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Energy decay of solutions for the wave equation with a time varying
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Abstract

We consider the nonlinear wave equation in a bounded domain with a time varying delay term in the
weakly nonlinear internal feedback(

|ut|γ−2ut

)
t
− ∆xu−

∫ t

0
g(t− s)∆u(s)ds + µ1ψ(ut(x, t)) + µ2ψ(ut(x, t− τ(t))) = 0,

we study the asymptotic behavior of solutions in using the Lyapunov functional , we extend and improve the
previous result due to [30] ,
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1 Introduction

In this paper we investigate the decay properties of solutions for the initial boundary value problem of a
nonlinear wave equation of the form

(
|ut|γ−2ut

)
t − ∆xu−

∫ t

0
g(t− s)∆u(s)ds + µ1ψ(ut(x, t)) + µ2ψ(ut(x, t− τ(t))) = 0, in Ω×]0,+∞[,

u(x, t) = 0, on Γ×]0,+∞[,
u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,
ut(x, t− τ(0)) = f0(x, t− τ(0)), in Ω×]0, τ(0)[,

(1.1)
where Ω is a bounded domain in IRn, n ∈ IN∗, with a smooth boundary ∂Ω = Γ, τ(t) > 0 is a time varying
delay, µ1 and µ2 are positive real numbers, and the initial data (u0, u1, f0) belong to a suitable function space.
In absence of delay (µ2 = 0), the problem of existence and energy decay have been extensively studied by
several authors (see [3], [5], [6], [9], [12], [13], [17], [23]) and many energy estimates have been derived for
arbitrary growing feedbacks (polynomial, exponential or logarithmic decay). The decay rate of the energy
(when t goes to infinity) depends on the function σ and on the function H which represents the growth at the
origin of ψ.
Time delay is the property of a physical system by which the response to an applied force is delayed in its effect
(see [25]). Whenever material, information or energy is physically transmitted from one place to another, there
is a delay associated with the transmission. Time delays so often arise in many physical, chemical, biological
and economical phenomena. In recent years, the control of PDEs with time delay effects has become an
active area of research, see for example [1], [26], [28] and the references therein. In [7], the authors showed
that a small delay in a boundary control could turn such well-behave hyperbolic system into a wild one and
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therefore, delay becomes a source of instability. However, sometimes it also can improve the performance of
the systems (see [26]).
To stabilize a hyperbolic system involving input delay terms, additional control terms will be necessary (see
[18], [19], [27]). For instance in [18] the authors studied the wave equation with linear internal damping term
with constant delay (ψ linear, τ(t) = const in the problem (1.1)). They determined suitable relations between
µ1 and µ2, for which the stability or alternatively instability takes place. More precisely, they showed that the
energy is exponentially stable if µ2 < µ1 and they also found a sequence of delays for which the corresponding
solution of (1.1) will be instable if µ2 ≥ µ1. The main approach used in [18], is an observability inequality
obtained with a Carleman estimate. The same results were obtained if both the damping and the delay are
acting in the boundary. We also recall the result by Xu, Yung and Li [27], where the authors proved a result
similar to the one in [18] for the one-space dimension by adopting the spectral analysis approach.
The case of time varying delay in the wave equation has been studied recently by Nicaise, Valein and Fridman
[22] in one-space dimension and in the linear case (ψ linear in problem (1.1) and proved an exponential
stability result under the condition

µ2 <
√

1− dµ1,

where the constant d satisfies
τ′(t) ≤ d < 1, ∀t > 0.

In [21] Nicaise, Pignotti and Valein extended the above result to higher-space dimension and established an
exponential decay.
Our purpose in this paper is to give an energy decay estimate of the solution to problem (1.1) for a weakly
nonlinear damping and in the presence of a time varying delay term.
In this article, we use some technique from (see [3]), [30]) and [31]).to give energy decay estimates of solutions
to the problem (1.1) for a nonlinear damping and a time varying delay term. To prove decay estimates, we
use a suitable energy and Lyapunov functionals and some properties of convex functions. These arguments
of convexity were introduced and developed by Lasiecka et al. [4], and [13], and used by Liu and Zuazua [15],
Eller et al [8].

2 Preliminaries and main results

In order to state and prove our results, we need some assumptions, as well as, some lemmas.
First assume the following hypotheses
(H1) g : R+ → R+ is a bounded C1 function satisfying

g(0) > 0, 1−
∫ ∞

0
g(s)ds = l < 1,

and there exists a non-increasing differentiable function : ξ : R+ → R+ such that g′(t) ≤ −ξ(t)g(t).
(H2) ψ : IR → IR is a non-decreasing function of the class C(IR) such that there exist ε1, c1, c2 > 0 and a
convex and increasing function H : IR+ → IR+ of the class C1(IR+) ∩ C2(]0, ∞[) satisfying H(0) = 0, and H
linear on [0, ε1] or (H′(0) = 0 and H′′ > 0 on ]0, ε1]), such that

c1|s| ≤ |ψ(s)| ≤ c2|s| if |s| ≥ ε1, (2.2)

s2 + ψ2(s) ≤ H−1(sψ(s)) if |s| ≤ ε1. (2.3)

ψ : IR → IR is an odd non-decreasing function of the class C1(IR) such that there exist c3, α1, α2 > 0

|ψ′(s)| ≤ c3 (2.4)

α1 sψ(s) ≤ G(s) ≤ α2 sψ(s), (2.5)

where
G(s) =

∫ s

0
ψ(r) dr,

with l satisfying
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γ− 1 ≤ n + 2
n− 2

, i f n > 2,

γ− 1 < ∞, i f n ≤ 2.

(H3) τ is a function such that
τ ∈W2,∞([0, T]), ∀T > 0, (2.6)

0 < τ0 ≤ τ(t) ≤ τ1, ∀t > 0, (2.7)

τ′(t) ≤ d < 1, ∀t > 0, , (2.8)

where τ0 and τ1 are two positive constants.
(H4) The weight of dissipation and the delay satisfy:

µ2 <
α1(1− d)

α2(1− α1d)
µ1. (2.9)

We now state some Lemmas needed later.

Lemma 2.1 (Sobolev-Poincaré’s inequality). Let q be a number with 2 ≤ q < +∞ (n = 1, 2) or 2 ≤ q ≤
2n/(n− 2) (n ≥ 3). Then there exists a constant c∗ = c∗(Ω, q) such that

‖u‖q ≤ c∗‖∇u‖2 for u ∈ H1
0(Ω).

Lemma 2.2. [30]. For any g ∈ C1(R+) and ϕ ∈ H1(0, T), we have∫ t

0

∫
Ω

g(t− s)ϕ(x, s)ϕt(x, t)dxds = −1
2

d
dt

(
(goϕ)(t) +

∫ t

0
g(s)ds‖ϕ‖2

2

)
− g(t)‖ϕ‖2

2 + (g′oϕ)(t),

where

(goϕ)(t) =
∫ t

0
g(t− s)

∫
Ω
|ϕ(x, s)− ϕ(x, t)|2dxds,

and
‖ϕ‖2

2 =
∫

Ω
|ϕ(x, s)|2dx.

Lemma 2.3. [30]. For u ∈ H1
0(Ω), we have∫

Ω

(∫ t

0
g(t− s)(u(x, t)− u(x, s))ds

)2
dx ≤ (1− l)c2

s (go∇u)(t), (2.10)

where

(go∇u)(t) =
∫ t

0
g(t− s)

∫
Ω
|u(x, s)− u(x, t)|2dxds,

and c2
s is the poincaré constant and l is given in (H1).

We introduce, as in [18], the new variable

z(x, ρ, t) = ut(x, t− τ(t)ρ), x ∈ Ω, ρ ∈ (0, 1), t > 0. (2.11)

Then, we have
τ(t)zt(x, ρ, t) + (1− τ′(t)ρ)zρ(x, ρ, t) = 0, in Ω× (0, 1)× (0,+∞). (2.12)

Therefore, problem (1.1) is equivalent to:

(
|ut|γ−2ut

)
t − ∆xu−

∫ t

0
g(t− s)∆u(s)ds + µ1ψ(ut(x, t)) + µ2ψ(ut(x, t− τ(t))) = 0, in Ω×]0,+∞[,

τ(t)zt(x, ρ, t) + (1− τ′(t)ρ)zρ(x, ρ, t) = 0, in Ω×]0, 1[×]0,+∞[,
u(x, t) = 0, on ∂Ω×]0,+∞[

z(x, 0, t) = ut(x, t), on Ω×]0,+∞[,
u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,
z(x, ρ, 0) = f0(x,−ρτ(0)), in Ω×]0, 1[.

(2.13)
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where ξ satisfies
µ2(1− α1)

α1(1− d)
< ξ <

µ1 − α2µ2

α2
. (2.14)

We define the energy associated to the solution of the problem (2.13) by:

E(t) =
γ− 1

γ
‖ut(t)‖γ

γ +
1
2

(
1−

∫ t

0
g(s)ds

)
‖∇u(t)‖2

2 + ξ(t)τ(t)
∫

Ω

∫ 1

0
G(z(x, ρ, t)) dρ dx, (2.15)

Lemma 2.4. Let (u, z) be a solution of the problem (2.13). Then, the energy functional defined by (2.15) satisfies

E′(t) ≤ − (µ1 − ξ(t)α2 − µ2α2)
∫

Ω
utψ(ut) dx

−
(
ξ(t)(1− τ′(t))α1 − µ2(1− α1)

) ∫
Ω

z(x, 1, t)ψ(z(x, 1, t)) dx

+
1
2
(g′o∇u)(t)− 1

2
g(t)‖∇u(t)‖2

2

≤ 0.

(2.16)

Proof. Multiplying the first equation in (2.13) by ut, integrating over Ω and using integration by parts, we get

1
2

d
dt

(
‖ut‖γ

γ + ‖∇u‖2
2

)
+ µ1

∫
Ω

utψ(ut) dx + µ2

∫
Ω

ψ(z(x, 1, t))ut(x, t) dx = 0. (2.17)

We multiply the second equation in (2.13) by ξ(t)ψ(z) and integrate over Ω× (0, 1), to obtain:

ξ(t)τ(t)
∫

Ω

∫ 1

0
ztψ(z(x, ρ, t)) dρ dx = −ξ(t)

∫
Ω

∫ 1

0
(1− τ′(t)ρ)

∂

∂ρ
G(z(x, ρ, t)) dρ dx. (2.18)

Consequently,

d
dt

(
ξ(t)τ(t)

∫
Ω

∫ 1

0
G(z(x, ρ, t)) dρ dx

)
= −ξ(t)

∫ 1

0

∫
Ω

∂

∂ρ
((1− τ′(t)ρ)G(z(x, ρ, t))) dρ dx + ξt(t)τ(t)

∫ 1

0

∫
Ω

G(z(x, ρ, t))) dxdρ.

= ξ(t)
∫

Ω
(G(z(x, 0, t))− G(z(x, 1, t))) dx + ξ(t)τ′(t)

∫
Ω

G(z(x, 1, t))) dx

+ξt(t)τ(t)
∫ 1

0

∫
Ω

G(z(x, ρ, t))) dxdρ.

(2.19)

From (2.17), (2.18), lemma 2.2 we get

E′(t) ≤ − (µ1 − ξ(t)α2)
∫

Ω
utψ(ut) dx− ξ(t)(1− τ′(t))

∫
Ω

G(z(x, 1, t)) dx

− µ2

∫
Ω

ut(t)ψ(z(x, 1, t)) dx +
1
2
(g′o∇u)(t)− 1

2
g(t)‖∇u(t)‖2

2.
(2.20)

Let us denote by G∗ the conjugate function of the convex function G, i.e., G∗(s) = supt∈IR+
(st− G(t)). Then

G∗ is the Legendre transform of G, which is given by (see Arnold [2], p. 61-62)

G∗(s) = s(G′2)
−1(s)− G[(G′)−1(s)], ∀s ≥ 0 (2.21)

and satisfies the following inequality

st ≤ G∗(s) + G(t), ∀s, t ≥ 0. (2.22)

Then, from the definition of G2, we get

G∗(s) = sψ−1(s)− G(ψ−1(s)).

Hence
G∗(ψ(z(x, 1, t))) = z(x, 1, t)ψ(z(x, 1, t))− G(z(x, 1, t))

≤ (1− α1)z(x, 1, t)ψ(z(x, 1, t)).
(2.23)
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Making use of (2.19) and (2.22), we have

E′(t) ≤ − (µ1 − ξ(t)α2)
∫

Ω
utψ(ut) dx− ξ(t)(1− τ′(t))

∫
Ω

G(z(x, 1, t)) dx

+ µ2

∫
Ω
(G(ut) + G∗(ψ(z(x, 1, t)))) dx

+
1
2
(g′o∇u)(t)− 1

2
g(t)‖∇u(t)‖2

2.

(2.24)

From (2.5) and (2.22), we obtain

E′(t) ≤ − (µ1 − ξ(t)α2 − µ2α2)
∫

Ω
utψ(ut) dx

−
(
ξ(t)(1− τ′(t))α1 − µ2(1− α1)

) ∫
Ω

z(x, 1, t)ψ(z(x, 1, t)) dx

+
1
2
(g′o∇u)(t)− 1

2
g(t)‖∇u(t)‖2

2.

Then, by using (2.8) and (2.14), our conclusion follows.

3 Asymptotic Behavior

In this section we prove the energy decay result by constructing a suitable Lyapunov functionnal.
We denote by c various positive constants which may be different at different occurrences.
Now we define the following functional

L(t) = ME(t) + εφ(t) + εϕ(t) + εI(t), (3.25)

where
φ(t) =

∫
Ω

u|ut|γ−2utdx, (3.26)

ϕ(t) = −
∫

Ω
|ut|γ−2ut

∫ t

0
g(t− s)(u(t)− u(s))dsdx, (3.27)

and

I(t) =
∫

Ω

∫ 1

0
e−2ρτ(t)G(z(x, ρ, t))dρdx. (3.28)

We need also the following lemma

Lemma 3.1. . Let (u,z) be a solution of problem (2.13), then there exists two positive constants λ1,λ2 such that

λ1E(t) ≤ L(t) ≤ λ2E(t), t ≥ 0, (3.29)

for M sufficiently large .

Proof. Thank’s to the Holder and Young’s inequalities, lemma 2.1 , we have∫
Ω

u|ut|γ−2utdx ≤ Cε

∫
Ω
|u|γdx + ε

∫
Ω
|ut|ldx

≤ Cε‖∇u‖γ
2 + ε‖ut‖γ

γ

≤ CεE
γ
2 (t) + cεE(t)

≤ CεE
γ−2

2 (0)E(t) + cεE(t),

(3.30)

∫
Ω

u|ut|γ−2utdx ≥ −Cε

∫
Ω
|u|γdx− ε

∫
Ω
|ut|γdx

≥ −Cε‖∇u‖γ
2 − ε‖ut‖γ

γ

≥ −CεE
γ
2 (t)− cεE(t)

≥ −CεE
γ−2

2 (0)E(t)− cεE(t),

(3.31)



Mohamed Ferhat/ Energy decay of solutions for the wave equation 289

and

ϕ(t) =
∣∣∣∣− ∫Ω

|ut|γ−2ut

∫ t

0
g(t− s)(u(t)− u(s))dsdx

∣∣∣∣
≤ 1

2
‖ut‖γ

γ +
1
2

∫
Ω

(∫ t

0
g(t− s)(u(t)− u(s))ds

)2
dx

≤ 1
2

(
‖ut‖γ

γ + (1− l)c2
s

∫ t

0
g(t− s)‖∇u(t)−∇u(s)‖2

2ds
)

≤ 1
2

(
‖ut‖γ

γ + (1− l)c2
s (go∇u)(t)

)
,

(3.32)

it follows from (3.28) that ∀c > 0

|I(t)| =
∣∣∣∣∫Ω

∫ 1

0
e−2ρτ(t)G(z(x, ρ, s))dkdx

∣∣∣∣
≤ c

∫
Ω

∫ 1

0
G(z(x, ρ, s))dρdx.

(3.33)

Hence, combining (3.30)-(3.33). This yields

|L(t)−ME(t)| = εφ(t) + ϕ(t) + εI(t)

≤ CεE
γ−2

2 (0)E(t) + cεE(t)ε‖ut‖γ
γ + ε(1− l)c2

s (go∇u)(t)

+ c
∫

Ω

∫ 1

0
G(z(x, ρ, t))dρdx.

(3.34)

Where
|L(t)−ME(t)| ≤ c5E(t), (3.35)

where c5 = max(c1, c2, c3, c4). Thus, from the definition of E(t) and selecting M sufficiently large,

β2E(t) ≤ L(t) ≤ β1E(t). (3.36)

Where β1 = (M− εc5), β2 = (M + εc5). This completes the proof.

Lemma 3.2. Let (u,z) be the solution of (2.13). Then it holds

d
dt

φ(t) ≤
(
(1 + l)(1− l)2 + (µ1 + µ2)αc2

s
2

− 1
)
‖∇u‖2

2 +
(1− l)

2
(go∇u)(t)

+
µ2

4α
‖ψ(z(x, 1, t))‖2

2 + ‖ut‖γ
γ +

µ1

4α
‖ψ(ut)‖2

2.
(3.37)

Proof. We take the derivative of φ(t). It follows from (3.26) that

d
dt

φ(t) =
∫

Ω
(|ut|γ−2ut)tudx + ‖ut‖γ

γ, (3.38)

using the problem (2.13), then we have

d
dt

φ(t) = ‖ut‖γ
γ − ‖∇u‖2

2 +
∫

Ω

∫ t

0
g(t− s)∇u(s)∇u(t)dsdx

−µ2

∫
Ω

ψ(z(x, 1, t))u(t)dx− µ1

∫
Ω

ψ(ut)u(t)dx,
(3.39)

we estimate the third term in the right hand side of (3.39) as follows∣∣∣∣∫Ω
∇u(t)

∫ t

0
g(t− s)∇u(s)dsdx

∣∣∣∣
≤ 1

2
‖∇u‖2

2 +
1
2

∫
Ω

(∫ t

0
g(t− s)(|∇u(s)−∇u(t)|+ |∇u(t)|)ds

)2
dx

≤ 1 + (1 + λ)(1− l)2

2
‖∇u‖2

2 +
(1 + 1

λ )(1− l)
2

(go∇u)(t),

(3.40)
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for the forth and fifth term in (3.39), Holder and Young’s to get

∣∣∣∣∫Ω
ψ(ut)udx

∣∣∣∣ ≤ αc2
s‖∇u‖2

2 +
1

4α
‖ψ(ut)‖2

2, (3.41)

and ∣∣∣∣∫Ω
ψ(z(x, 1, t))udx

∣∣∣∣ ≤ αc2
s‖∇u‖2

2 +
1

4α
‖ψ(z(x, 1, t))‖2

2. (3.42)

Let λ = l
1−l in (3.40) and using (3.41), (3.42), then (3.40) becomes

d
dt

φ(t) ≤ ε

(
(1 + l)(1− l)2 + (µ1 + µ2)αc2

s
2

− 1
)
‖∇u‖2

2 + ε
(1− l)

2
(go∇u)(t)

+ ε
µ2

4α
‖ψ(z(x, 1, t))‖2

2 + ‖ut‖γ
γ +

εµ1

4α
‖ψ(ut)‖2

2.
(3.43)

This completes the proof.

Lemma 3.3. . Let (u,z) be the solution of (2.13). Then ϕ(t) satisfies

ϕ′(t) ≤ α
(

1 + 2(1− l)2
)
‖∇u‖2

2 − (g0 − α)‖ut‖γ
γ

+ µ1‖ψ(ut)‖2
2 +

g(0)c2
s

4α
(−g′o∇u)(t)

+
µ2

4α
(1− l)(2(α + 1) + c2

s )(go∇u)(t)

+
1

4α
c2

s (1− l)2µ2

∫
Ω

ψ2(z(x, 1, t))dx.

(3.44)

Proof. Now Taking the derivatives of ϕ(t), using the problem (2.13), we obtain

ϕ′(t) = −
∫

Ω
(|ut|γ−2ut)t

∫ t

0
g(t− s)(u(t)− u(s))dsdx

−
∫

Ω
|ut|γ−2ut

∫ t

0
g′(t− s)(u(t)− u(s))dsdx−

(∫ t

0
g(s)ds

) ∫
Ω

uγ
t dx

=
∫

Ω
∇u(t)

(∫ t

0
g(t− s)(∇u(t)−∇u(s))ds

)
dx

−
∫

Ω

(∫ t

0
g(t− s)∇u(s)ds

)(∫ t

0
g(t− s)(∇u(t)−∇u(s))ds

)
dx

+
∫

Ω
µ1ψ(u(t))

∫ t

0
g(t− s)(u(t)− u(s))dsdx

+
∫

Ω
µ2ψ(z(x, 1, t))

∫ t

0
g(t− s)(u(t)− u(s))dsdx

−
∫

Ω
|ut|γ−2ut

∫ t

0
g′(t− s)(u(t)− u(s))dsdx−

(∫ t

0
g(s)ds

) ∫
Ω

uγ
t dx.

(3.45)

Next we will estimate the right hand side of (3.45), using Holder, Young’s inequalities and (H1) to have

∫
Ω
∇u

(∫ t

0
g(t− s)(∇u(t)−∇u(s))ds

)
dx

≤ α‖∇u‖2
2 +

(1− l)
4α

(go∇u)(t),
(3.46)
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and

−
∫

Ω

(∫ t

0
g(t− s)∇usds

)(∫ t

0
g(t− s)(∇u(t)−∇u(s))ds

)
dx

≤ α
∫

Ω

(∫ t

0
g(t− s)(|∇u(t)|22ds

)2
dx

+
1
α

∫
Ω

∣∣∣∣∫ t

0
g(t− s)|∇u(t)−∇u(s)|ds

∣∣∣∣2 dx

≤ α
∫

Ω

(∫ t

0
g(t− s)(|∇u(t)−∇u(s)|+ |∇u(t)|)ds

)2
dx

+
1
α

(∫ t

0
g(t− s)ds

) ∫
Ω

∫ t

0
g(t− s)(|∇u(t)| − ∇u(s)|2dsdx

≤ α

(∫
Ω

∫ t

0
g(t− s)|∇u(t)−∇u(s)|ds

)2
dx

+ 2α(1− l)2|∇u(t)|22 +
1

4α
(1− l)(go∇u)(t)

≤ 2α(1− l)2‖∇u(t)‖2
2 +

(
2α +

1
4α

)
(1− l)(go∇u)(t),

(3.47)

where g is positive, continuous and g(0) > 0, for any t0, we have∫ t

0
g(s)ds ≥

∫ t0

0
g(s)ds = g0, ∀t ≥ t0, (3.48)

then we use (3.48) to get

∫
Ω
|ut|γ−2ut

∫ t

0
g′(t− s)(u(t)− u(s))dsdx−

(∫ t

0
g(s)ds

) ∫
Ω

uγ
t dx

≤ α‖ut‖γ
γ +

g(0)c2
s

4α
(−g′o∇u)(t)− g0‖ut‖γ

γ,

(3.49)

∣∣∣∣− ∫Ω
µ1ψ(ut)

∫ t

0
g(t− s)(u(t)− u(s))dsdx

∣∣∣∣
≤ µ1‖ψ(ut)‖2

2 +
µ1(1− l)c2

s
4α

(go∇u)(t),

(3.50)

and ∣∣∣∣− ∫Ω
µ2ψ(z(x, 1, t))

∫ t

0
g(t− s)(u(t)− u(s))dsdx

∣∣∣∣
≤ µ2

∫
Ω

ψ2(z(x, 1, t))dx +
µ2(1− l)c2

s
4α

(go∇u)(t).
(3.51)

A substitution of (3.49)-(3.51) into (3.47) yields

ϕ′(t) ≤ α
(

1 + 2(1− l)2
)
‖∇u‖2

2 − (g0 − α)‖ut‖γ
γ

+ µ1‖ψ(ut)‖2
2 +

g(0)c2
s

4α
(−g′o∇u)(t)

+
µ2

4α
(1− l)(2(α + 1) + c2

s )(go∇u)(t)

+
1

4α
c2

s (1− l)2µ2

∫
Ω

ψ2(z(x, 1, t))dx.

(3.52)

Lemma 3.4. . The functional defined by (3.28) can be estimated by

d
dt

I(t) ≤ −2I(t)− cξ(t)
2τ1

∫
Ω

G(z1(x, 1, t))dx +
ξ(t)
τ0
‖ψ(ut)‖2

2 (3.53)

where τ0, τ2 are some positive constant.
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Proof. Differentiating (3.28) with respect to t and using the second equation in (2.13), we have

I(t)
dt
≤ d

dt

[
ξ(t)e−ρτ(t)

∫
Ω

∫ 1

0
z2(x, ρ, t))dρdx

]
=

[
ξ ′(t)e−τ(t)ρ

∫
Ω

∫ 1

0
G(z(x, ρ, t))dρdx− ξ(t)ρe−τ(t)ρτ′(t)

∫
Ω

∫ 1

0
G(z(x, ρ, t))dρdx

]
+

1
τ(t)

e−τ(t)ρτ(t)ξ(t)
∫

Ω

∫ 1

0

d
dt

G(z(x, ρ, t))dρdx

=

[
ξ ′(t)e−τ(t)ρ

∫
Ω

∫ 1

0
G(z(x, ρ, t))dρdx− ξ(t)ρe−τ(t)ρτ′(t)

∫
Ω

∫ 1

0
G(z(x, ρ, t))dρdx

]
+

1
τ(t)

e−τ(t)ρξ(t)
∫

Ω

∫ 1

0

∂

∂ρ
(1− τ′(t)ρ)G(z(x, ρ, t))dρdx

≤ −ξ(t)ρe−τ(t)ρτ′(t)
∫

Ω

∫ 1

0
G(z(x, ρ, t))dρdx + ξ(t)

β

τ(t)

∫
Ω

G(z(x, 1, t))dx

+
1

τ(t)

[
ξ(t)

∫
Ω
[G(z(x, 0, t))dx− G(z(x, 1, t))]dx

]
≤ −2cξ(t)I(t)− cξ(t)

2τ1

∫
Ω

G(z(x, 1, t))dx +
ξ(t)
τ0
‖ψ(ut)‖2

2,

(3.54)

Theorem 3.1. . Let (H1)− (H4) hold. And u0 ∈ H1
0(Ω), u1 ∈ L2(Ω), f0 ∈ L2(Ω× (0, 1)) be given. Then the

solution of the problem (2.13) is global and bounded in time. Furthermore, we have the following decay estimates:

E(t) ≤ ω1H−1
1 (ω2t + ω3), ∀t > 0,

where

H1(t) =
∫ 1

t

1
H2(s)

ds. (3.55)

Proof. . First, we prove T = ∞, it is sufficient to show that l‖∇u‖2
2 is bounded independently of t. We have

from (2.15)
E(0) ≥ E(t) ≥ l‖∇u‖2

2.

Then the energy is uniformly bounded.
Hence we conclude from lemma 3.2, lemma 3.3 and 3.4 that

dL(t)
dt
≤
{

M
2
− εg(0)c2

s
4α

}
(g
′
o∇u)(t) +

{
ε

(
µ2(1− l)

4α

(
2(α + 1) + c2

s +
1− l

2

))}
(go∇u)(t)

−
{

ε
(
(1− α− (1− l)2(2 + (1 + l)))− (µ1 + µ2)αc2

s

)}
‖∇u‖2

2 − ε(g0 − α− 1)‖ut‖γ
γ

−Mc1

∫
Ω

utψ(ut)dx−Mc2

∫
Ω

z(x, 1, t)ψ(z(x, 1, t))dx +
εµ1

4α
‖ψ(ut)‖2

2 +
ξ(t)
τ0
‖‖ψ(ut)‖2

2

+ ε

{
µ2c2

s (1− l)2

4α
+

µ2

4α

}
‖ψ(z(x, 1, t))‖2

2 − 2ε
∫

Ω

∫ 1

0
e−2ρτ(t)G(z(x, ρ, t))dρdx

− ε
e−2τ(t)

τ1

∫
Ω

G(z(x, 1, t))dx +
ε

τ0

∫
Ω

G(z(x, 0, t))dx− M
2

g(t)‖∇u(t)‖2
2.

(3.56)

Choosing carefully ε sufficiently small and M sufficiently large and put{
M
2
− εg(0)c2

s
4α

}
= η0 > 0,

{
µ2(1− l)

2α

(
2(α + 1) + c2

s +
1− l

2

)}
= η1 > 0,{

(1− α− (1− l)2(2 + (1 + l)))− (µ1 + µ2)αc2
s

}
= η2 > 0,
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{g0 − α− 1} = η3 > 0,

then (3.56) takes the form

dL(t)
dt
≤ −θεE(t) + ε

η1

2
(go∇u)(t) + εc‖ψ(ut)‖2

2, (3.57)

where θ is positive constant, setting

λ1 =
θε

β2
, λ2 =

η1ε

2
, λ3 = εc,

the last inequality becomes

dL(t)
dt
≤ −λ1E(t) + λ2(go∇u)(t) + λ3‖ψ(ut)‖2

2, (3.58)

multiplying (3.58) by ξ(t) we get

ξ(t)
dL(t)

dt
≤ −λ1ξ(t)E(t) + λ2ξ(t)(go∇u)(t) + λ3ξ(t)‖ψ(ut)‖2

2

≤ −λ1ξ(t)E(t)− λ2ξ(t)(g
′
o∇u)(t) + λ3ξ(t)‖ψ(ut)‖2

2

≤ −λ1ξ(t)E(t)− cE
′
(t) + λ3ξ(t)‖ψ(ut)‖2

2,

(3.59)

we consider the following partition on Γ1

Ω11 = {x ∈ Ω; |ut| ≥ ε
′}, Ω12 = {x ∈ Ω; |ut| ≤ ε

′},

then it is clear that F = L(t) + cξ(t)E(t) is equivalent to E(t), then

F
′
(t) ≤ −λ1ξ(t)E(t) + λ3ξ(t)‖ψ(ut)‖2

2 ∀t ≥ t0, (3.60)

from (2.2) and (2.3), it follows that∫
Ω12

|ψ(ut)|2dx ≤ µ1

∫
Ω12

ut‖ψ(ut)‖2
2dx ≤ −µ1E

′
(t). (3.61)

case 1: H is linear then, according to (H1)

c
′
1|s| ≤ |ψ(s)| ≤ c

′
2|s|, ∀s,

and so
ψ2(s) ≤ c

′
2sψ(s), ∀s.

H is linear on [0, ε
′
]. In this case one can easily check that there exists µ

′
1 > 0, such that |ψ(s)| ≤ µ

′
1|s| for all

|s| ≤ ε
′
, and thus ∫

Ω11

‖ψ(ut)‖2dx ≤ µ
′
1

∫
Ω11

utψ(ut)dx ≤ −µ
′
1E
′
(t), (3.62)

using (3.61), (3.62) and the fact that ξ
′
(t) ≤ 0, it is clearly that ϑ = L(t)ξ(t) + c(µ1 + µ

′
1)E equivalent to E(t)

then, from (3.60) produces

E(t) ≤ ce−c
∫ t

0 ξ(s)ds = H−1
1

(∫ t

0
ξ(s)ds

)
. (3.63)

case2 : H
′
(0) = 0 and H

′′
> 0 on [0, ε

′
] since H is convex and increasing H−1 is concave and increasing by

Jensen’s inequality ∫
Ω12

|ψ(ut)|2dx ≤
∫

Ω12

H−1 (utψ(ut)dx)

≤ |Ω12|H−1
(

1
|Ω12|

utψ(ut)dx
)

≤ cH−1(−c
′
E
′
(t)),

(3.64)
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then using (2.1), (3.62) and (3.64) we get∫
Ω
|ψ(ut)|2dx =

∫
Ω11

|ψ(ut)|2dx +
∫

Ω12

|ψ(ut)|2dx

≤
∫

Ω12

H−1utψ(ut)dx +
∫

Ω12

utψ(ut)dx

≤ |Ω12|H−1
(

1
|Ω12|

utψ(ut)dx
)
+
∫

Ω12

utψ(ut)dx

≤ cH−1(−c
′
E
′
(t))− cξ(t)µ

′
1E
′
(t),

(3.65)

it is clearly F = L(t) + cµ1E(t) equivalent to E(t) therefore (3.65) becomes

F
′
(t) ≤ λ1ξ(t)E(t) + cH−1(−c

′
E
′
(t)), ∀t ≥ t0. (3.66)

Let us denote by H∗ the conjugate function of the convex function H, i.e.,

H∗ = sup
t∈R+

(st− H(t)). (3.67)

Then H∗ is the Legendre transform of H which satisfies the following inequality

st ≤ H∗ + H(t), ∀s, t ≥ 0, (3.68)

and

H∗ = s(H
′
)−1(s)− H[(H

′
)−1(s)], ∀s ≥ 0, (3.69)

the relation (3.69) and the fact that H
′
(0) = 0 and (H

′
)−1, H are increasing function yield

H∗(s) ≤ s(H
′
)−1(s), ∀s ≥ 0, (3.70)

using the fact that E
′ ≤ 0, H

′ ≥ 0, H
′′ ≥ 0 we derive ε0 > 0 small enough we find that the functional F1

defined by

F1(t) = H
′
(ε0E(t))F(t) + c3E(t), (3.71)

satisfies, for some ν1, ν2 > 0

ν1F1(t) ≤ E(t) ≤ ν2F1(t), (3.72)

taking the derivative of (3.71)

F
′
1(t) = ε0E

′
(t)H

′′
(ε0E(t))(H

′
(ε0E(t))F(t) + c3E(t)) + H

′
(ε0E(t))(L

′
(t) + cµ1E

′
(t)) + c3E

′
(t)

≤ −λ1ξ(t)E(t)H
′
(ε0E(t)) + ĉ3H

′
(ε0E(t))H−1(−c

′
E
′
(t)) + ĉ3c

′
E
′
(t)

≤ −λ1ξ(t)E(t)H
′
(ε0E(t)) + ĉ3H∗(H

′
(ε0E(t)))− ĉ3ξ(t)E

′
(t) + c3E

′
(t)

≤ −λ1ξ(t)E(t)H
′
(ε0E(t)) + ε0 ĉ3ξ(t)E(t)(H

′
(ε0E(t)))− ĉ3ξ(t)E

′
(t) + c3E

′
(t)

≤ −cξ(t)H2E(t),

(3.73)

where H2(t) = tH
′
(ε0t) we can observe from lemma 3.1 that L(t) is equivalent to E(t). So, F1(t) is also

equivalent to E(t). By the fact that H2 is increasing we obtain

F
′
1(t) ≤ −ĉξ(t)H2F1(t), ∀t ≥ 0. (3.74)

Noting that H
′
1 = −1

H2
, we infer from (3.74)

[F1(t)H1(F1(t))]
′ ≥ ĉξ(t), ∀t ≥ 0. (3.75)

A simple integration over (0,t) yields

H1(F1(t)) ≥ ĉ
∫ t

0
ξ(s)ds + H1(F1(0)), (3.76)
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exploiting the fact that H−1
1 is decreasing , we infer

F1(t) ≤ H−1
1

(
ĉ
∫ t

0
ξ(s)ds + H1(F1(0))

)
, (3.77)

the equivalence of L, F1 and E, yields the estimate

E(t) ≤ H−1
1

(
ĉ
∫ t

0
ξ(s)ds + H1(F1(0))

)
. (3.78)

Which completes the proof.
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[14] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris 1969.
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