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On the Spectral Expansion Formula for a Class of Dirac Operators
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Abstract

This paper deals with a problem for the canonical Dirac differential equations system with piecewise
continuous coefficient and spectral parameter dependent in boundary conditions. The resolvent operator is
constructed. The completeness theorem for eigenvector functions is proved. The spectral expansion formula
with respect to eigenvector functions is obtained and Parseval equality is given.
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1 Introduction

Consider the following boundary value problem generated by Dirac differential equations system

By′ + Ω(x)y = λρ(x)y, 0 < x < π (1.1)

with boundary conditions

U1(y) := b1y2 (0) + b2y1 (0)− λ (b3y2 (0) + b4y1 (0)) = 0,

U2(y) := c1y2 (π) + c2y1 (π) + λ (c3y2 (π) + c4y1 (π)) = 0,
(1.2)

where

B =

(
0 1
−1 0

)
, Ω (x) =

(
p (x) q (x)
q (x) −p (x)

)
, y =

(
y1 (x)
y2 (x)

)
,

p(x), q(x) are real measurable functions, p(x) ∈ L2(0, π), q(x) ∈ L2(0, π), λ is a spectral parameter,

ρ (x) =
{

1, 0 ≤ x ≤ a,
α, a < x ≤ π,

and 1 6= α > 0. Let us define k1 = b1b4 − b2b3 > 0, k2 = c1c4 − c2c3 > 0.
In the finite interval, the spectral properties of Dirac operators by different aspects are examined by many

authors, for example [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13] and etc. In the case of ρ(x) 6= 1,
the solution of Dirac system was investigated in [5], in this work the representation of this solution has not
operator transformation. The asymptotic formulas of eigenvalues and eigenfunctions of Dirac operator with
discontinuous coefficient ρ(x) were studied in [1]. Numerical computation of eigenvalues of Dirac system
was worked in [11], [12]. Moreover, the theory of Dirac operators was comprehensively given in [6], [10].

This paper is organized as follows: in section 2, the operator formulation of the boundary value problem
(1.1),(1.2) and the asymptotic formula of eigenvalues of the problem (1.1),(1.2) are given. In section 3, we prove
completeness theorem of eigenfunctions. The expansion formula with respect to eigenfunctions and Parseval
equality are obtained.
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2 Preliminaries

An inner product in Hilbert space Hρ = L2,ρ(0, π; C2)⊕C2 is given by

〈Y, Z〉 =
∫ π

0

{
y1 (x) z1 (x) + y2 (x) z2 (x)

}
ρ (x) dx +

1
k1

y3z3 +
1
k2

y4z4, (2.3)

where

Y =


y1(x)
y2(x)

y3
y4

 ∈ Hρ, Z =


z1(x)
z2(x)

z3
z4

 ∈ Hρ.

Let us define the operator L:

L(Y) :=

 l(y)
b1y2 (0) + b2y1(0)

− (c1y2 (π) + c2y1(π))


with domain

D(L) :=
{

Y | Y = (y1(x), y2(x), y3, y4)
T ∈ Hρ, y1(x), y2(x) ∈ AC[0, π],

y3 = b3y2 (0) + b4y1(0), y4 = c3y2 (π) + c2y1(π), l(y) ∈ L2,ρ(0, π; C2)
}

where
l(y) =

1
ρ(x)

{
By′ + Ω(x)y

}
.

Consequently, the boundary value problem (1.1),(1.2) is equivalent to the operator equation LY = λY.

Lemma 2.1. The following properties for the operator L are valid:

• The eigenvector functions corresponding to different eigenvalues are orthogonal,

• The eigenvalues are real valued.

Let ϕ (x, λ) =

(
ϕ1(x, λ)

ϕ2(x, λ)

)
and ψ (x, λ) =

(
ψ1(x, λ)

ψ2(x, λ)

)
be solutions of the system (1.1) satisfying the

initial conditions

ϕ (0, λ) =

(
λb3 − b1
b2 − λb4

)
, ψ (π, λ) =

(
−c1 − λc3
c2 + λc4

)
.

The characteristic function of the problem (1.1),(1.2) is defined by

∆(λ) = W[ϕ(x, λ), ψ(x, λ)] = ϕ2(x, λ)ψ1(x, λ)− ϕ1(x, λ)ψ2(x, λ), (2.4)

where W[ϕ(x, λ), ψ(x, λ)] is Wronskian of the vector solutions ϕ(x, λ) and ψ(x, λ). The Wronskian does not
depend on x. It follows from (2.4) that

∆(λ) = b2ψ1 (0, λ) + b1ψ2 (0, λ)− λ (b4ψ1 (0, λ) + b3ψ2 (0, λ)) = U1 (ψ)

or
∆(λ) = −c1 ϕ2 (π, λ)− c2 ϕ1 (π, λ)− λ (c3 ϕ2 (π, λ) + c4 ϕ1 (π, λ)) = −U2 (ϕ) .

Moreover, the zeros λn of characteristic function coincide with the eigenvalues of the boundary value problem
(1.1),(1.2). The function ϕ(x, λn) and ψ(x, λn) are eigenfunctions and there exist a sequence βn such that

ψ(x, λn) = βn ϕ(x, λn), βn 6= 0. (2.5)

Definition 2.1. Norming constants of the boundary value problem (1.1), (1.2) are defined as follows:

αn :=
∫ π

0

{
ϕ2

1(x, λn) + ϕ2
2(x, λn)

}
ρ(x)dx +

1
k1

[b3 ϕ2(0, λn) + b4 ϕ1(0, λn)]
2 +

+
1
k2

[c3 ϕ2(π, λn) + c4 ϕ1(π, λn)]
2 . (2.6)
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Lemma 2.2. [7] The following relation is valid:

αnβn = ∆̇(λn), (2.7)

where ∆̇(λ) = d
dλ ∆(λ).

Now, as a different from other works, the system (1.1) has ρ(x) discontinuous coefficient. This coefficient
influences the form of the solution of the equation (1.1). Therefore, the solution of the equation (1.1) has the
integral representation (not operator transformation) as follows (detail in [5]): Assume that∫ π

0
‖Ω(x)‖ dx < +∞

is satisfied for Euclidean norm of matrix function Ω(x). Then the integral representation of the solution of
equation (1.1) satisfying the initial condition E(0, λ) = I, (I is unite matrix) can be represented

E(x, λ) = e−λBµ(x) +
∫ µ(x)

−µ(x)
K(x, t)e−λBtdt,

where

µ(x) =
{

x, 0 ≤ x ≤ a,
αx− αa + a, a < x ≤ π,

and for a kernel K(x, t) the inequality

∫ µ(x)

−µ(x)
‖K(x, t)‖ dt ≤ eσ(x) − 1,

σ(x) =
∫ x

0
‖Ω(s)‖ ds

holds.
Using this integral representation, the following lemma is proved:

Lemma 2.3. [7] The solution ϕ(x, λ) =

(
ϕ1(x, λ)

ϕ2(x, λ)

)
has the following integral representation

ϕ1 (x, λ) = (λb3 − b1) cos λµ (x) + (λb4 − b2) sin λµ (x) +

+ (λb3 − b1)
∫ µ(x)

0

[
Ã11 (x, t) cos λt+

≈
A12 (x, t) sin λt

]
dt+

+ (λb4 − b2)
∫ µ(x)

0

[
≈
A11 (x, t) sin λt− Ã12 (x, t) cos λt

]
dt, (2.8)

ϕ2 (x, λ) = (λb3 − b1) sin λµ (x) + (b2 − λb4) cos λµ (x) +

+ (λb3 − b1)
∫ µ(x)

0

[
Ã21 (x, t) cos λt+

≈
A22 (x, t) sin λt

]
dt+

+ (λb4 − b2)
∫ µ(x)

0

[
≈
A21 (x, t) sin λt− Ã22 (x, t) cos λt

]
dt, (2.9)

where
Ã1j (x, t) = K1j (x,−t) + K1j(x, t),
≈
A1j (x, t) = K1j (x, t)− K1j(x,−t),
Ã2j (x, t) = K2j (x,−t) + K2j(x, t),
≈
A2j (x, t) = K2j (x, t)− K2j(x,−t),

and Ã1j (x, .) ∈ L2 (0, π) ,
≈
A1j (x, .) ∈ L2 (0, π) , Ã2j (x, .) ∈ L2 (0, π) ,

≈
A2j (x, .) ∈ L2 (0, π) , j = 1, 2.



300 O. Akcay et al. / On the Spectral Expansion Formula for a Class of Dirac Operators

Moreover, using (2.8) and (2.9), as |λ| → ∞ uniformly in x ∈ [0, π], the following asymptotic formulas
hold:

ϕ1(x, λ) = λ (b3 cos λµ (x) + b4 sin λµ (x)) + O
(

e|Imλ|µ(x)
)

, (2.10)

ϕ2(x, λ) = λ (b3 sin λµ (x)− b4 cos λµ (x)) + O
(

e|Imλ|µ(x)
)

. (2.11)

Lemma 2.4. [7] The eigenvalues λn, (n ∈ Z) of the boundary value problem (1.1),(1.2) are in the form

λn = λ̃n + εn,

where

λ̃n =

[
n +

1
π

arctan
(

c3b4 − c4b3

b3c3 + c4b4

)]
π

µ (π)

and {εn} ∈ l2. Moreover, the eigenvalues are simple.

3 Completeness Theorem

Firstly, we construct the resolvent operator and then we prove the completeness theorem of the
eigenfunctions of the problem (1.1), (1.2). The expansion formula respect to eigenfunctions is obtained and
Parseval equality is given.

Lemma 3.5. If λ is not a spectrum point of operator L, then the resolvent operator exists and has the following form

y(x, λ) =
∫ π

0
Rλ(x, t) f (t)ρ(t)dt +

f4

∆(λ)
ϕ(x, λ) +

f3

∆(λ)
ψ(x, λ), (3.12)

where

Rλ(x, t) = − 1
∆(λ)

{
ψ(x, λ)ϕ̃(t, λ), t ≤ x,
ϕ(x, λ)ψ̃(t, λ), t ≥ x,

(3.13)

here ϕ̃(t, λ) denotes the transposed vector function of ϕ(t, λ).

Proof. Let F(x) =

 f (x)
f3
f4

 ∈ D(L), f (x) =
(

f1(x)
f2(x)

)
. To construct the resolvent operator of L, we solve

the following problem
By′ + Ω (x) y = λρ (x) y + ρ (x) f (x) (3.14)

b1y2 (0) + b2y1 (0)− λ (b3y2 (0) + b4y1 (0)) = f3,

c1y2 (π) + c2y1 (π) + λ (c3y2 (π) + c4y1 (π)) = − f4.
(3.15)

By applying the method of variation of parameters, we want to find the solution of problem (1.1), (1.2) which
has a form

y(x, λ) = c1(x, λ)ϕ(x, λ) + C2(x, λ)ψ(x, λ). (3.16)

Then, we get the equations system

c′1(x, λ)ψ̃(x, λ)Bϕ(x, λ) = ψ̃(x, λ)ρ(x) f (x),

c′2(x, λ)ϕ̃(x, λ)Bψ(x, λ) = ϕ̃(x, λ)ρ(x) f (x).

Using this system, we have

c1(x, λ) = c1(π, λ)− 1
∆(λ)

∫ π

x
ψ̃(t, λ) f (t)ρ(t)dt, (3.17)

c2(x, λ) = c2(0, λ)− 1
∆(λ)

∫ x

0
ϕ̃(t, λ) f (t)ρ(t)dt. (3.18)
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Substituting the expression (3.17) and (3.18) into (3.16), we find

y(x, λ) = c1(π, λ)ϕ(x, λ) + c2(0, λ)ψ(x, λ) +
∫ π

0
Rλ(x, λ) f (t)ρ(t)dt,

where

Rλ(x, t) = − 1
∆(λ)

{
ψ(x, λ)ϕ̃(t, λ), t ≤ x,
ϕ(x, λ)ψ̃(t, λ), t ≥ x.

Taking the boundary conditions (3.15), we have

c1(π, λ) =
f4

∆(λ)
, c2(0, λ) =

f3

∆(λ)
.

Consequently,

y(x, λ) =
∫ π

0
Rλ(x, t) f (t)ρ(t)dt +

f4

∆(λ)
ϕ(x, λ) +

f3

∆(λ)
ψ(x, λ)

is obtained.

Theorem 3.1. The system of the eigenfunctions {ϕ(x, λn)} , (n ∈ Z) of boundary value problem (1.1),(1.2) is complete
in L2,ρ(0, π; C2)⊕C2.

Proof. Taking into account (2.5) and (2.7) that ψ(x, λn) =
∆̇(λn)

αn
ϕ(x, λn). Using (3.12), (3.13) and this equality,

we get

Res
λ=λn

y (x, λ) = − 1
αn

ϕ(x, λn)

{∫ π

0
ϕ̃(x, λn) f (t) ρ (t) dt− f4

βn
− f3

}
. (3.19)

Let F(x) ∈ L2,ρ(0, π; C2)⊕C2 be such that

〈F(x), ϕ(x, λn)〉 =
∫ π

0
ϕ̃(t, λn) f (t)ρ(t)dt +

1
k1

f3 [b3 ϕ2 (0, λn) + b4 ϕ1 (0, λn)] +

+
1
k2

f4 [c3 ϕ2 (π, λn) + c4 ϕ1 (π, λn)] = 0.

It follows from the boundary conditions (1.2) and (2.5) that

b3 ϕ2 (0, λn) + b4 ϕ1 (0, λn) = −k1

and
c3 ϕ2 (π, λn) + c4 ϕ1 (π, λn) = −

k2

βn
.

Thus,

〈F(x), ϕ(x, λn)〉 =
∫ π

0
ϕ̃(t, λn) f (t)ρ(t)dt− f3 −

f4

βn
= 0

is found. From here and (3.19), Resλ=λn y (x, λ) = 0 is obtained. Hence, y(x, λ) is entire function with respect
to λ for each fixed x ∈ [0, π] . The following inequality is similarly obtained as in ([8], Lemma 1.3.2)

|∆(λ)| ≥ |λ|2 Cδ exp(|Imλ| µ(π)) (3.20)

which is valid in the domain

Gδ :=
{

λ :
∣∣λ− λ̃n

∣∣ ≥ δ, n = 0,±1,±2...
}

,

where δ is a sufficiently small positive number. Taking into account the inequality (3.20) and the following
equalities (see [1])

lim
|λ|→∞

max
0≤x≤π

exp (− |Imλ| µ(x))
∣∣∣∣∫ x

0
ϕ̃(t, λ) f (t)ρ(t)dt

∣∣∣∣ = 0, (3.21)

lim
|λ|→∞

max
0≤x≤π

exp (− |Imλ| (µ(π)− µ(x)))
∣∣∣∣∫ π

x
ψ̃(t, λ) f (t)ρ(t)dt

∣∣∣∣ = 0, (3.22)

we have
lim
|λ|→∞

max
0≤x≤π

|y(x, λ)| = 0.

Consequently, y(x, λ) ≡ 0. From (3.14) and (3.15), F(x) = 0 a.e. on (0, π) is obtained.
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Theorem 3.2. Let F (x) ∈ D(L). Then the following expansion formula holds:

f (x) =
∞

∑
n=−∞

an ϕ(x, λn), (3.23)

f3 =
∞

∑
n=−∞

an [b3 ϕ2 (0, λn) + b4 ϕ1 (0, λn)] , (3.24)

f4 =
∞

∑
n=−∞

an [b3 ϕ2 (π, λn) + b4 ϕ1 (π, λn)] , (3.25)

where
an =

1
αn
〈 f (x), ϕ(x, λn)〉 .

The series converges uniformly with respect to x ∈ [0, π]. The series (3.23)-(3.25) converges in L2,ρ(0, π; C2)⊕C2 for
F(x) ∈ L2,ρ(0, π; C2)⊕C2 and Parseval equality

‖F‖2 =
∞

∑
n=−∞

αn |an|2 (3.26)

is valid.

Proof. Since ϕ(x, λ) and ψ(x, λ) are solution of the problem (1.1),(1.2),

y(x, λ) = − 1
λ∆(λ)

ψ(x, λ)
∫ x

0

{
− ∂

∂t
ϕ̃(t, λ)B + ϕ̃(t, λ)Ω(t)

}
f (t)dt

− 1
λ∆(λ)

ϕ(x, λ)
∫ π

x

{
− ∂

∂t
ψ̃(t, λ)B + ψ̃(t, λ)Ω(t)

}
f (t)dt +

f4

∆(λ)
ϕ(x, λ) +

f3

∆(λ)
ψ(x, λ)

can be written. Integrating by parts and using the expression of Wronskian

y(x, λ) = − 1
λ

f (x)− 1
λ

z(x, λ) +
f4

∆(λ)
ϕ(x, λ) +

f3

∆(λ)
ψ(x, λ) (3.27)

is obtained, where

z(x, λ) =
1

∆(λ)

{
ψ(x, λ)

∫ x

0
ϕ̃(t, λ)B f

′
(t)dt + ϕ(x, λ)

∫ π

x
ψ̃(t, λ)B f

′
(t)dt+

+ ψ(x, λ)
∫ x

0
ϕ̃(t, λ)Ω(t) f (t)dt + ϕ(x, λ)

∫ π

x
ψ̃(t, λ)Ω(t) f (t)dt

}
.

It follows from (3.21) and (3.22) that

lim
|λ|→∞

max
0≤x≤π

|z(x, λ)| = 0, λ ∈ Gδ. (3.28)

Now, we integrate y(x, λ) with respect to λ over the contour ΓN with oriented counter clockwise as follows:

IN(x) =
1

2πi

∮
ΓN

y(x, λ)dλ,

where

ΓN =

{
λ : |λ| =

(
N +

1
π

arctan
(

c3b4 − c4b3

b3c3 + c4b4

))
π

µ (π)
+

π

2µ(π)

}
,

N is sufficiently large natural number. Applying residue theorem, we have

IN(x) =
N

∑
n=−N

Res
λ=λn

y(x, λ)

= −
N

∑
n=−N

1
αn

ϕ(x, λn)
∫ π

0
ϕ̃(t, λn) f (t)ρ(t)dt +

N

∑
n=−N

f4

∆̇(λn)
ϕ(x, λn) +

N

∑
n=−N

f3

∆̇(λn)
ψ(x, λn).
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On the other hand, taking into account the equation (3.27)

f (x) =
N

∑
n=−N

an ϕ(x, λn) + εN(x) (3.29)

is found, where

εN(x) = − 1
2πi

∮
ΓN

1
λ

z(x, λ)dλ

and

an =
1

αn

∫ π

0
ϕ̃(t, λn) f (t)ρ(t)dt.

From (3.28), limN→∞max0≤x≤π |εN(x)| = 0. Thus, by going over in (3.29) to the limit as N → ∞ the expansion
formula (3.23) with respect to eigenfunction is obtained. Since the system of {ϕ(x, λn)} , (n ∈ Z) is complete
and orthogonal in L2,ρ(0, π; C2)⊕C2, Parseval equality (3.26) is valid.
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