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Abstract

Separation axioms in ideal topological spaces are discussed in the literature. In this paper we define the
separation axioms in ideal topological spaces in a new way which is more natural than the previous versions
and discuss some properties. Also we discuss the relationship of our definition with other definitions and
prove some results in the context of separation axioms in ideal topological space. We show a property that
holds in ideal topological theory which does not hold in the classical theory of topology; and also we show a
property that holds in the classical theory that does not hold in the ideal topological theory.
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1 Introduction

An ideal on a set X is a nonempty collection I of subsets of X which is closed under finite union such that
if A is in I , then all subsets of A are also in I . In 1944 Vaidyanathaswamy[12] introduced the concept of ideals
in topological spaces. Later the concepts were further studied and discussed by Kuratowski[8], Noiri[3, 5]
and many others[2, 6, 9]. If I is an ideal on a topological space (X, T ), then we can construct a topology on X,
called ∗-topology, denoted by T ∗. The triplet (X, T , I) is called an ideal topological space.

In 1995, Dontchev[2] introduced the notion of I-Hausdorff space and Abd El-Monsef[1] developed the
notion of quasi-I-Hausdorff space in 2000. Later Nasef[9] has improved the concepts of I-Hausdorff space
and quasi- I-Hausdorff space. Further, Hatir and Noiri[4] introduced semi-I-Hausdorff space which is weaker
than Hausdorff space.

In the above stated, and in many other works, these concepts were developed using notions like I-open,
semi-I-open, quasi I-open and so on. But a theory highlighting the topology T ∗ induced by an ideal I
was developed in [11]. In[11], several ideals on the same topological space (X, T ) were considered and the
relationship among the topologies generated by these ideals were discussed.

In this paper we define a concept called I -Hausdorffness, in the context of ideal topological spaces
slightly different from the definition available in the literature[2]. Also we define regular, normal spaces in
the context of ideal topological spaces and prove certain results similar to results available in classical theory.
We also prove that the intersection of two I -Hausdorff topologies is an I -Hausdorff topology, in contrast
to the classical result which states that the intersection of two Hausdorff topologies need not be a Hausdorff
topology. Further we show that the product of two I -Hausdorff spaces need not be an I -Hausdorff space,
in contrast to the classical result which states that the product of two Hausdorff spaces is a Hausdorff space.

In Section 2 we recall some definitions and results from the literature and prove certain results which we
need in the sequel; in Section 3 we define and discuss Hausdorffness in ideal topological spaces; in Section 4
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we define and discuss regularity and normality in the context of ideal topological spaces and finally we give
some concluding remarks.

2 Preliminary Definitions and Results

Let us start with the definition of an ideal in a topological space.

Definition 2.1. [12] Let X be any set. An ideal on X is a nonempty collection I of subsets of X satisfying the following.

i. If A, B ∈ I , then A ∪ B ∈ I .

ii. If A ∈ I and B ⊆ A, then B ∈ I .

If (X, T ) is a topological space and I is an ideal on X, then the triplet (X, T , I) is called an ideal topological space or
ideal space.

Throughout this paper X, T and I will denote, respectively a nonempty set, a topology on X and an ideal
on X. If (X, T ) is a topological space and x ∈ X, T (x) denote the collection {U ∈ T /x ∈ U} of all open sets
in (X, T ) containing x. We denote the complement of A in X by Ac. If X is any set, by P(X) we denote the
collection of all subsets of X and call it as the power set of X. The definitions and results which are not stated
explicitly are as in [10].

A closure operator on a set X is a function from P(X) to P(X), taking A to A, satisfying the following
conditions: ∅ = ∅, A ⊆ A, A = A for all A, and for any A and B, A ∪ B = A ∪ B. The above four conditions
are called Kuratowski closure axioms [7]. If “ ” is a closure operator on a set X, F is the family of all subsets
A of X for which A = A, and if T is the family of complements of members of F , then T is a topology on
X and A is the T -closure of A for each subset A of X. This topology is called the topology generated by the
closure operator “ ”.

Definition 2.2. [8] For any subset A of X, define

A∗
(I ,T )

= {x ∈ X/U ∩ A /∈ I for every U ∈ T (x)}.

Let A = A ∪ A∗
(I ,T )

. Then “ ” is a Kuratowski closure operator which gives a topology on X, called the topology
generated by I , and is denoted by TI . This topology is also called ∗-topology or ideal topology.

Let (X, T ) be a topological space. Then the following results hold trivially.

i. If I = {∅}, then TI = T .

ii. If A ∈ I , then A∗ = ∅ and A is closed in (X, TI ).

iii. If A is closed in TI , then A∗
(I ,T )
⊆ A.

iv. If I1 ⊆ I2 are two ideals on X then TI1 ⊆ TI2 .

Now we prove a result which we use in the sequel.

Theorem 2.1. Let (X, T ) be a topological space. Let I1 and I2 be two ideals on X. Then TI1∩I2 = TI1 ∩ TI2 .

Proof. Since the intersection of two ideals is an ideal, TI1∩I2 is meaningful. As I1 ∩ I2 ⊆ I1 and I1 ∩ I2 ⊆ I2,
we have TI1∩I2 ⊆ TI1 and TI1∩I2 ⊆ TI2 . Therefore TI1∩I2 ⊆ TI1 ∩ TI2 .

Conversely, let us assume that V ∈ TI1 ∩ TI2 and let A = Vc. Then A is closed in TI1 ∩ TI2 and hence A
is closed in TI1 and A is closed in TI2 . This implies that A∗

(I1,T )
⊆ A and A∗

(I2,T )
⊆ A. We aim to prove that A

is closed in TI1∩I2 . It is enough to show that A∗
(I1∩I2,T )

⊆ A. Assume that x /∈ A. This implies that x /∈ A∗
(I1,T )

and x /∈ A∗
(I2,T )

. Then there exist open sets U and V in T containing x such that U ∩ A ∈ I1 and V ∩ A ∈ I2.
Let us take G = U ∩V. Clearly x ∈ G and G ∈ T . Also

G ∩ A = (U ∩V) ∩ A = (U ∩ A) ∩ (V ∩ A) ∈ I1 ∩ I2.

Thus there exists an open set G ∈ T (x) such that G ∩ A ∈ I1 ∩ I2. Therefore x /∈ A∗
(I1∩I2,T )

and hence
A∗

(I1∩I2,T )
⊆ A. This implies that A is closed in TI1∩I2 . Thus TI1 ∩ TI2 ⊆ TI1∩I2 .
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We note that this result is not true in case of intersection of infinitely many ideals. If {Iα} is a collection of
ideals on (X, T ), then we have only T∩Iα

⊆ ∩TIα
. The equality holds if and only if (X, T ) is an Alexandroff

space[11, Theorem 3.3].

3 Hausdorff Spaces in Ideal Topological Spaces

In this section we define Hausdorff space in the context of ideal topological spaces, compare it with the one
available in the literature and prove some results. We start with the definition of I-open sets and Hausdorff
spaces in the context of ideal topological spaces given by Dontchev[2].

Definition 3.3. [3] Let (X, T , I) be an ideal topological space. A subset A of X is said to be I-open if A ⊆ int(A∗).

Definition 3.4. [2] An ideal topological space (X, T , I) is called I-Hausdorff if for every two distinct points x, y of X,
there exist disjoint I-open sets U, V in (X, T ) such that x ∈ U and y ∈ V.

According to this definition, if (X, T ) is a topological space and if I = P(X), then (X, T ) is not I-
Hausdorff even if (X, T ) is Hausdorff. Indeed, if A is any subset of X, then A ∈ I and hence A∗ = ∅ which
implies that no set other than the empty set is I-open; so one cannot find two disjoint I-open sets containing
two distinct points. Furthermore, the set X = { 1

n}n∈N ∪ {0} under the usual metric of R is a metric space and
hence it is Hausdorff; but when I = {∅}, X is not I-Hausdorff. Example 3.1 in [4] shows that an I-Hausdorff
space need not be Hausdorff. So an I-Hausdorff space need not be a Hausdorff space and a Hausdorff space
need not be an I-Hausdorff space according to the definition available in the literature.

However, according to the theory of I-Hausdorff space we are going to develop in this paper, every
Hausdorff space is an I-Hausdorff space and there are I-Hausdorff spaces which are not Hausdorff space. To
avoid confusions in the notations we write I -Hausdorff instead of writing I-Hausdorff in the new sense.

Definition 3.5. Let (X, T ) be a topological space and I be an ideal on X. Then (X, T ) is said to be I -Hausdorff with
respect to the ideal I if for every pair of distinct points x and y in X, there exist two open sets U1 and U2 in T such that
x ∈ U1, y ∈ U2 and U1 ∩U2 ∈ I .

From the very definition itself, it follows that every Hausdorff space is I -Hausdorff whatever be the ideal
I on it, as ∅ ∈ I ; if X = {1, 2}, T = {∅, X, {1}} and I = {∅, {1}}, then X is I -Hausdorff with respect
to I whereas it is not Hausdorff in the classical sense. Thus the class of I -Hausdorff spaces is strictly larger
than the class of Hausdorff spaces. Whenever there is no ambiguity we just write I -Hausdorff leaving the
tail “with respect to the ideal I”.

In view of the discussion below Definition 3.4, there are many I -Hausdorff spaces in our context which
are not I-Hausdorff space according to Definition 3.4. Example 3.1 in [4] shows that an I-Hausdorff space
need not be an I -Hausdorff space in our context. From this we conclude that our definition of Hausdorffness
is different from, and more natural than, the one available in the literature.

Theorem 3.2. Let (X, T , I) be an ideal topological space. Then X is I -Hausdorff with respect to I if and only if the
following holds:

If x, y ∈ X with x 6= y, then there exist sets V1, V2 ∈ T and I1, I2 ∈ I such that x ∈ V1 − I1, y ∈ V2 − I2
and (V1 − I1) ∩ (V2 − I2) ∈ I .

Proof. Assume that X is I -Hausdorff. Let x, y ∈ X such that x 6= y. Since X is I -Hausdorff, there exist open
sets V1 and V2 in T such that x ∈ V1, y ∈ V2 and V1 ∩V2 ∈ I . By taking I1 = I2 = ∅ we see that the statement
holds.

To prove the converse, let x, y ∈ X such that x 6= y. Then there exist sets V1, V2 ∈ T and I1, I2 ∈ I such
that x ∈ V1 − I1, y ∈ V2 − I2 and (V1 − I1) ∩ (V2 − I2) ∈ I . We claim that V1 ∩V2 ∈ I .

As (V1 − I1) ∩ (V2 − I2) = (V1 ∩V2)− (I1 ∪ I2), we have

V1 ∩V2 = [(V1 − I1) ∩ (V2 − I2)] ∪ [(V1 ∩V2) ∩ (I1 ∪ I2)].

Since I1, I2 ∈ I , we have I1 ∪ I2 ∈ I . Since (V1 ∩V2) ∩ (I1 ∪ I2) ⊆ (I1 ∪ I2) and (V1 − I1) ∩ (V2 − I2) ∈ I , we
have V1 ∩V2 ∈ I . Thus X is I -Hausdorff.
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If I is an ideal on a set X and if Y ⊆ X, then IY = {A ∩Y / A ∈ I} is an ideal on Y.

Theorem 3.3. If (X, T ) is an I -Hausdorff space with respect to the ideal I and if Y ⊆ X, then (Y, TY) is I -Hausdorff
space with respect to the ideal IY where TY is the subspace topology on Y inherited from T .

Proof. Let y1, y2 ∈ Y be such that y1 6= y2. Since X is I -Hausdorff, there exist open sets G1, G2 in T such
that y1 ∈ G1, y2 ∈ G2 and G1 ∩ G2 ∈ I . Let H1 = Y ∩ G1 and H2 = Y ∩ G2. Then H1 and H2 are open sets
in TY containing y1 and y2 respectively. As H1 ∩ H2 = (G1 ∩ G2) ∩ Y, we have H1 ∩ H2 ∈ IY. Therefore Y is
I -Hausdorff with respect to the ideal IY.

In the crisp topological theory, the intersection of two Hausdorff topologies on a set X need not be
Hausdorff. That is, if T1 and T2 are two Hausdorff topologies on X, then T1 ∩ T2 need not be Hausdorff. But
if T1 and T2 are Hausdorff topologies on a set X and if there exists a topology T and two ideals I1 and I2 on
X such that T1 = TI1 and T2 = TI2 , then T1 ∩ T2 is a Hausdorff topology on X (See Theorem 3.6).

First we give a necessary and sufficient condition for a space (X, T ) to be I -Hausdorff with respect to an
ideal I .

Theorem 3.4. Let (X, T ) be a topological space and I be an ideal on X. Then (X, T ) is I -Hausdorff if and only if
(X, TI ) is Hausdorff.

Proof. Let x and y be two distinct points in an I -Hausdorff space (X, T ). Then there exist open sets U
and V in T such that x ∈ U, y ∈ V and U ∩ V ∈ I . Let us take U1 = U − ((U ∩ V) − {x}) and U2 =

V − ((U ∩V)− {y}). Clearly x ∈ U1 and y ∈ U2. Since U ∩V ∈ I , (U ∩V)− {x} ∈ I ; therefore it is closed
in TI and hence U1 is open in TI . Similarly U2 is open in TI . Thus we get two open sets U1 and U2 in TI such
that x ∈ U1, y ∈ U2 and U1 ∩U2 = ∅. Therefore, (X, TI ) is Hausdorff.

Conversely, let x and y be two distinct points in (X, T ). Since (X, TI ) is Hausdorff, there exist open sets U
and V in TI such that x ∈ U, y ∈ V and U ∩ V = ∅. As U ∈ TI , Uc is closed in TI and hence (Uc)∗ ⊆ Uc.
Since x /∈ Uc, we have x /∈ (Uc)∗. Thus there exists U1 ∈ T containing x such that U1 ∩ Uc ∈ I . Let
I1 = U1 ∩Uc. Clearly x ∈ U1 − I1 ⊆ U. Similarly there exists U2 ∈ T and I2 ∈ I such that y ∈ U2 − I2 ⊆ V.
Since U ∩V = ∅, we have (U1− I1)∩ (U2− I2) = ∅. It follows that U1 ∩U2 ⊆ I1 ∪ I2 and hence U1 ∩U2 ∈ I .
Thus we get open sets U1 and U2 in T such that x ∈ U1, y ∈ U2 and U1 ∩ U2 ∈ I . Therefore (X, T ) is
I -Hausdorff.

Theorem 3.5. Let I1 and I2 be ideals on (X, T ). If (X, T ) is I -Hausdorff with respect to I1 and I2, then (X, T ) is
I -Hausdorff with respect to the ideal I1 ∩ I2.

Proof. Let x and y be two distinct points in (X, T ). By Theorem 3.4, (X, TI1) and (X, TI2) are Hausdorff.
Since (X, TI1) is Hausdorff, as in the proof of Theorem 3.4, there exist U1, V1 ∈ T and I1, J1 ∈ I1 such that
x ∈ U1 − I1, y ∈ V1 − J1 and (U1 − I1) ∩ (V1 − J1) = ∅. Similarly there exist U2, V2 ∈ T and I2, J2 ∈ I2 such
that x ∈ U2 − I2, y ∈ V2 − J2 and (U2 − I2) ∩ (V2 − J2) = ∅.

Let W1 = U1 ∩ U2 and W2 = V1 ∩ V2. Clearly x ∈ W1, y ∈ W2 and W1, W2 ∈ T . Let I = (I1 ∪ J1) ∩
(I2 ∪ J2). Since I ⊆ I1 ∪ J1 and I ⊆ I2 ∪ J2, we have I ∈ I1 ∩ I2. We claim that W1 ∩W2 ∈ I1 ∩ I2. As
(U1 − I1) ∩ (V1 − J1) = ∅ and (U2 − I2) ∩ (V2 − J2) = ∅, we have U1 ∩ V1 ⊆ I1 ∪ J1 and U2 ∩ V2 ⊆ I2 ∪ J2.
Since W1 ∩W2 = (U1 ∩V1)∩ (U2 ∩V2), we have W1 ∩W2 ⊆ I and hence W1 ∩W2 ∈ I1 ∩ I2. Therefore (X, T )
is I -Hausdorff with respect to the ideal I1 ∩ I2.

Theorem 3.6. Let T1 and T2 be Hausdorff topologies on a set X. Let there be a topology T and two ideals I1 and I2 on
X such that T1 = TI1 and T2 = TI2 . Then T1 ∩ T2 is a Hausdorff topology on X.

Proof. Since T1 = TI1 , T2 = TI2 , by Theorem 3.4, (X, T ) is I -Hausdorff with respect to the ideals I1 and I2.
Also by Theorem 3.5, (X, T ) is I -Hausdorff with respect to the ideal I1 ∩ I2; by Theorem 3.4, (X, TI1∩I2) is
Hausdorff. By Theorem 2.1, TI1∩I2 = TI1 ∩ TI2 . Therefore (X, TI1 ∩ TI2) is Hausdorff. In other words, T1 ∩ T2
is a Hausdorff topology on X.

If A and B are collections of subsets of X and Y, then the collection A ×B = {A× B / A ∈ A , B ∈ B}
is called the product of A and B. If I1 and I2 are ideals on X1 and X2, then I1 × I2 need not be an ideal on
X1×X2. Indeed, if X = {1, 2, 3}, I = {∅, {1}, {2}, {1, 2}}, then I ×I is not an ideal on X×X as {(1, 1), (2, 2)}
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is not in I × I whereas {(1, 1)}, {(2, 2)} are in I × I . However with ideals I1 on X and I2 on Y we can
associate an ideal I1 ⊗ I2 on X × Y in a natural way. The ideal I1 ⊗ I2 is in fact the smallest ideal containing
I1 × I2 which can be obtained as the intersection of all ideals containing I1 × I2.

It is well known that the product of two Hausdorff spaces is a Hausdorff space in crisp topological theory.
But this is not true in ideal topological theory. That is, if (X1, T1) is I -Hausdorff with respect to the ideal I1
and (X2, T2) is I -Hausdorff with respect to the ideal I2, then (X1 × X2, T1 × T2) need not be I -Hausdorff
with respect to the ideal I1 ⊗ I2 as seen in the following example.

Example 3.1. Let X1 = {1, 3}, X2 = {1, 4}; let T1 = {∅, X1, {1}}, T2 = {∅, X2, {1}}; then T1 and T2 are topologies
on X1 and X2; let I1 = {∅, {1}}, I2 = {∅, {1}}; then I1 and I2 are ideals on X1 and X2. Clearly the product topology
T1 × T2 is the collection

{∅, X1 × X2, {(1, 1)}, {(1, 1), (1, 4)}, {(1, 1), (3, 1)}, {(1, 1), (1, 4), (3, 1)}}

and the ideal I1 ⊗ I2 is the collection {∅, {(1, 1)}}. As we cannot separate the points (1, 4) and (3, 4), X1 × X2 is not
I -Hausdorff with respect to the ideal I1 ⊗ I2.

We note an interesting observation in the comparison of Hausdorff theory between the crisp and ideal
topological theory. One point sets in Hausdorff spaces are closed in crisp theory whereas it is not so in the
theory of ideal topology. For example, if X = {1, 2, 3}, T = {∅, X, {1}, {1, 2}} and I = {∅, {1}, {2}, {1, 2}},
then {1}, {2} are not closed in (X, T ); but X is I -Hausdorff with respect to I .

4 Regular and Normal Spaces

Now we define regular and normal space in the context of ideal topological spaces and prove some results.

Definition 4.6. Let (X, T ) be a topological space and I be an ideal on X. Let singleton sets be closed in X. Then (X, T )
is said to be I -regular with respect to the ideal I if given x ∈ X and a closed set B not containing x, there exist two
open sets U1 and U2 in T such that x ∈ U1, B ⊆ U2 and U1 ∩U2 ∈ I .

As ∅ ∈ I , every regular space is I -regular with respect to the ideal I whatever be the ideal I . An
I -regular space with respect to an ideal I need not be regular. For example, any uncountable set X with
cocountable topology is not regular; but it is I -regular space with respect to the ideal I where I = P(X).

In Theorem 3.4 we have proved that a space (X, T ) is I -Hausdorff with respect to the ideal I if and only
if (X, TI ) is Hausdorff. But in the case of regular spaces it is not so. That is, if (X, T ) is I -regular with respect
to an ideal I , then (X, TI ) need not be regular. For example, in R with usual topology, let I be the collection
of all subsets of {1, 1

2 , 1
3 , · · · }. Since R with usual topology is regular, it is I -regular with respect to the ideal

I ; but it is not TI -regular because we cannot separate the point 0 and a closed set {1, 1
2 , 1

3 , · · · }. However,
(X, TI ) is regular if the following additional condition is satisfied.

C1: For any A ∈ I and x /∈ A, there exists U in T such that x ∈ U and U ∩ A = ∅.

Theorem 4.7. If (X, T ) is I -regular with respect to the ideal I and if C1 holds, then (X, TI ) is regular.

Proof. Let F be closed in TI and x /∈ F.
Suppose F is closed in T , by I -regularity, there exist U1, U2 ∈ T such that x ∈ U1, F ⊆ U2 and U1 ∩U2 ∈

I . If needed replacing U1 by U1 ∩ Fc, we can assume U1 ∩ F = ∅. Let I = U1 ∩U2, V1 = U1 and V2 = U2 − I.
Since I ∩ F = ∅ and F ⊆ U2, F ⊆ V2. Clearly V1 ∩V2 = ∅. Thus we obtained two open sets V1, V2 in TI such
that x ∈ V1, F ⊆ V2 and V1 ∩V2 = ∅. Hence (X, TI ) is regular in this case.

Now we prove the general case. Since F is closed in TI , we have F∗
(I ,T )

⊆ F and hence x /∈ F∗
(I ,T )

. Then
there exists U ∈ T (x) such that U ∩ F ∈ I . Let I = U ∩ F and F1 = F− I. Clearly U ∩ F1 = ∅. Let F2 be the
closure of F1 with respect to T . Since x ∈ U and U ∩ F1 = ∅, we have x /∈ F2. Therefore F2 is closed set in
T such that x /∈ F2. By the particular case discussed above, there exist V1, V2 ∈ TI such that x ∈ V1, F2 ⊆ V2
and V1 ∩ V2 = ∅. Since x /∈ I ∈ I , by the condition C1, there exists an open set U ∈ T such that x ∈ U and
U ∩ I = ∅. Let us take W1 = U and W2 = Uc. Also x ∈ W1, I ⊆ W2 and W1 ∩W2 = ∅. Let G1 = V1 ∩W1 and
G2 = V2 ∪W2. Clearly x ∈ G1 and G1 ∩ G2 = ∅. Since F2 ⊆ V2 and I ⊆ W2, we have F ⊆ G2. Thus we get
open sets G1, G2 in TI such that x ∈ G1, F ⊆ G2 and G1 ∩ G2 = ∅ and hence (X, TI ) is regular.
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We can weaken condition C1 by the following condition:

C2: For any A ∈ I and x /∈ A, there exist U, V ∈ TI such that x ∈ U, A ⊆ V and U ∩V = ∅.

Theorem 4.8. If (X, T ) is I -regular with respect to the ideal I and if C2 holds, then (X, TI ) is regular.

If x /∈ I ∈ I , by the condition C2, there exist W1, W2 in TI such that x ∈ W1, I ⊆ W2 and W1 ∩W2 = ∅.
Replacing the sets W1 and W2 in the proof of Theorem 4.7 by these W1 and W2, we get the proof.

If U is a set that exists in condition C1, then U and Uc serve as the open sets in condition C2. Thus C2 is
weaker than C1. The following example shows that C2 is strictly weaker than C1.

Example 4.2. Let X = {1, 2, 3, 4}, T = {∅, X, {1}, {2}, {1, 2}} and I = {∅, {1}, {2}, {1, 2}}. Let A = {2},
x = 3. As the only open set containing x in T is X, condition C1 is not satisfied whereas it is easy to verify that
condition C2 is satisfied.

The following theorem can be proved analogous to Theorem 3.2.

Theorem 4.9. Let I be an ideal on (X, T ). Then X is I -regular with respect to I if and only if the following holds:
If x ∈ X and a closed set B not containing x, then there exist sets V1, V2 ∈ T and I1, I2 ∈ I such that x ∈

V1 − I1, B ⊆ V2 − I2 and (V1 − I1) ∩ (V2 − I2) ∈ I .

Theorem 4.10. Let I1 and I2 be ideals on (X, T ). If (X, T ) is I -regular with respect to I1 and I2, then (X, T ) is
I -regular with respect to the ideal I1 ∩ I2.

Proof. Let x ∈ X and B a closed set in (X, T ) not containing x. Since X is I -regular with respect to I1, there
exist two open sets U1, V1 in T such that x ∈ U1, B ⊆ V1 and U1 ∩V1 ∈ I1. Similarly there exist two open sets
U2, V2 in T such that x ∈ U2, B ⊆ V2 and U2 ∩ V2 ∈ I2. Let U = U1 ∩U2 and V = V1 ∩ V2. Clearly x ∈ U
and B ⊆ V. Since U ∩V = (U1 ∩V1) ∩ (U2 ∩V2), we have U ∩V ∈ T1 ∩ I2. Thus there exist two open sets U,
V in T such that x ∈ U, B ⊆ V and U ∩ V ∈ I1 ∩ I2 and hence (X, T ) is I -regular with respect to the ideal
I1 ∩ I2.

Theorem 4.11. Let (X, T , I) be an ideal topological space. If X is an I -regular space with respect to I and if Y ⊆ X,
then (Y, TY) is I -regular space with respect to the ideal IY where TY is the subspace topology on Y inherited from T .

Proof. Let A be a closed set in (Y, TY) and x /∈ A. Since A is closed in Y, we have A = Y ∩ F where F
is closed in X. As F is closed in X and x /∈ F, there exist U1, U2 in T such that x ∈ U1, F ⊆ U2 and
U1 ∩U2 ∈ I . Let V1 = Y ∩U1 and V2 = Y ∩U2. Clearly x ∈ V1, A ⊆ V2 and V1, V2 are open sets in TY. As
V1 ∩V2 = (U1 ∩U2) ∩Y, we have V1 ∩V2 ∈ IY. Therefore Y is I -regular with respect to the ideal IY.

Theorem 4.12. Every I -regular space is I -Hausdorff space with respect to the same ideal.

Now we define normal space in the context of ideal topological spaces and prove some results.

Definition 4.7. Let (X, T ) be a topological space and I be an ideal on X. Let singleton sets be closed in X. Then (X, T )
is said to be I -normal with respect to the ideal I if given two disjoint closed sets A and B, there exist two open sets U1
and U2 in T such that A ⊆ U1, B ⊆ U2 and U1 ∩U2 ∈ I .

As ∅ ∈ I , every normal space is I -normal space with respect to the ideal I whatever be the ideal I on
X. The converse is not true. For example, any infinite set X with cofinite topology is not normal; but it is
I -normal space with respect to the ideal I where I = P(X).
The following theorem can be proved analogous to Theorem 3.2.

Theorem 4.13. Let (X, T , I) be an ideal topological space. Then X is I -normal with respect to I if and only if the
following holds:

If A and B be two closed sets such that A ∩ B = ∅, then there exist sets V1, V2 ∈ T and I1, I2 ∈ I such that
A ⊆ V1 − I1, B ⊆ V2 − I2 and (V1 − I1) ∩ (V2 − I2) ∈ I .

The following theorem can be proved analogous to Theorem 4.10.
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Theorem 4.14. Let I1 and I2 be ideals on (X, T ). If (X, T ) is I -normal with respect to I1 and I2, then (X, T ) is
I -normal with respect to the ideal I1 ∩ I2.

Theorem 4.15. Every I -normal space is I -regular with respect to the same ideal.

Theorem 4.16. Let (X, T , I) be an ideal topological space. If X is an I -normal space with respect to I and if Y is a
closed subset of (X, T ), then (Y, TY) is I -normal with respect to the ideal IY where TY is the subspace topology on Y
inherited from T .

Proof. Let Y be a closed subset of X and let A and B be disjoint closed sets in (Y, TY). Then A and B are
disjoint closed sets in (X, T ). By I -normality, there exist U1, U2 in T such that A ⊆ U1, B ⊆ U2 and
U1 ∩U2 ∈ I . Let V1 = Y ∩U1 and V2 = Y ∩U2. Clearly A ⊆ V1, B ⊆ V2 and V1, V2 are open sets in TY. As
V1 ∩V2 = (U1 ∩U2) ∩Y, we have V1 ∩V2 ∈ IY. Therefore Y is I -normal with respect to the ideal IY.

Conclusion

We defined and discussed the separation axioms in ideal topological spaces in a new way which is more
natural than the previous versions. We proved a property that holds in ideal topological theory which does
not hold in the classical theory of topology and also established a property that holds in the classical theory
which does not hold in the ideal topological theory. This makes the ideal topological theory interesting and
independent. Many concepts available in the classical theory may be discussed using the theory developed in
this paper.
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[6] D. Janković and T. R. Hamlett, New Topologies from Old via Ideals, Amer. Math. Monthly, 97 (1990), 295-310.

[7] J. L. Kelley, General Topology, Van Nostrand Reinhold Company, New York, (1955).

[8] K.Kuratowski, Topology, Vol. I., New York, Academic Press, (1966).

[9] A. A. Nasef, On Hausdorff Spaces via Ieals and Quasi-I-irresolute Functions, Chaos Solitons and Fractals, 14
(2002), 619-625.

[10] J. R. Munkres, Topology, Second Edition, PHI Learning, New Delhi, (2009).

[11] S. Suriyakala and R. Vembu, Relations between Union and Intersection of Ideals and Their Corresponding Ideal
Topologies, Novi Sad J.Math., 45(2) (2015), 39-46.

[12] R. Vaidyanathaswamy, The Localisation Theory in Set Topology, Proc. Indian Acad. Sci. 20 (1945), 51-61.

Received: October 10, 2015; Accepted: April 25, 2016

UNIVERSITY PRESS

Website: http://www.malayajournal.org/


	Introduction
	Preliminary Definitions and Results
	Hausdorff Spaces in Ideal Topological Spaces
	Regular and Normal Spaces

