Singh and J. Kumar, An EOQ model with trapezoidal demand under volume flexibility, *International Journal of Industrial Engineering and Computations*, 5 (1) (2014), 127-138.
- [37] S. Debata, M. Acharya and G. C. Samanta, An inventory model for perishable items with quadratic trapezoidal type demand under partial backlogging, *International Journal of Industrial Engineering and Computation*. 6 (2) (2015), 185-198.

	14010 11 2	st of authors alose who have asea rankp type demand	
Authors	Objective	Contribution	Remarks
LI:11 (100E)	Finding	First time introduced	Constant
Fill (1995)	EOQ model	ramp type demand	holding cost
Mandal and	Finding	Deterministic and probabilistic demand are discussed	Constant
Pal (1998)	EOQ model	and validate their model with numerical techniques	holding cost
Wu et al.	Finding	Weibull distribution, numerical	Constant
(1999)	EOQ model	techniques, sensitivity analysis	holding cost
Wu and	Finding	Ramp type demand function,	Constant
Ouyang (2000)	EOQ model	shortages are allowed	holding cost
$W_{11}(2001)$	Finding	Weibull distribution deterioration, variable backlogging rate and	Constant
Wu (2001)	EOQ model	dependent on waiting time for the next replenishment.	holding cost
Giri et al.	Finding	Deterioration rate of items are follow Weibull distribution,	Constant
(2003)	EOQ model	shortages are allowed and fully backlogged	holding cost
Dong (2005)	Finding	Weibull distribution, sensitivity	Constant
Dellg (2003)	EOQ model	analysis and numerical techniques	holding cost
Chen et al.	Finding	Time dependent deterioration, shortages are allowed,	Constant
(2006)	EOQ model	sensitivity analysis and numerical examples.	holding cost
Manna and	Finding	Linear time dependent deterioration and numerical techniques	Constant
Chadhuri	FOO model	model with no shortage and with shortages are discussed	holding cost
(2006)	LOQ model	model with no shortage and with shortages are discussed	fiolding cost
Deng et al.	Finding	Point out some questionable results of Mandal and	Constant
(2007)	EOQ model	Pal (1998) and Wu and Ouyang (2000)	holding cost
Panda et al.	Finding	Constant deterioration,	Constnat
(2008)	EOQ model	shortages are not allowed	holding cost
Wu et al.	Finding	Model allows shortage, completely backlogged and constant	Constant
(2008)	EOQ model	deterioration	holding cost
Skouri et al.	Finding	Weibull distribution, partial backlogging, model	Constant
(2009)	EOQ model	starting with no shortages and with shortages	holding cost
Panda et al.	Finding	Uniqueness and existence of	Constnat
(2009)	EOQ model	the solution is established	holding cost
Mahata and	Finding	Fuzzy cost coefficients fuzzy replenishment fuzzy multi-objective	Constant
Goswami	FOO model	mathematical programming with the triangular fuzzy number	holding cost
(2009)		nationalical programming with the triangular razzy number	notanig cost
Panda and	Finding	Shortages are not allowed, uniform deterioration rate	Constant
Saha (2010)	EOQ model	and sensitivity analysis.	holding cost
Roy and	Finding	Shortages and without shortages are allowed numerical	Constnat
Choudhuri	FOO model	solutions provided finite time horizon	holding cost
(2011)	Lequidae	bolutono provideu, inne une nonzon	notaning cost
Agarwal and	Finding	Shortages are allowed and partially backlogged, an algorithm	Constant
Banerjee	EOO model	is developed	holding cost
(2011)			
Tripathy and	Finding	Weibull distribution,	Constant
Mishra (2011)	EOQ model	sensitivity analysis	holding cost
Goyal et al.	Finding	Genetic algorithm is implemented,	Constant
(2013)	EOQ model	finite time horizon	holding cost
Sanni and	Finding	Three parameter Weibull distribution, shortages are	Constant
Chukwa (2013)	EOQ model	allowed and complete backlog	holding cost

Authors	Objective	Contribution	Remarks
Cheng and Wang (2009)	Finding EOQ model	First time trapezoidal type demand introduced, shortages are allowed and completely backlogged	Constant holding cost, constant deterioration rate
Cheng et al. (2011)	Finding EOQ model	Trapezoidal type demand, shortages are allowed, partial backlogging	Constant holding cost
Saha et al.	Finding	Price discount mathematical	Constant
(2011)	EOQ model	modelling, numerical techniques	holding cost
Cheng (2012)	Finding EOQ model	Trapezoidal type demand supply chain management	Constant holding cost, constant deterioration rate
Uthayakumar and Rameswari (2012)	Finding EOQ model	Euler-Lagrang method used, shortages are not allowed	Constant holding cost, constant deterioration rate
Chuang et al. (2013)	Finding EOQ model	Trapezoidal type demand function, with and without shortage, partially backlogged	Constant holding cost, constant deterioration rate
Singh and Pattnayak (2013)	Finding EOQ model	Deterioration rate is Weibull distribution, trapezoidal type demand	Constant holding cost
Zhao (2014)	Finding EOQ model	Trapezoidal type demand, Weibull distribution deterioration rate, numerical techniques	Constant holding cost
Lin et al.	Finding	Deterioration and partial	Constant
(2014)	EOQ model	backlogging	holding cost
Dem et al. (2014)	Finding EOQ model	Trapezoidal type demand, numerical techniques	Constant holding cost, constant deterioration rate
Debata et al. (2015)	Finding EOQ model	Quadratic trapezoidal type demand, shortages are allowed	Constant holding cost, constant deterioration rate

Table 2: List of authors those who have used trapezoidal type demand

+50 3.27051 93750.20153 +25 3.25062 93043.01798 -25 3.25051 92097.52768 -50 3.20105 92001.00796 +50 3.20031 92508.01392 +25 3.05780 92001.79231 -25 3.00921 92001.00701 -50 2.97013 91909.27592 +50 3.25079 92707.09376 +25 3.20701 92011.2093 -25 3.10273 92013.87054 -25 3.10273 92013.87054 -25 3.10273 92015.0783 -25 3.10273 9203.07532 +25 3.00791 93005.73458 -25 3.19076 92805.70153 425 3.20175 92502.07352 -50 3.10250 92805.70153 425 3.20175 92502.07352 -50 3.22077 92401.03731 425 3.20175 92502.07552 -50 3.22057 9107.	Parameter	Change(%)	t_1^*	$C_1(t_1^*)$
μ +25 3.25062 93043.01798 -25 3.25051 92097.52768 -50 3.20105 92001.00796 +50 3.20031 92508.01392 +25 3.05780 92001.07231 -25 3.00921 92001.00701 -50 2.97013 91909.27592 +50 3.25079 92707.09376 +25 3.20701 92701.12093 -25 3.10273 92013.87054 -25 3.10273 92013.87054 -25 3.10273 92013.87054 -25 3.10273 92013.87054 -25 3.10273 92013.87054 -25 3.10273 92013.87054 -25 3.00791 93005.73458 -25 3.10520 92805.70153 +25 3.01520 92805.70153 +25 3.20075 92502.07352 -50 3.22077 92401.03731 +50 3.00253 93517.05943 -25 3.20173<		+50	3.27051	93750.20153
α -25 3.25051 92097.52768 -50 3.20105 92001.00796 +50 3.20031 92508.01392 +25 3.05780 92001.079231 -25 3.00921 92001.00701 -50 2.97013 91909.27592 +55 3.2079 92707.09376 +25 3.2071 92701.12093 h -25 3.19230 92435.01783 -50 3.19230 92435.01783 -50 3.10273 92013.87054 +25 3.00791 93005.73458 -21 +25 3.00791 93005.73458 -25 3.19270 92805.70153 +25 3.00751 92592.07352 -50 3.2071 92401.03731 +25 3.2013 92510.15304 -25 3.2017 92401.03731 +25 3.2075 91907.25079 -50 3.22077 9107.25079 -50 3.20148 92050.00195		+25	3.25062	93043.01798
-50 3.20105 92001.00796 +50 3.20031 92508.01392 +25 3.05780 92001.79231 -25 3.00921 92001.00701 -50 2.97013 91909.27592 +50 3.25079 92707.09376 +25 3.20701 92701.12093 -25 3.19230 92435.01783 -50 3.10273 92013.87054 -25 3.19230 92435.01783 -50 3.10273 92013.87054 -50 3.10273 92013.87054 -50 3.10273 92013.87054 -25 3.15240 92739.0157 -50 3.19076 92543.07532 +50 3.10520 92805.70153 +25 3.2071 92401.03731 +25 3.2075 92502.07352 -50 3.202075 92502.07352 -50 3.20175 92759.13709 -25 3.20175 92759.13709 -25 3.20173 9475	α	-25	3.25051	92097.52768
β +50 3.20031 92508.01392 +25 3.05780 92001.79231 -25 3.00921 92001.00701 -50 2.97013 91909.27592 A 50 3.25079 92707.09376 +25 3.20701 92701.12093 -25 -25 3.19230 92435.01783 -50 -50 3.10273 92013.87054 +25 3.00791 93005.73458 -50 3.19076 92543.07532 +50 3.10520 92805.70153 +25 3.20071 92401.03731 -25 3.2075 92502.07352 -50 3.10520 92805.70153 4 +25 3.2017 92401.03731 -25 3.20207 92502.07352 -50 -50 3.20257 91907.25079 -25 3.20148 92050.00195 -50 3.22057 91907.25079 -25 2.81346 93079.17254 -50 3.84		-50	3.20105	92001.00796
β +25 3.05780 92001.79231 -25 3.00921 92001.00701 -50 2.97013 91909.27592 -450 3.25079 92707.09376 +25 3.20701 92701.12093 -25 3.19230 92435.01783 -50 3.10273 92013.87054 +25 3.00791 93005.73458 -50 3.19076 92543.07532 +25 3.00791 93005.73458 -25 3.19076 92543.07532 -50 3.19076 92543.07532 -50 3.10520 92805.70153 +25 3.2017 92401.03731 +25 3.2017 92401.03731 -25 3.2017 92401.03731 -50 3.20271 92401.03731 +25 3.20178 92750.0356 -50 3.20277 92791.0536 +25 3.20148 92050.00195 -50 3.2057 91907.25079 +50 2.50713		+50	3.20031	92508.01392
β -25 3.0921 92001.00701 -50 2.97013 91909.27592 +50 3.25079 92707.09376 +25 3.20701 92701.12093 -25 3.19230 92435.01783 -50 3.10273 92013.87054 +25 3.00791 93005.73458 -25 3.15240 92739.00157 -50 3.19076 92543.07532 -25 3.20751 9201.03731 -25 3.2013 92510.15304 -25 3.2017 92401.03731 +25 3.2017 92401.03731 -25 3.2017 92401.03731 -25 3.2017 92401.03731 -25 3.2017 92401.03731 -25 3.2017 92401.03731 -25 3.2017 92401.03731 -25 3.20178 92550.07153 -25 3.20173 94725.01536 +25 2.81346 93079.17254 -25 3.70193	2	+25	3.05780	92001.79231
-50 2.97013 91909.27592 +50 3.25079 92707.09376 +25 3.20701 92701.12093 -25 3.19230 92435.01783 -50 3.10273 92013.87054 +25 3.00791 93005.73458 -25 3.15240 92739.00157 -50 3.19076 92543.07532 -25 3.20751 92502.07352 -50 3.2071 92401.03731 +25 3.2013 92510.15304 -25 3.2075 92502.07352 -50 3.22071 92401.03731 +25 3.20175 92759.13709 -25 3.20175 92759.13709 -25 3.20178 92050.0195 -50 3.22057 91907.25079 -25 3.20148 92050.0195 -50 3.22057 91907.25079 -50 3.22057 91907.25079 -25 3.7013 90137.02549 -50 3.84076 90731.027	β	-25	3.00921	92001.00701
h +50 3.25079 92707.09376 +25 3.20701 92701.12093 -25 3.19230 92435.01783 -50 3.10273 92013.87054 +50 2.97301 93079.01253 +25 3.00791 93005.73458 -25 3.15240 92739.00157 -50 3.19076 92543.07532 +50 3.10520 92805.70153 +25 3.2075 92502.07352 -50 3.20275 92502.07352 -50 3.20275 92502.07352 -50 3.20275 92502.07352 -50 3.20275 92502.07352 -50 3.20275 9250.00195 -50 3.20275 9107.25079 +25 3.20175 92759.13709 -25 3.20173 94053.01732 +50 2.50713 94725.01536 +25 3.81076 90731.02716 -50 3.84076 90731.02716 -50 3.8162		-50	2.97013	91909.27592
h +25 3.20701 92701.12093 -25 3.19230 92435.01783 -50 3.10273 92013.87054 +50 2.97301 93079.01253 +25 3.00791 93005.73458 -25 3.15240 92739.00157 -50 3.19076 92543.07532 +50 3.10520 92805.70153 +25 3.2075 92502.07352 -50 3.22075 92502.07352 -50 3.22071 92401.03731 -25 3.20175 9259.13709 -25 3.20175 9259.13709 -25 3.20175 9259.13709 -25 3.20175 92759.13709 -25 3.20175 9107.25079 -50 3.20257 91007.25079 -50 3.20257 91097.25079 -50 3.20173 94053.01732 +50 3.50126 92750.30457 -25 2.80163 9003.01732 +25 3.07523		+50	3.25079	92707.09376
h -25 3.19230 92435.01783 -50 3.10273 92013.87054 +50 2.97301 93079.01253 +25 3.00791 93005.73458 -25 3.15240 92739.00157 -50 3.19076 92543.07532 -50 3.10520 92805.70153 25 3.20513 92510.15304 -25 3.20075 92502.07352 -50 3.22077 92401.03731 -25 3.20178 92502.07352 -50 3.22077 92401.03731 +25 3.21075 92759.13709 -25 3.20148 92050.00195 -50 3.22057 91907.25079 +25 3.8146 93079.17254 -25 3.20148 92050.00195 -50 3.84076 90731.02716 +25 2.81346 93079.17254 -25 3.20173 94053.01732 +25 3.80173 94053.01732 +25 3.20157 <td>-</td> <td>+25</td> <td>3.20701</td> <td>92701.12093</td>	-	+25	3.20701	92701.12093
-50 3.10273 92013.87054 +50 2.97301 93079.01253 +25 3.00791 93005.73458 -25 3.15240 92739.00157 -50 3.19076 92543.07532 +50 3.0520 92805.70153 25 3.20513 92510.15304 -25 3.22075 92502.07352 -50 3.22077 92401.03731 -25 3.20175 92759.13709 -50 3.20277 92401.03731 -50 3.20277 92401.03731 +50 3.00253 93517.05943 +25 3.20178 92750.30735 -25 3.20148 92050.00195 -50 3.22057 91907.25079 +50 2.50713 94725.01536 #25 2.81346 93079.17254 -25 3.70193 90137.02549 -50 3.84076 90731.02716 +25 3.8167 94053.01732 +25 3.20157 9210.0	h	-25	3.19230	92435.01783
+50 2.97301 93079.01253 +25 3.00791 93005.73458 -25 3.15240 92739.00157 -50 3.19076 92543.07532 -50 3.19076 92543.07532 -25 3.20513 92510.15304 -25 3.2075 92502.07352 -50 3.22077 92401.03731 -25 3.21075 92759.13709 -50 3.22077 92500.0195 -50 3.22057 91907.25079 -25 3.20173 94725.01536 +25 3.20173 94725.01536 -25 3.20173 94725.01536 -25 3.20173 94053.01732 -50 3.84076 90731.02716 +25 3.8162 92750.30457 -25 3.70193 90137.02549 -50 3.84076 90731.02716 +50 3.80173 94053.01732 +25 3.35162 92750.30457 -25 2.90125 92080.		-50	3.10273	92013.87054
c_1 +25 3.00791 93005.73458 -25 3.15240 92739.00157 -50 3.19076 92543.07532 $+50$ 3.10520 92805.70153 $+25$ 3.20513 92510.15304 -25 3.22075 92502.07352 -50 3.22071 92401.03731 -25 3.20175 92759.13709 -50 3.22077 91907.25079 -25 3.20178 92050.00195 -50 3.22057 91907.25079 -25 3.20148 92050.00195 -50 3.22057 91907.25079 -25 3.20173 94725.01536 $+25$ 3.80173 94053.01732 425 2.81346 93079.17254 a_1 -25 2.90125 92080.17062 -50 2.80157 91652.90173 a_2 -25 2.90125 9203.00171 b_1 +25 2.90536 92275.36072 b_2 -		+50	2.97301	93079.01253
c1 -25 3.15240 92739.00157 -50 3.19076 92543.07532 -50 3.10520 92805.70153 1 +25 3.20513 92510.15304 -25 3.22075 92502.07352 -50 3.22071 92401.03731 -25 3.20175 92759.13709 -50 3.22077 92401.03731 -25 3.21075 92759.13709 -25 3.20148 92050.00195 -50 3.22057 91907.25079 -50 3.22057 91907.25079 -50 3.20513 94725.01536 +25 2.81346 93079.17254 -25 3.70193 90137.02549 -50 3.84076 90731.02716 +25 2.80157 91652.90173 42 -25 2.90125 92080.17062 -50 2.80157 91652.90173 42 -25 2.90536 92275.36072 -25 2.81603 92032.07480		+25	3.00791	93005.73458
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	c_1	-25	3.15240	92739.00157
L +50 3.10520 92805.70153 +25 3.20513 92510.15304 -25 -25 3.22075 92502.07352 -50 -50 3.22071 92401.03731 -25 -25 3.20575 92502.07352 -50 -50 3.22071 92401.03731 -25 -25 3.20148 92050.00195 -50 -50 3.22057 91907.25079 -25 3.20148 92050.00195 -50 3.22057 91907.25079 +50 2.50713 94725.01536 +25 2.81346 93079.17254 -25 3.70193 90137.02549 -50 3.84076 90731.02716 #25 3.35162 92750.30457 -25 2.90125 92080.17062 -50 2.80157 91652.90173 #25 3.07523 92503.00171 #25 2.90536 92275.36072 -25 2.81603 92032.07480 <t< td=""><td></td><td>-50</td><td>3.19076</td><td>92543.07532</td></t<>		-50	3.19076	92543.07532
$\begin{array}{cccccc} & & & & & & & & & & & & & & & & $		+50	3.10520	92805.70153
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		+25	3.20513	92510.15304
$a_{1} = \frac{-50}{3.22071} = 92401.03731$ $-50 = 3.22071 = 92401.03731$ $+50 = 3.00253 = 93517.05943$ $+25 = 3.21075 = 92759.13709$ $-25 = 3.20148 = 92050.00195$ $-50 = 3.22057 = 91907.25079$ $+50 = 2.50713 = 94725.01536$ $+25 = 2.81346 = 93079.17254$ $-25 = 3.70193 = 90137.02549$ $-50 = 3.84076 = 90731.02716$ $+50 = 3.84076 = 90731.02716$ $-50 = 2.80157 = 91652.90173$ $+25 = 3.35162 = 92750.30457$ $-25 = 2.90125 = 92080.17062$ $-50 = 2.80157 = 91652.90173$ $+50 = 3.07523 = 92503.00171$ $+25 = 2.90536 = 92275.36072$ $-25 = 2.81603 = 92032.07480$ $-50 =$ $+50 = 3.07523 = 92901.05736$ $+25 = 3.01257 = 92712.63527$ $-25 = 3.30764 = 92204.72065$ $-50 = 3.51480 = 92201.30531$ $+50 = 3.22053 = 92545.30512$ $+25 = 3.21001 = 92544.30125$ $-25 = 3.20732 = 92498.07326$ $-50 = 3.01560 = 92440.69075$ $+25 = 3.60523 = 91705.86301$ $R = \frac{+25 = 3.46798 = 92052.01983}{-25 = 2.90763 = 94925.01267}$	L	-25	3.22075	92502.07352
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-50	3.22071	92401.03731
$\begin{array}{ccccc} & +25 & 3.21075 & 92759.13709 \\ -25 & 3.20148 & 92050.00195 \\ -50 & 3.22057 & 91907.25079 \\ +50 & 2.50713 & 94725.01536 \\ +25 & 2.81346 & 93079.17254 \\ -25 & 3.70193 & 90137.02549 \\ -50 & 3.84076 & 90731.02716 \\ \\ & & & & & & & & & & & & & & & & & $		+50	3 00253	93517 05943
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		+25	3 21075	92759 13709
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-25	3 20148	92050 00195
		-50	3 22057	91907 25079
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		+50	2 50713	94725.01536
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		+25	2.807.10	93079 17254
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a_1	-25	3 70193	90137 02549
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-50	3 84076	90731 02716
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		+50	3 80173	94053 01732
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		+25	3 35162	92750 30457
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>a</i> ₂	-25	2 90125	92080 17062
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-50	2.90120	91652 90173
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		+50	3.07523	92503.00171
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		+25	2 90536	92275 36072
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b_1	-25	2.90000	92032 07480
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-50		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		+50	2 70532	92901 05736
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		+25	3 01257	92712 63527
$A = \begin{bmatrix} -50 & 3.51480 & 92201.30531 \\ +50 & 3.22053 & 92545.30512 \\ +25 & 3.21001 & 92544.30125 \\ -25 & 3.20732 & 92498.07326 \\ -50 & 3.01560 & 92440.69075 \\ +50 & 3.60523 & 91705.86301 \\ +25 & 3.46798 & 92052.01983 \\ -25 & 2.90763 & 94925.01267 \\ -50 & 2 53075 & 97098 92576 \end{bmatrix}$	b_2	-25	3.30764	92204,72065
$A \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-50	3.51480	92201.30531
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		+50	3 22053	92545 30512
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		+25	3 21001	92544 30125
R +25 2.90762 92440.69075 +50 3.60523 91705.86301 +25 3.46798 92052.01983 -25 2.90763 94925.01267 -50 2.53075 97098 92576	Α	-25	3 20732	92498 07326
$R \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-50	3 01560	92440 69075
$R \qquad \begin{array}{c} +25 \\ -25 \\ -50 \end{array} = \begin{array}{c} 3.46798 \\ -25 \\ 2.90763 \\ 94925.01267 \\ -50 \\ -50 \end{array}$		+50	3 60523	91705 86301
R -25 2.90763 94925.01267 -50 2.53075 97098 92576		+25	3 46798	92052 01983
-50 2 530755 97098 92576	R	-25	2 90762	94925 01267
		-20	2.50705	97098 92576

Table 3: Sensitivity analysis with respect to the different parameters of the EOQ model for Case-I

Parameter	Change(%)	t_1^*	$C_2(t_1^*)$
	+50	4.70127	62015.02357
	+25	4.81013	61973.16743
α	-25	4.90072	61862.05732
	-50	4.99053	61802.50643
	+50	4.95073	61989.20579
0	+25	4.90879	61907.57832
β	-25	4.90705	61896.42793
	-50	4.89235	61850.06925
	+50	4.91205	61975.05769
1.	+25	4.90753	61960.17368
п	-25	4.90601	61890.25376
	-50	4.90076	61875.03425
	+50	4.98075	62901.75321
	+25	4.94362	61957.01893
c_1	-25	4.90201	61032.70685
	-50	4.87057	61015.81342
	+50	5.01379	63079.16983
T	+25	4.90739	62582.75032
L	-25	4.89074	61037.06517
	-50	4.80153	60979.35792
	+50	5.10572	62932.05132
C	+25	4.98374	61875.23691
ι	-25	4.90725	61013.71528
	-50	4.70792	60978.06493
	+50	4.96053	61890.05271
<i>a</i> .	+25	4.94712	61867.79825
и	-25	4.90358	61805.08543
	-50	4.89532	61801.73105
	+50	4.98053	62904.50732
<i>n</i> o	+25	4.80148	61852.73201
uz	-25	4.67592	61801.05937
	-50	5.60985	61790.75301
	+50	4.95780	61980.25710
h_1	+25	4.92045	61875.05923
•1	-25	4.90752	61701.17682
	-50	4.89271	61692.87052
	+50	4.97530	61979.01532
ba	+25	4.93125	61900.33251
02	-25	4.90048	61897.01572
	-50	4.90101	61865.79858
	+50	4.95667	61954.85791
Α	+25	4.93514	61901.03725
	-25	4.80532	61895.17523
	-50	4.80254	61890.53201
	+50	5.07521	60073.00125
R	+25	4.99079	62573.27918
	-25	4.30253	65379.82460
	-50	3.90792	69024.31026

Table 4: Sensitivity analysis with respect to the different parameters of the EOQ model for Case-II

Parameter	Change(%)	t_1^*	$C_3(t_1^*)$
	+50	8.70531	12251.07963
	+25	8.31982	11083.70342
α	-25	7.90871	10735.04251
	-50	7.89253	10071.96521
	+50	8.40215	13781.07193
0	+25	8.17082	11057.80134
β	-25	7.95026	10042.71692
	-50	7.90631	9075.06741
	+50	8.50921	12705.31206
1.	+25	8.19052	12069.61283
n	-25	8.01304	10317.00791
	-50	7.97302	9419.10742
	+50	8.60931	13924.80349
	+25	8.26310	11739.15723
c_1	-25	8.01972	10705.90618
	-50	7.96052	9107.69042
	+50	8.20981	15921.09275
т	+25	8.19804	12074.83210
L	-25	8.00541	10182.98024
	-50	7.89071	9471.07315
	+50	8.30781	18076.42197
_	+25	8.09561	14071.00814
С	-25	7.94861	11806.70581
	-50	7.90671	10174.60832
	+50	8.10893	11075.91372
-	+25	8.07052	11026.11732
u_1	-25	8.01246	10642.90742
	-50	8.01004	10173.63410
	+50	8.19672	10798.38013
2	+25	8.10729	10201.07300
<i>u</i> ₂	-25	8.01492	9842.09215
	-50	8.00710	9062.00921
	+50	8.20573	12801.13780
h	+25	8.07819	12017.49001
v_1	-25	8.04162	10038.29410
	-50	7.96502	9056.19042
	+50	8.19063	10961.80562
Ъ	+25	8.05721	10208.83041
b_2	-25	8.00300	9072.90521
	-50	7.98402	9004.00461
	+50	8.20963	13042.07521
Λ	+25	8.07491	11562.06531
А	-25	8.01962	10281.64081
	-50	7.92081	8042.90513
R	+50	9.04810	19302.98032
	+25	8.70831	10571.64812
	-25	8.08941	10049.64192
	-50	7.49802	9834.94210

Table 5: Sensitivity analysis with respect to the different parameters of the EOQ model for Case-III

Received: October 29, 2015; Accepted: January 17, 2016

UNIVERSITY PRESS

Website: http://www.malayajournal.org/