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1 Introduction

In this paper we prove existence and approximations of the solutions for initial value problems of nonlin-
ear hybrid fractional differential equations. Consider the following initial value problem of fractional differ-
ential equations, 

cDα

(
x(t)− Iβh(t, x(t))

f (t, x(t))

)
= g(t, x(t)), t ∈ J := [0, T],

x(0) = 0,

(1.1)

where cDα denotes the Caputo fractional derivative of order α, 0 < α < 1, Iβ is the Riemann-Liouville frac-
tional integral of order β, and f : J ×R→ R \ {0}, g, h : J ×R→ R are given continuous functions.

Fractional differential equations have aroused great interest, which is caused by both the intensive de-
velopment of the theory of fractional calculus and the applications of physics, mechanics and chemistry engi-
neering [22, 23]. For some recent development on the topic see [1–9] and the references cited therein. For some
recent results on hybrid fractional differential equations we refer to [7], [10], [20], [24], [25] and the references
cited therein.

The origin of the problem (1.1) lies in the initial value problems of first order quadratic differential equa-
tions with ordinary derivative wherein only existence of the solutions is proved using classical hybrid fixed
point theorem of Dhage [11]. The problem (1.1) considered here is general in the sense that it includes the
following three well-known classes of initial value problems of fractional differential equations.

Case I: Let f (t, x) = 1 and h(t, x) = 0 for all t ∈ J and x ∈ R. Then the problem (1.1) reduces to standard
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initial value problem of fractional differential equation
cDαx(t) = g(t, x(t)), t ∈ J := [0, T],

x(0) = 0.
(1.2)

Case II: If h(t, x) = 0 for all t ∈ J and x ∈ R in (1.1), we obtain the following quadratic fractional
differential equation, 

cDα

(
x(t)

f (t, x(t))

)
= g(t, x(t)), t ∈ J := [0, T],

x(0) = 0.

(1.3)

Case III: If f (t, x) = 1 for all t ∈ J and x ∈ R in (1.1), we obtain the following interesting fractional
differential equation, 

cDα
[
x(t)− Iβh(t, x(t))

]
= g(t, x(t)), t ∈ J := [0, T],

x(0) = 0.
(1.4)

Therefore, the main result of this paper also includes the existence as well as approximations of solutions
of above mentioned initial value problems of fractional differential equations as special cases. Again our
approach here in this paper is different than that employed in the related paper of Dhage [11].

In the present paper we prove the existence and approximations of the solutions of problem (1.1) under
weaker partially compactness and partially Lipschitz type conditions via Dhage’s iteration method [14]. Very
recently, Dhage’s iteration method has been applied in [14-16, 18,19] to nonlinear ordinary differential equa-
tions for proving the existence and algorithms of the solutions.

We recall the basic definitions of fractional calculus [22, 23] which are useful in what follows.

Definition 1.1. The fractional integral of order q with the lower limit zero for a function f is defined as

Iq f (t) =
1

Γ(q)

∫ t

0

f (s)
(t− s)1−q ds, t > 0, q > 0,

provided the right hand-side is point-wise defined on [0, ∞), where Γ(·) is the gamma function, which is defined by
Γ(q) =

∫ ∞
0 tq−1e−tdt.

Definition 1.2. The Riemann-Liouville fractional derivative of order q > 0, n− 1 < q < n, n ∈N, is defined as

Dq
0+ f (t) =

1
Γ(n− q)

(
d
dt

)n ∫ t

0
(t− s)n−q−1 f (s)ds,

where the function f (t) has absolutely continuous derivative up to order (n− 1).

Definition 1.3. The Caputo derivative of order q for a function f : [0, ∞)→ R can be written as

cDq f (t) = Dq

(
f (t)−

n−1

∑
k=0

tk

k!
f (k)(0)

)
, t > 0, n− 1 < q < n.

Remark 1.1. If f (t) ∈ Cn[0, ∞), then

cDq f (t) =
1

Γ(n− q)

∫ t

0

f (n)(s)
(t− s)q+1−n ds = In−q f (n)(t), t > 0, n− 1 < q < n.

Lemma 1.1. For q > 0, the general solution of the fractional differential equation cDqx(t) = 0 is given by

x(t) = c0 + c1t + . . . + cn−1tn−1,

where ci ∈ R, i = 1, 2, . . . , n− 1 (n = [q] + 1).
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In view of Lemma 1.1, it follows that

Iq cDqx(t) = x(t) + c0 + c1t + . . . + cn−1tn−1, (1.5)

for some ci ∈ R, i = 1, 2, . . . , n− 1 (n = [q] + 1).

The rest of the paper will be organized as follows. In Section 2 we give some preliminaries and key fixed
point theorems that will be used in subsequent part of the paper. In Section 3 we discuss the main existence
and approximation result for initial value problems of fractional differential equations (1.1). An illustrative
example is also discussed.

2 Auxiliary Results

Unless otherwise mentioned, throughout this paper we let E denote a partially ordered real normed linear
space with the order relation � and the norm ‖ · ‖ in which addition and scalar multiplication by positive real
numbers are preserved by �. A few details on such partially ordered normed linear spaces appear in Dhage
[12] and the references therein.

Two elements x and y in E are said to be comparable if either the relation x � or y � x holds. A non-
empty subset C of E is called a chain or totally ordered if all elements of C are comparable. We say that E is
regular if for any nondecreasing (resp. nonincreasing) sequence {xn} in E such that xn → x∗ as n → ∞, we
have that xn � x∗ (resp. xn � x∗) for all n ∈ N. Conditions guaranteeing the regularity of E may be found in
Heikkilä and Lakshmikantham [21] and the references therein.

We need the following definitions in the sequel.

Definition 2.4. A mapping B : E → E is called isotone or nondecreasing if it preserves the order relation �, that
is, if x � y implies Bx � By for all x, y ∈ E.

Definition 2.5 (Dhage [12]). A mapping B : E → E is called partially continuous at a point a ∈ E if for ε > 0
there exists a δ > 0 such that ‖Bx − Ba‖ < ε whenever x is comparable to a and ‖x − a‖ < δ. B called a partially
continuous on E if it is partially continuous at every point of it. It is clear that if B is a partially continuous on E, then
it is continuous on every chain C contained in E.

Definition 2.6. A non-empty subset S of the partially ordered Banach space E is called partially bounded if every chain
C in S is bounded. A mapping B : E→ E is called partially bounded if B(C) is bounded for every chain C in E. B is
called uniformly partially bounded if all chains B(C) in E are bounded by a unique constant. B is called bounded
if B(E) is a bounded subset of E.

Definition 2.7. A non-empty subset S of the partially ordered Banach space E is called partially compact if every chain
C in S is compact. A mapping B : E → E is called partially compact if B(C) is a relatively compact subset of E for
all totally ordered sets or chains C in E. B is called uniformly partially compact if B(C) is a uniformly partially
bounded and partially compact on E. B is called partially totally bounded if for any totally ordered and bounded
subset C of E, B(C) is a relatively compact subset of E. If B is partially continuous and partially totally bounded, then
it is called partially completely continuous on E.

Definition 2.8 (Dhage [12]). The order relation � and the metric d on a non-empty set E are said to be compatible if
{xn}n∈N is a monotone, that is, monotone nondecreasing or monotone nonincreasing sequence in E and if a subsequence
{xnk}n∈N of {xn}n∈N converges to x∗ implies that the whole sequence {xn}n∈N converges to x∗. Similarly, given a
partially ordered normed linear space (E,�, ‖ · ‖), the order relation � and the norm ‖ · ‖ are said to be compatible if �
and the metric d defined through the norm ‖ · ‖ are compatible. A subset S of E is called Janhavi if the order relation
� and the metric d or the norm ‖ · ‖ are compatible in it. In particular, if S = E, then E is called a Janhavi metric or
Janhavi Banach space.

Clearly, the set R of real numbers with usual order relation ≤ and the norm defined by the absolute value
function | · | has this property. Similarly, the finite dimensional Euclidean space Rn with usual componentwise
order relation and the standard norm possesses the compatibility property.
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Definition 2.9 (Dhage [12]). A upper semi-continuous and nondecreasing function ψ : R+ → R+ is called a D-
function provided ψ(0) = 0. Let (E,�, ‖ · ‖) be a partially ordered normed linear space. A mapping T : E → E is
called partially nonlinear D-Lipschitz if there exists a D-function ψ : R+ → R+ such that

‖T x− T y‖ ≤ ψ(‖x− y‖) (2.6)

for all comparable elements x, y ∈ E. If ψ(r) = k r, k > 0, then T is called a partially Lipschitz with a Lipschitz
constant k. Furthermore, if ψ(r) < r, r > 0, T is called a partially nonlinear D-contraction on E.

Let (E,�, ‖ · ‖) be a partially ordered normed linear algebra. Denote

E+ =
{

x ∈ E | x � θ, where θ is the zero element of E
}

and
K = {E+ ⊂ E | uv ∈ E+ for all u, v ∈ E+}. (2.7)

The elements of the set K are called the positive vectors in E. Then following lemma is immediate.

Lemma 2.2 (Dhage [12]). If u1, u2, v1, v2 ∈ K are such that u1 � v1 and u2 � v2, then u1u2 � v1v2.

Definition 2.10. An operator B : E→ E is said to be positive if the range R(B) of B is such that R (B) ⊆ K.

The Dhage iteration method is embodied in the following hybrid fixed point theorem proved in Dhage
[13] which are useful tools in what follows. A few other such hybrid fixed point theorems appear in Dhage
[12, 13].

Theorem 2.1 (Dhage [14]). Let
(
E,�, ‖ · ‖

)
be a regular partially ordered complete normed linear algebra such that

the order relation � and the norm ‖ · ‖ in E are compatible in every compact chain C of E. Let A,B : E → K and
C : E→ E be three nondecreasing operators such that

(a) A and C are partially bounded and partially nonlinear D-Lipschitz with D-functions ψA and ψC respectively.

(b) B is partially continuous and uniformly partially compact,

(c) MψA(r) + ψC(r) < r, r > 0, where M = sup{‖B(C)‖ : C is a chain inE}, and

(d) there exists an element x0 ∈ E such that x0 � Ax0Bx0 + Cx0 or
x0 � Ax0 Bx0 + Cx0.

Then the operator equation AxBx + Cx = x has a solution x∗ in E and the sequence {xn} of successive iterations
defined by xn+1 = AxnBxn + Cxn, n = 0, 1, . . . converges monotonically to x∗.

Remark 2.2. The compatibility of the order relation � and the norm ‖ · ‖ in every compact chain of E is held
if every partially compact subset S of E possesses the compatibility property with respect to � and ‖ · ‖. This
simple fact is used to prove the desired characterization of the positive solution of the problem (1.1) on J.

3 Main Existence Result

The equivalent integral form of the problem (1.1) is considered in the function space C(J, R) of continuous
real-valued functions defined on J. We define a norm ‖ · ‖ and the order relation ≤ in C(J, R) by

‖x‖ = sup
t∈J
|x(t)| (3.8)

and
x ≤ y ⇐⇒ x(t) ≤ y(t) (3.9)

for all t ∈ J. Clearly, C(J, R) is a Banach space with respect to above supremum norm and also partially
ordered w.r.t. the above partially order relation ≤. It is known that the partially ordered Banach space C(J, R)

is regular and a lattice so that every pair of elements of E has a lower and an upper bound in it. It is known
that the partially ordered Banach space C(J, R) has some nice properties w.r.t. the above order relation in it.
The following lemma follows by an application of Arzellá-Ascoli theorem.
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Lemma 3.3. Let
(
C(J, R),≤, ‖ · ‖

)
be a partially ordered Banach space with the norm ‖ · ‖ and the order relation ≤

defined by (3.8) and (3.9) respectively. Then ‖ · ‖ and ≤ are compatible in every partially compact subset of C(J, R).

Proof. The proof of the lemma is given in Dhage and Dhage [? ]. Since the proof is not well-known, we give the
details of proof. Let S be a partially compact subset of C(J, R) and let {xn}n∈N be a monotone nondecreasing
sequence of points in S. Then we have

x1(t) ≤ x2(t) ≤ · · · ≤ xn(t) ≤ · · · ,

for each t ∈ J.

Suppose that a subsequence {xnk}k∈N of {xn}n∈N is convergent and converges to a point x in S. Then the
subsequence {xnk (t)}k∈N of the monotone real sequence {xn(t)}n∈N is convergent. By monotone characteri-
zation, the whole sequence {xn(t)}n∈N is convergent and converges to a point x(t) in R for each t ∈ J. This
shows that the sequence {xn}n∈N converges to x point-wise in S. To show the convergence is uniform, it is
enough to show that the sequence {xn(t)}n∈N is equicontinuous. Since S is partially compact, every chain
or totally ordered set and consequently {xn}n∈N is an equicontinuous sequence by Arzelá-Ascoli theorem.
Hence {xn}n∈N is convergent and converges uniformly to x. As a result, ‖ · ‖ and ≤ are compatible in S. This
completes the proof.

We need the following definition in what follows.

Definition 3.11. A function u ∈ C1(J, R) is said to be a lower solution of the problem (1.1) if

cDα

(
u(t)− Iβh(t, u(t))

f (t, u(t))

)
≤ g(t, u(t)), t ∈ J,

u(0) ≤ 0.

 (∗)

Similarly, an upper solution v ∈ C1(J, R) to the problem (1.1) is defined on J, by the above inequalities with reverse
sign.

We consider the following set of assumptions in what follows:

(A1) There exists a constant M f > 0 such that 0 < f (t, x) ≤ M f for all t ∈ J and x ∈ R.

(A2) There exists a D-function φ such that

0 ≤ f (t, x)− f (t, y) ≤ φ(x− y)

for all t ∈ J and x, y ∈ R, x ≥ y.

(A3) There exists a constant Mh > 0 such that 0 ≤ h(t, x) ≤ Mh for all t ∈ J and x ∈ R.

(A4) There exists a D-function ω such that

0 ≤ h(t, x)− h(t, y) ≤ ω(x− y)

for all t ∈ J and x, y ∈ R, x ≥ y.

(A5) The function g(t, x) is monotone nondecreasing in x for each t ∈ J.

(A6) There exists a constant Mg > 0 such that 0 < g(t, x) ≤ Mg for all t ∈ J and x ∈ R.

(A7) The problem (1.1) has a lower solution u ∈ C1(J, R).

The following lemma is useful in what follows and may be found in Kilbas et.al. [22] and Podlubny [23].

Lemma 3.4. Suppose that 0 < α < 1 and functions f , g, h satisfy problem (1.1). Then the unique solution of the hybrid
fractional integro-differential problem (1.1) is given by

x(t) =
∫ t

0

(t− s)β−1

Γ(β)
h(s, x(s))ds + f (t, x(t))

∫ t

0

(t− s)α−1

Γ(α)
g(s, x(s))ds, t ∈ J. (3.10)
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Proof. By Lemma 1.1 we have

x(t)− Iβh(t, x(t))
f (t, x(t))

=
∫ t

0

(t− s)α−1

Γ(α)
g(s, x(s))ds + c0,

where c0 ∈ R. Since x(0) = 0, f (0, 0) 6= 0, it follows c0 = 0. Thus (3.10) holds. This completes the proof.

Theorem 3.2. Assume that the hypotheses (A1)-(A7) hold. If

Mg
Tα

Γ(α + 1)
φ(r) +

Tβ

Γ(β + 1)
ω(r) < r,

then the problem (1.1) has a solution x∗ defined on J and the sequence {xn}∞
n=1 of successive approximations defined by

xn+1(t) =
∫ t

0

(t− s)β−1

Γ(β)
h(s, xn(s))ds + f (t, xn(t))

∫ t

0

(t− s)α−1

Γ(α)
g(s, xn(s))ds, (3.11)

for all t ∈ R, where x1 = u, converges monotonically to x∗.

Proof. By Lemma 3.4, the problem (1.1) is equivalent to the nonlinear integral equation

x(t) =
∫ t

0

(t− s)β−1

Γ(β)
h(s, x(s))ds + f (t, x(t))

∫ t

0

(t− s)α−1

Γ(α)
g(s, x(s))ds, t ∈ J. (3.12)

Set E = C(J, R). Then, from Lemma 3.3 it follows that every compact chain in E possesses the compatibility
property with respect to the norm ‖ · ‖ and the order relation ≤ in E.

Define the operators A, B, and C on E by

Ax(t) = f (t, x(t)), t ∈ J, (3.13)

Bx(t) =
1

Γ(α)

∫ t

0
(t− s)α−1g(s, x(s)) ds, t ∈ J, (3.14)

and

Cx(t) =
1

Γ(β)

∫ t

0
(t− s)β−1h(s, x(s)) ds, t ∈ J. (3.15)

From the continuity of the integrals, it follows that A,B and C define the maps A,B : E → K and
C : E→ E. Then, the problem (1.1) is equivalent to the operator equation

Ax(t)Bx(t) + Cx(t) = x(t), t ∈ J. (3.16)

We shall show that the operators A,B and C satisfy all the conditions of Theorem 2.1. This is achieved in
the series of following steps.

Step I: A,B and C are nondecreasing operators on E.

Let x, y ∈ E be such that x ≥ y. Then by hypothesis (A2), we obtain

Ax(t) = f (t, x(t)) ≥ f (t, y(t)) = Ay(t),

for all t ∈ J. This shows that A is nondecreasing operator on E into E. Similarly, we have by (A5),

Bx(t) =
1

Γ(α)

∫ t

0
(t− s)α−1g(s, x(s)) ds

≥ 1
Γ(α)

∫ t

0
(t− s)α−1g(s, y(s)) ds

= By(t),

for all t ∈ J. This shows that B is nondecreasing operator on E into itself. The proof that C is nondecreasing
operator on E into itself is similar.
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Step II: A and C are partially bounded and partially D-contraction on E.

Let x ∈ E be arbitrary. Then by (A1),

|Ax(t)| ≤ | f (t, x(t))| ≤ M f ,

for all t ∈ J. Taking supremum over t, we obtain ‖Ax‖ ≤ M f and so, A is bounded. This further implies that
A is partially bounded on E.

Next, let x, y ∈ E be such that x ≥ y. Then,

|Ax(t)−Ay(t)| = | f (t, x(t))− f (t, y(t))| ≤ φ(|x(t)− y(t)|) ≤ φ(‖x− y‖).

Then, ‖Ax−Ay‖ ≤ φ(‖x− y‖) for all x, y ∈ E with x ≥ y and hence A is a partially D-Lipschitz on E with
D-functions φ(r), which further implies that A is a partially continuous on E.

Also we have

|Cx(t)| ≤
∫ t

0

(t− s)β−1

Γ(β)
|h(s, x(s))|ds

≤ Mh

∫ t

0

(t− s)β−1

Γ(β)
ds

≤ Mh
tβ

Γ(β + 1)

≤ Mh
Tβ

Γ(β + 1)
,

which means that C is bounded and further partially bounded on E.

Next, let x, y ∈ E be such that x ≥ y. Then,

|Cx(t)− Cy(t)| =
∫ t

0

(t− s)β−1

Γ(β)
|h(s, x(s))− h(s, y(s))|ds

≤ Tβ

Γ(β + 1)
ω(‖x− y‖).

Hence C is a partially D-Lipschitz on E with D-functions
Tβ

Γ(β + 1)
ω(r), which further implies that C is a

partially continuous on E.

Step III: B is a partially continuous operator on E.

Let {xn} be a sequence of points of a chain C in E such that xn → x for all n ∈ N. Then, by dominated
convergence theorem, we have

lim
n→∞

Bxn(t) = lim
n→∞

[
1

Γ(α)

∫ t

0
(t− s)α−1g(s, xn(s)) ds

]
=

1
Γ(α)

∫ t

0
(t− s)α−1

[
lim

n→∞
g(s, xn(s)) ds

]
ds

=
1

Γ(α)

∫ t

0
(t− s)α−1g(s, x(s)) ds

= Bx(t),

for all t ∈ J. This shows that {Bxn} converges to Bx pointwise on J.

Next, we will show that {Bxn} is an equicontinuous sequence of functions in E. Let t1, t2 ∈ J be arbitrary
with t1 < t2. Then

|Bxn(t2)−Bxn(t1)| ≤
1

Γ(α)

∣∣∣∣∫ t2

0
|(t2 − s)α−1 − (t1 − s)α−1| |g(s, xn(s))| ds

∣∣∣∣
+

1
Γ(α)

∣∣∣∣∫ t2

t1

(t1 − s)α−1|g(s, xn(s))| ds
∣∣∣∣

≤
Mg

Γ(α + 1)
(tα

2 − tα
1).
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Consequently,
|Bxn(t2)−Bxn(t1)| → 0 as t2 → t1

uniformly for all n ∈ N. This shows that the convergence Bxn → Bx is uniformly and hence B is a partially
continuous on E.

Step IV: B is a partially compact operator on E.

Let C be an arbitrary chain in E. We show that B(C) is a uniformly bounded and equicontinuous set in E.
First we show that B(C) is uniformly bounded. Let x ∈ C be arbitrary. Then,

|Bx(t)| ≤ 1
Γ(α)

∫ t

0
(t− s)α−1|g(s, x(s))| ds

≤ Mg
Tα

Γ(α + 1)
= r,

for all t ∈ J. Taking the supremum over t, we obtain ‖Bx‖ ≤ r for all x ∈ C. Hence B(C) is a uniformly
bounded subset of E. Next, we will show that B(C) is an equicontinuous set in E. Let t1, t2 ∈ J be arbitrary
with t1 < t2. Then,

|Bx(t2)−Bx(t1)| ≤
1

Γ(α)

∣∣∣∣∫ t2

0
|(t2 − s)α−1 − (t1 − s)α−1| |g(s, x(s))| ds

∣∣∣∣
+

1
Γ(α)

∣∣∣∣∫ t2

t1

(t1 − s)α−1|g(s, x(s))| ds
∣∣∣∣

≤
Mg

Γ(α + 1)
(tα

2 − tα
1).

Thus we have that
|Bx(t2)−Bx(t1)| → 0 as t2 → t1

uniformly for all x ∈ C. This shows that B(C) is an equicontinuous set in E. Hence B(C) is compact subset of
E and consequently B is a partially compact operator on E into itself.

Step V: D-functions φ and ω satisfy the growth condition MψA(r) + ψC(r) < r, r > 0,.

We have

MψA(r) + ψC(r) = Mg
Tα

Γ(α + 1)
φ(r) +

Tβ

Γ(β + 1)
ω(r) < r,

by assumption.
Step VI: u satisfies the operator inequality u ≤ AuBu + Cu.

Since the hypothesis (A6) holds, u is a lower solution of (1.1) defined on J. Then,

cDα

(
u(t)− Iβh(t, u(t))

f (t, u(t))

)
≤ g(t, u(t)), (3.17)

satisfying,
u(0) ≤ 0, (3.18)

for all t ∈ J.

Integrating (3.17) from 0 to t, we obtain

u(t) ≤
∫ t

0

(t− s)β−1

Γ(β)
h(s, u(s))ds + f (t, u(t))

∫ t

0

(t− s)α−1

Γ(α)
g(s, u(s))ds, (3.19)

for all t ∈ J. This show that u is a lower solution of the operator inequality u ≤ AuBu + Cu.

Thus, the operators A,B and C satisfy all the conditions of Theorem 2.1 in view of Remark 2.9 and we
apply it to conclude that the operator equation AxBx + Cx = x has a solution defined on J. Consequently the
integral equation and the problem (1.1) has a solution x∗ defined on J and the sequence {xn} of successive
approximations defined by (3.11) converges monotonically to x∗. This completes the proof.
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Example 3.1. Given a closed and bounded interval J = [0, 1] in R, consider the initial value problem of quadratic
fractional nonlinear integro-differential equation,

cD1/2

[
x(t)− I3/2(arctan x(t))

f (t, x(t))

]
=

2 + tanh x(t)
12

, t ∈ J := [0, 1],

x(0) = 0,

(3.20)

where cD1/2 denotes the Caputo fractional derivative of order 1/2, and f : J ×R→ R \ {0} is a function defined by

f (t, x) =


1, if x ≤ 0,

1 +
x

1 + x
, if x > 0.

If we take h(t, x) = arctan x and g(t, x) =
2 + tanh x

12
for t ∈ J and x ∈ R, then it is easy to check that

the conditions of Theorem 3.2 are satisfied with the lower solution u defined by u(t) = −4t3/2

3
√

π
+

t1/2

6
√

π
, t ∈ J.

Therefore, the problem (3.20) has a solution defined on [0, 1].
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